/************************************************************************* Generate matrix with given condition number C (2-norm) *************************************************************************/ static void rmatrixgenzero(ap::real_2d_array& a0, int n) { int i; int j; a0.setlength(n, n); for(i = 0; i <= n-1; i++) { for(j = 0; j <= n-1; j++) { a0(i,j) = 0; } } }
static void mheapresize(ap::real_2d_array& heap, int& heapsize, int newheapsize, int heapwidth) { ap::real_2d_array tmp; int i; tmp.setlength(heapsize, heapwidth); for(i = 0; i <= heapsize-1; i++) { ap::vmove(&tmp(i, 0), &heap(i, 0), ap::vlen(0,heapwidth-1)); } heap.setlength(newheapsize, heapwidth); for(i = 0; i <= heapsize-1; i++) { ap::vmove(&heap(i, 0), &tmp(i, 0), ap::vlen(0,heapwidth-1)); } heapsize = newheapsize; }
/************************************************************************* Dense solver. This subroutine solves a system A*X=B, where A is NxN non-denegerate real matrix, X and B are NxM real matrices. Additional features include: * automatic detection of degenerate cases * iterative improvement INPUT PARAMETERS A - array[0..N-1,0..N-1], system matrix N - size of A B - array[0..N-1,0..M-1], right part M - size of right part OUTPUT PARAMETERS Info - return code: * -3 if A is singular, or VERY close to singular. X is filled by zeros in such cases. * -1 if N<=0 or M<=0 was passed * 1 if task is solved (matrix A may be near singular, check R1/RInf parameters for condition numbers). Rep - solver report, see below for more info X - array[0..N-1,0..M-1], it contains: * solution of A*X=B if A is non-singular (well-conditioned or ill-conditioned, but not very close to singular) * zeros, if A is singular or VERY close to singular (in this case Info=-3). SOLVER REPORT Subroutine sets following fields of the Rep structure: * R1 reciprocal of condition number: 1/cond(A), 1-norm. * RInf reciprocal of condition number: 1/cond(A), inf-norm. SEE ALSO: DenseSolverR() - solves A*x = b, where x and b are Nx1 matrices. -- ALGLIB -- Copyright 24.08.2009 by Bochkanov Sergey *************************************************************************/ void rmatrixsolvem(const ap::real_2d_array& a, int n, const ap::real_2d_array& b, int m, int& info, densesolverreport& rep, ap::real_2d_array& x) { int i; int j; int k; int rfs; int nrfs; ap::integer_1d_array p; ap::real_1d_array xc; ap::real_1d_array y; ap::real_1d_array bc; ap::real_1d_array xa; ap::real_1d_array xb; ap::real_1d_array tx; ap::real_2d_array da; double v; double verr; bool smallerr; bool terminatenexttime; // // prepare: check inputs, allocate space... // if( n<=0||m<=0 ) { info = -1; return; } da.setlength(n, n); x.setlength(n, m); y.setlength(n); xc.setlength(n); bc.setlength(n); tx.setlength(n+1); xa.setlength(n+1); xb.setlength(n+1); // // factorize matrix, test for exact/near singularity // for(i = 0; i <= n-1; i++) { ap::vmove(&da(i, 0), &a(i, 0), ap::vlen(0,n-1)); } rmatrixlu(da, n, n, p); rep.r1 = rmatrixlurcond1(da, n); rep.rinf = rmatrixlurcondinf(da, n); if( ap::fp_less(rep.r1,10*ap::machineepsilon)||ap::fp_less(rep.rinf,10*ap::machineepsilon) ) { for(i = 0; i <= n-1; i++) { for(j = 0; j <= m-1; j++) { x(i,j) = 0; } } rep.r1 = 0; rep.rinf = 0; info = -3; return; } info = 1; // // solve // for(k = 0; k <= m-1; k++) { // // First, non-iterative part of solution process: // * pivots // * L*y = b // * U*x = y // ap::vmove(bc.getvector(0, n-1), b.getcolumn(k, 0, n-1)); for(i = 0; i <= n-1; i++) { if( p(i)!=i ) { v = bc(i); bc(i) = bc(p(i)); bc(p(i)) = v; } } y(0) = bc(0); for(i = 1; i <= n-1; i++) { v = ap::vdotproduct(&da(i, 0), &y(0), ap::vlen(0,i-1)); y(i) = bc(i)-v; } xc(n-1) = y(n-1)/da(n-1,n-1); for(i = n-2; i >= 0; i--) { v = ap::vdotproduct(&da(i, i+1), &xc(i+1), ap::vlen(i+1,n-1)); xc(i) = (y(i)-v)/da(i,i); } // // Iterative improvement of xc: // * calculate r = bc-A*xc using extra-precise dot product // * solve A*y = r // * update x:=x+r // // This cycle is executed until one of two things happens: // 1. maximum number of iterations reached // 2. last iteration decreased error to the lower limit // nrfs = densesolverrfsmax(n, rep.r1, rep.rinf); terminatenexttime = false; for(rfs = 0; rfs <= nrfs-1; rfs++) { if( terminatenexttime ) { break; } // // generate right part // smallerr = true; for(i = 0; i <= n-1; i++) { ap::vmove(&xa(0), &a(i, 0), ap::vlen(0,n-1)); xa(n) = -1; ap::vmove(&xb(0), &xc(0), ap::vlen(0,n-1)); xb(n) = b(i,k); xdot(xa, xb, n+1, tx, v, verr); bc(i) = -v; smallerr = smallerr&&ap::fp_less(fabs(v),4*verr); } if( smallerr ) { terminatenexttime = true; } // // solve // for(i = 0; i <= n-1; i++) { if( p(i)!=i ) { v = bc(i); bc(i) = bc(p(i)); bc(p(i)) = v; } } y(0) = bc(0); for(i = 1; i <= n-1; i++) { v = ap::vdotproduct(&da(i, 0), &y(0), ap::vlen(0,i-1)); y(i) = bc(i)-v; } tx(n-1) = y(n-1)/da(n-1,n-1); for(i = n-2; i >= 0; i--) { v = ap::vdotproduct(&da(i, i+1), &tx(i+1), ap::vlen(i+1,n-1)); tx(i) = (y(i)-v)/da(i,i); } // // update // ap::vadd(&xc(0), &tx(0), ap::vlen(0,n-1)); } // // Store xc // ap::vmove(x.getcolumn(k, 0, n-1), xc.getvector(0, n-1)); } }