コード例 #1
0
ファイル: split_data.hpp プロジェクト: YaweiZhao/mlpack
void Split(const arma::Mat<T>& input,
           const arma::Row<U>& inputLabel,
           arma::Mat<T>& trainData,
           arma::Mat<T>& testData,
           arma::Row<U>& trainLabel,
           arma::Row<U>& testLabel,
           const double testRatio)
{
  const size_t testSize = static_cast<size_t>(input.n_cols * testRatio);
  const size_t trainSize = input.n_cols - testSize;
  trainData.set_size(input.n_rows, trainSize);
  testData.set_size(input.n_rows, testSize);
  trainLabel.set_size(trainSize);
  testLabel.set_size(testSize);

  const arma::Col<size_t> order =
      arma::shuffle(arma::linspace<arma::Col<size_t>>(0, input.n_cols - 1,
                                                      input.n_cols));

  for (size_t i = 0; i != trainSize; ++i)
  {
    trainData.col(i) = input.col(order[i]);
    trainLabel(i) = inputLabel(order[i]);
  }

  for (size_t i = 0; i != testSize; ++i)
  {
    testData.col(i) = input.col(order[i + trainSize]);
    testLabel(i) = inputLabel(order[i + trainSize]);
  }
}
コード例 #2
0
ファイル: PCAUtils.cpp プロジェクト: Pfern/sailfish
arma::Col<double> compute_column_rms(const arma::Mat<double>& data) {
	const long n_cols = data.n_cols;
	arma::Col<double> rms(n_cols);
    for (long i=0; i<n_cols; ++i) {
        const double dot = arma::dot(data.col(i), data.col(i));
        rms(i) = std::sqrt(dot / (data.col(i).n_rows-1));
    }
	return std::move(rms);
}
コード例 #3
0
ファイル: PCAUtils.cpp プロジェクト: Pfern/sailfish
void enforce_positive_sign_by_column(arma::Mat<double>& data) {
	for (long i=0; i<long(data.n_cols); ++i) {
		const double max = arma::max(data.col(i));
		const double min = arma::min(data.col(i));
		bool change_sign = false;
		if (std::abs(max)>=std::abs(min)) {
			if (max<0) change_sign = true;
		} else {
			if (min<0) change_sign = true;
		}
		if (change_sign) data.col(i) *= -1;
	}
}
コード例 #4
0
void calculateJacobian(const arma::Mat<std::complex<double> >& myOffsets,
		       arma::Mat<double>& myJacobian, 
		       arma::Col<std::complex<double> >& myTargetsCalculated, 
		       arma::Col<std::complex<double> >& myCurrentGuess, 
		       void myCalculateDependentVariables(const arma::Mat<std::complex<double> >&, const arma::Col<std::complex<double> >&, arma::Col<std::complex<double> >&))
{
	//Calculate a temporary, unperturbed target evaluation, such as is needed for solving for the updated guess 
	//formula
	arma::Col<std::complex<double> > unperturbedTargetsCalculated(NUMDIMENSIONS);
	unperturbedTargetsCalculated.fill(0.0);
	myCalculateDependentVariables(myOffsets, myCurrentGuess, unperturbedTargetsCalculated);
	std::complex<double> oldGuessValue(0.0, 0.0);

	//Each iteration fills a column in the Jacobian
	//The Jacobian takes this form:
	//
	//	dF0/dx0 dF0/dx1 
	//	dF1/dx0 dF1/dx1
	//
	for(int j = 0; j< NUMDIMENSIONS; j++)
	{
		//Store old element value, perturb the current value
		oldGuessValue = myCurrentGuess[j];
		myCurrentGuess[j] += std::complex<double>(0.0, PROBEDISTANCE);

		//Evaluate functions for perturbed guess
		myCalculateDependentVariables(myOffsets, myCurrentGuess, myTargetsCalculated);

		//The column of the Jacobian that goes with the independent variable we perturbed
		//can be determined using the finite-difference formula
		//The arma::Col allows this to be expressed as a single vector operation
		//note slice works as: std::slice(start_index, number_of_elements_to_access, index_interval_between_selections)
		//std::cout << "Jacobian column " << j << " with:" << std::endl;
		//std::cout << "myTargetsCalculated" << std::endl;
		//std::cout << myTargetsCalculated << std::endl;
		//std::cout << "unperturbedTargetsCalculated" << std::endl;
		//std::cout << unperturbedTargetsCalculated << std::endl;
		myJacobian.col(j) = arma::imag(myTargetsCalculated);
	       	myJacobian.col(j) *= pow(PROBEDISTANCE, -1.0);
		//std::cout << "The jacobian: " << std::endl;
		//std::cout << myJacobian << std::endl;

		myCurrentGuess[j] = oldGuessValue;
	}

	//Reset to unperturbed, so we dont waste a function evaluation
	myTargetsCalculated = unperturbedTargetsCalculated;
}
コード例 #5
0
ファイル: hard_tanh_layer.hpp プロジェクト: DeepCV/mlpack
  void Backward(const arma::Cube<eT>& input,
                const arma::Mat<eT>& gy,
                arma::Cube<eT>& g)
  {
    // Generate a cube using the backpropagated error matrix.
    arma::Cube<eT> mappedError = arma::zeros<arma::cube>(input.n_rows,
        input.n_cols, input.n_slices);

    for (size_t s = 0, j = 0; s < mappedError.n_slices; s+= gy.n_cols, j++)
    {
      for (size_t i = 0; i < gy.n_cols; i++)
      {
        arma::Col<eT> temp = gy.col(i).subvec(
            j * input.n_rows * input.n_cols,
            (j + 1) * input.n_rows * input.n_cols - 1);

        mappedError.slice(s + i) = arma::Mat<eT>(temp.memptr(),
            input.n_rows, input.n_cols);
      }
    }

    arma::Cube<eT> derivative;
    Deriv(input, derivative);
    g = mappedError % derivative;
  }
コード例 #6
0
    inline ParallelKinematicMachine3PUPS::ParallelKinematicMachine3PUPS() noexcept {
      setMinimalActiveJointActuations({0.39, 0.39, 0.39});
      setMaximalActiveJointActuations({0.95, 0.95, 0.95});

      setEndEffectorJointPositions({
        -0.025561381023353, 0.086293776138137, 0.12,
        0.087513292835791, -0.021010082747031, 0.12,
        -0.061951911812438, -0.065283693391106, 0.12});

      setRedundantJointStartPositions({
        -0.463708870031622, 0.417029254828353, -0.346410161513775,
        0.593012363818459, 0.193069033993384, -0.346410161513775,
        -0.129303493786837, -0.610098288821738, -0.346410161513775});

      setRedundantJointEndPositions({
        -0.247202519085512, 0.292029254828353, 0.086602540378444,
        0.376506012872349, 0.068069033993384, 0.086602540378444,
        -0.129303493786837, -0.360098288821738, 0.086602540378444});

      redundantJointStartToEndPositions_ = redundantJointEndPositions_ - redundantJointStartPositions_;
      redundantJointIndicies_ = arma::find(arma::any(redundantJointStartToEndPositions_));

      redundantJointAngles_.set_size(3, redundantJointIndicies_.n_elem);

      for (std::size_t n = 0; n < redundantJointIndicies_.n_elem; ++n) {
        const double& redundantJointXAngle = std::atan2(redundantJointStartToEndPositions_(1, n), redundantJointStartToEndPositions_(0, n));
        const double& redundantJointYAngle = std::atan2(redundantJointStartToEndPositions_(2, n), redundantJointStartToEndPositions_(1, n));
        redundantJointAngles_.col(n) = arma::Col<double>::fixed<3>({std::cos(redundantJointXAngle) * std::cos(redundantJointYAngle), std::sin(redundantJointXAngle) * std::cos(redundantJointYAngle), std::sin(redundantJointYAngle)});
      }
    }
コード例 #7
0
ファイル: PCAUtils.cpp プロジェクト: Pfern/sailfish
arma::Col<double> compute_column_means(const arma::Mat<double>& data) {
	const long n_cols = data.n_cols;
	arma::Col<double> means(n_cols);
	for (long i=0; i<n_cols; ++i)
    	means(i) = arma::mean(data.col(i));
	return std::move(means);
}
コード例 #8
0
ファイル: dropout_layer.hpp プロジェクト: suspy/mlpack
  void FeedBackward(const arma::Cube<eT>& inputActivation,
                    const arma::Mat<eT>& error,
                    arma::Cube<eT>& delta)
  {
    delta = delta % mask * scale;

    // Generate a cube from the error matrix.
    arma::Cube<eT> mappedError = arma::zeros<arma::cube>(inputActivation.n_rows,
        inputActivation.n_cols, inputActivation.n_slices);

    for (size_t s = 0, j = 0; s < mappedError.n_slices; s+= error.n_cols, j++)
    {
      for (size_t i = 0; i < error.n_cols; i++)
      {
        arma::Col<eT> temp = error.col(i).subvec(
            j * inputActivation.n_rows * inputActivation.n_cols,
            (j + 1) * inputActivation.n_rows * inputActivation.n_cols - 1);

        mappedError.slice(s + i) = arma::Mat<eT>(temp.memptr(),
            inputActivation.n_rows, inputActivation.n_cols);
      }
    }

    delta = mappedError;
  }
コード例 #9
0
ファイル: pca.cpp プロジェクト: bloomen/armapca
arma::Row<T> column_apply(const arma::Mat<T>& matrix, Functor functor) {
  arma::Row<T> result(matrix.n_cols);
  std::size_t index = 0;
  std::generate(result.begin(), result.end(), [&matrix, &index, &functor] {
    return functor(matrix.col(index++));
  });
  return result;
}
コード例 #10
0
ファイル: PCAUtils.cpp プロジェクト: Pfern/sailfish
void normalize_by_column(arma::Mat<double>& data, const arma::Col<double>& rms) {
	if (data.n_cols != rms.n_elem)
		throw std::range_error("Number of elements of rms is not equal to the number of columns of data");
	for (long i=0; i<long(data.n_cols); ++i) {
        if (rms(i)==0)
        	throw std::runtime_error("At least one of the entries of rms equals to zero");
        data.col(i) *= 1./rms(i);
    }
}
コード例 #11
0
ファイル: cf.cpp プロジェクト: AmesianX/mlpack
// Predict the rating for a group of user/item combinations.
void CF::Predict(const arma::Mat<size_t>& combinations,
                 arma::vec& predictions) const
{
  // First, for nearest neighbor search, stretch the H matrix.
  arma::mat l = arma::chol(w.t() * w);
  arma::mat stretchedH = l * h; // Due to the Armadillo API, l is L^T.

  // Now, we must determine those query indices we need to find the nearest
  // neighbors for.  This is easiest if we just sort the combinations matrix.
  arma::Mat<size_t> sortedCombinations(combinations.n_rows,
                                       combinations.n_cols);
  arma::uvec ordering = arma::sort_index(combinations.row(0).t());
  for (size_t i = 0; i < ordering.n_elem; ++i)
    sortedCombinations.col(i) = combinations.col(ordering[i]);

  // Now, we have to get the list of unique users we will be searching for.
  arma::Col<size_t> users = arma::unique(combinations.row(0).t());

  // Assemble our query matrix from the stretchedH matrix.
  arma::mat queries(stretchedH.n_rows, users.n_elem);
  for (size_t i = 0; i < queries.n_cols; ++i)
    queries.col(i) = stretchedH.col(users[i]);

  // Now calculate the neighborhood of these users.
  neighbor::KNN a(stretchedH);
  arma::mat distances;
  arma::Mat<size_t> neighborhood;

  a.Search(queries, numUsersForSimilarity, neighborhood, distances);

  // Now that we have the neighborhoods we need, calculate the predictions.
  predictions.set_size(combinations.n_cols);

  size_t user = 0; // Cumulative user count, because we are doing it in order.
  for (size_t i = 0; i < sortedCombinations.n_cols; ++i)
  {
    // Could this be made faster by calculating dot products for multiple items
    // at once?
    double rating = 0.0;

    // Map the combination's user to the user ID used for kNN.
    while (users[user] < sortedCombinations(0, i))
      ++user;

    for (size_t j = 0; j < neighborhood.n_rows; ++j)
      rating += arma::as_scalar(w.row(sortedCombinations(1, i)) *
          h.col(neighborhood(j, user)));
    rating /= neighborhood.n_rows;

    predictions(ordering[i]) = rating;
  }
}
int
DynamicsTrappenberg::update_y(
    const arma::Mat< double > x,
    const arma::Mat< double > u,
    const mxArray *theta,
    const mxArray *ptheta,
    arma::Mat< double > &y)
{

    y = x.col(INDEX_NODES);

    return 0;

}
コード例 #13
0
ファイル: information_gain.hpp プロジェクト: YaweiZhao/mlpack
  /**
   * Given the sufficient statistics of a proposed split, calculate the
   * information gain if that split was to be used.  The 'counts' matrix should
   * contain the number of points in each class in each column, so the size of
   * 'counts' is children x classes, where 'children' is the number of child
   * nodes in the proposed split.
   *
   * @param counts Matrix of sufficient statistics.
   */
  static double Evaluate(const arma::Mat<size_t>& counts)
  {
    // Calculate the number of elements in the unsplit node and also in each
    // proposed child.
    size_t numElem = 0;
    arma::vec splitCounts(counts.n_elem);
    for (size_t i = 0; i < counts.n_cols; ++i)
    {
      splitCounts[i] = arma::accu(counts.col(i));
      numElem += splitCounts[i];
    }

    // Corner case: if there are no elements, the gain is zero.
    if (numElem == 0)
      return 0.0;

    arma::Col<size_t> classCounts = arma::sum(counts, 1);

    // Calculate the gain of the unsplit node.
    double gain = 0.0;
    for (size_t i = 0; i < classCounts.n_elem; ++i)
    {
      const double f = ((double) classCounts[i] / (double) numElem);
      if (f > 0.0)
        gain -= f * std::log2(f);
    }

    // Now calculate the impurity of the split nodes and subtract them from the
    // overall gain.
    for (size_t i = 0; i < counts.n_cols; ++i)
    {
      if (splitCounts[i] > 0)
      {
        double splitGain = 0.0;
        for (size_t j = 0; j < counts.n_rows; ++j)
        {
          const double f = ((double) counts(j, i) / (double) splitCounts[i]);
          if (f > 0.0)
            splitGain += f * std::log2(f);
        }

        gain += ((double) splitCounts[i] / (double) numElem) * splitGain;
      }
    }

    return gain;
  }
コード例 #14
0
ファイル: gini_impurity.hpp プロジェクト: YaweiZhao/mlpack
  static double Evaluate(const arma::Mat<size_t>& counts)
  {
    // We need to sum over the difference between the un-split node and the
    // split nodes.  First we'll calculate the number of elements in each split
    // and total.
    size_t numElem = 0;
    arma::vec splitCounts(counts.n_cols);
    for (size_t i = 0; i < counts.n_cols; ++i)
    {
      splitCounts[i] = arma::accu(counts.col(i));
      numElem += splitCounts[i];
    }

    // Corner case: if there are no elements, the impurity is zero.
    if (numElem == 0)
      return 0.0;

    arma::Col<size_t> classCounts = arma::sum(counts, 1);

    // Calculate the Gini impurity of the un-split node.
    double impurity = 0.0;
    for (size_t i = 0; i < classCounts.n_elem; ++i)
    {
      const double f = ((double) classCounts[i] / (double) numElem);
      impurity += f * (1.0 - f);
    }

    // Now calculate the impurity of the split nodes and subtract them from the
    // overall impurity.
    for (size_t i = 0; i < counts.n_cols; ++i)
    {
      if (splitCounts[i] > 0)
      {
        double splitImpurity = 0.0;
        for (size_t j = 0; j < counts.n_rows; ++j)
        {
          const double f = ((double) counts(j, i) / (double) splitCounts[i]);
          splitImpurity += f * (1.0 - f);
        }

        impurity -= ((double) splitCounts[i] / (double) numElem) *
            splitImpurity;
      }
    }

    return impurity;
  }
arma::Mat< double >
DynamicsTrappenberg::sigma(
    const arma::Mat< double > x,
    const arma::Mat< double > u,
    const mxArray *theta,
    const mxArray *ptheta)
{
    arma::Mat< double > beta(mxGetPr(mxGetField(theta, 0, "beta")), 
        x.n_rows, 1, 1);
    arma::Mat< double > baseline(mxGetPr(mxGetField(theta, 0, "theta")), 
        x.n_rows, 1, 1);
   
    arma::Mat< double > dx = 1/(1 + exp(-x.col(INDEX_NODES) % beta + 
                baseline));

    return dx;

}
コード例 #16
0
ファイル: bovw.hpp プロジェクト: stereomatchingkiss/ocv_libs
    /**
     * Convert the features of images into histogram
     * @param features features of the image
     * @param code_book code book of the data sets
     * @return histogram of bovw
     */
    Hist describe(arma::Mat<T> const &features,
                  arma::Mat<T> const &code_book) const
    {
        arma::Mat<T> dist(features.n_cols, code_book.n_cols);
        for(arma::uword i = 0; i != features.n_cols; ++i){
            dist.row(i) = euclidean_dist(features.col(i),
                                         code_book);
        }
        //dist.print("dist");

        Hist hist = create_hist(dist.n_cols,
                                armd::is_two_dim<Hist>::type());
        for(arma::uword i = 0; i != dist.n_rows; ++i){
            arma::uword min_idx;
            dist.row(i).min(min_idx);
            ++hist(min_idx);
        }
        //hist.print("\nhist");

        return hist;
    }
void DefaultLocalAssemblerForOperatorsOnSurfacesUtilities<BasisFunctionType>::
    precalculateElementSizesAndCentersForSingleGrid(
        const RawGridGeometry<CoordinateType> &rawGeometry,
        std::vector<CoordinateType> &elementSizesSquared,
        arma::Mat<CoordinateType> &elementCenters,
        CoordinateType &averageElementSize) {
  const size_t elementCount = rawGeometry.elementCount();
  const int worldDim = rawGeometry.worldDimension();

  averageElementSize = 0.; // We will store here temporarily
                           // the sum of element sizes
  elementSizesSquared.resize(elementCount);
  for (int e = 0; e < elementCount; ++e) {
    elementSizesSquared[e] = elementSizeSquared(e, rawGeometry);
    averageElementSize += sqrt(elementSizesSquared[e]);
  }
  averageElementSize /= elementCount;

  elementCenters.set_size(worldDim, elementCount);
  for (int e = 0; e < elementCount; ++e)
    elementCenters.col(e) = elementCenter(e, rawGeometry);
}
コード例 #18
0
ファイル: pooling_layer.hpp プロジェクト: shenzebang/mlpack
  void Backward(const arma::Cube<eT>& /* unused */,
                const arma::Mat<eT>& gy,
                arma::Cube<eT>& g)
  {
    // Generate a cube from the error matrix.
    arma::Cube<eT> mappedError = arma::zeros<arma::cube>(outputParameter.n_rows,
        outputParameter.n_cols, outputParameter.n_slices);

    for (size_t s = 0, j = 0; s < mappedError.n_slices; s+= gy.n_cols, j++)
    {
      for (size_t i = 0; i < gy.n_cols; i++)
      {
        arma::Col<eT> temp = gy.col(i).subvec(
            j * outputParameter.n_rows * outputParameter.n_cols,
            (j + 1) * outputParameter.n_rows * outputParameter.n_cols - 1);

        mappedError.slice(s + i) = arma::Mat<eT>(temp.memptr(),
            outputParameter.n_rows, outputParameter.n_cols);
      }
    }

    Backward(inputParameter, mappedError, g);
  }
コード例 #19
0
ファイル: ra_model_impl.hpp プロジェクト: hussain7/mlpack
void RAModel<SortPolicy>::Search(arma::mat&& querySet,
                                 const size_t k,
                                 arma::Mat<size_t>& neighbors,
                                 arma::mat& distances)
{
  // Apply the random basis if necessary.
  if (randomBasis)
    querySet = q * querySet;

  Log::Info << "Searching for " << k << " approximate nearest neighbors with ";
  if (!Naive() && !SingleMode())
    Log::Info << "dual-tree rank-approximate " << TreeName() << " search...";
  else if (!Naive())
    Log::Info << "single-tree rank-approximate " << TreeName() << " search...";
  else
    Log::Info << "brute-force (naive) rank-approximate search...";
  Log::Info << std::endl;

  switch (treeType)
  {
    case KD_TREE:
      if (!kdTreeRA->Naive() && !kdTreeRA->SingleMode())
      {
        // Build a second tree and search.
        Timer::Start("tree_building");
        Log::Info << "Building query tree..." << std::endl;
        std::vector<size_t> oldFromNewQueries;
        typename RAType<tree::KDTree>::Tree queryTree(std::move(querySet),
            oldFromNewQueries, leafSize);
        Log::Info << "Tree built." << std::endl;
        Timer::Stop("tree_building");

        arma::Mat<size_t> neighborsOut;
        arma::mat distancesOut;
        kdTreeRA->Search(&queryTree, k, neighborsOut, distancesOut);

        // Unmap the query points.
        distances.set_size(distancesOut.n_rows, distancesOut.n_cols);
        neighbors.set_size(neighborsOut.n_rows, neighborsOut.n_cols);
        for (size_t i = 0; i < neighborsOut.n_cols; ++i)
        {
          neighbors.col(oldFromNewQueries[i]) = neighborsOut.col(i);
          distances.col(oldFromNewQueries[i]) = distancesOut.col(i);
        }
      }
      else
      {
        // Search without building a second tree.
        kdTreeRA->Search(querySet, k, neighbors, distances);
      }
      break;
    case COVER_TREE:
      // No mapping necessary.
      coverTreeRA->Search(querySet, k, neighbors, distances);
      break;
    case R_TREE:
      // No mapping necessary.
      rTreeRA->Search(querySet, k, neighbors, distances);
      break;
    case R_STAR_TREE:
      // No mapping necessary.
      rStarTreeRA->Search(querySet, k, neighbors, distances);
      break;
    case X_TREE:
      // No mapping necessary.
      xTreeRA->Search(querySet, k, neighbors, distances);
      break;
  }
}
コード例 #20
0
    inline double ParallelKinematicMachine3PUPS::getEndEffectorPoseError(
        const arma::Col<double>::fixed<6>& endEffectorPose,
        const arma::Row<double>& redundantJointActuations) const {
      const arma::Cube<double>::fixed<3, 3, 2>& model = getModel(endEffectorPose, redundantJointActuations);

      const arma::Mat<double>::fixed<3, 3>& baseJoints = model.slice(0);

      const arma::Mat<double>::fixed<3, 3>& endEffectorJoints = model.slice(1);
      arma::Mat<double>::fixed<3, 3> endEffectorJointsRotated = endEffectorJoints;
      endEffectorJointsRotated.each_col() -= endEffectorPose.subvec(0, 1);

      const arma::Mat<double>::fixed<3, 3>& baseToEndEffectorJointPositions = endEffectorJoints - baseJoints;
      const arma::Row<double>::fixed<3>& baseToEndEffectorJointActuations = arma::sqrt(arma::sum(arma::square(baseToEndEffectorJointPositions)));

      if (arma::any(baseToEndEffectorJointActuations < minimalActiveJointActuations_) || arma::any(baseToEndEffectorJointActuations > maximalActiveJointActuations_)) {
        return 0.0;
      }

      arma::Mat<double>::fixed<6, 3> forwardKinematic;
      forwardKinematic.head_rows(3) = baseToEndEffectorJointPositions;
      for (std::size_t n = 0; n < baseToEndEffectorJointPositions.n_cols; ++n) {
        forwardKinematic.submat(3, n, 5, n) = arma::cross(endEffectorJointsRotated.col(n), baseToEndEffectorJointPositions.col(n));
      }

      arma::Mat<double> inverseKinematic(6, 3 + redundantJointIndicies_.n_elem, arma::fill::zeros);
      inverseKinematic.diag() = -arma::sqrt(arma::sum(arma::square(baseToEndEffectorJointPositions)));
      for (std::size_t n = 0; n < redundantJointIndicies_.n_elem; ++n) {
        const unsigned int& redundantJointIndex = redundantJointIndicies_(n);
        inverseKinematic(n, 3 + n) = arma::dot(baseToEndEffectorJointPositions.col(redundantJointIndex), redundantJointAngles_.col(redundantJointIndex));
      }

      return -1.0 / arma::cond(arma::solve(forwardKinematic.t(), inverseKinematic));
    }
コード例 #21
0
    inline arma::Col<double>::fixed<6> ParallelKinematicMachine3PUPS::getEndEffectorPose(
        const arma::Row<double>::fixed<3>& actuations,
        const arma::Row<double>::fixed<3>& endEffectorRotation,
        const arma::Row<double>& redundantJointActuations) const {
      verify(arma::any(arma::vectorise(redundantJointActuations < 0)) || arma::any(arma::vectorise(redundantJointActuations > 1)), "All values for the actuation of redundantion joints must be between [0, 1].");
      verify(redundantJointActuations.n_elem == redundantJointIndicies_.n_elem, "The number of redundant actuations must be equal to the number of redundant joints.");

      const double& endEffectorRollAngle = endEffectorRotation(0);
      const double& endEffectorPitchAngle = endEffectorRotation(1);
      const double& endEffectorYawAngle = endEffectorRotation(2);

      arma::Mat<double> baseJointPositions = redundantJointStartPositions_;
      for (std::size_t n = 0; n < redundantJointIndicies_.n_elem; n++) {
        const unsigned int& redundantJointIndex = redundantJointIndicies_(n);
        baseJointPositions.col(redundantJointIndex) += redundantJointActuations(redundantJointIndex) * redundantJointStartToEndPositions_.col(redundantJointIndex);
      }

      baseJointPositions -= get3DRotation(endEffectorRollAngle, endEffectorPitchAngle, endEffectorYawAngle) * endEffectorJointPositions_;

      return arma::join_cols(getTriangulation(baseJointPositions.col(0), actuations(0), baseJointPositions.col(1), actuations(1), baseJointPositions.col(2), actuations(2)), endEffectorRotation);
    }
コード例 #22
0
    inline arma::Cube<double>::fixed<3, 3, 2> ParallelKinematicMachine3PUPS::getModel(
        const arma::Col<double>::fixed<6>& endEffectorPose,
        const arma::Row<double>& redundantJointActuations) const {
      verify(arma::any(arma::vectorise(redundantJointActuations < 0)) || arma::any(arma::vectorise(redundantJointActuations > 1)), "All values for the actuation of redundantion joints must be between [0, 1].");
      verify(redundantJointActuations.n_elem == redundantJointIndicies_.n_elem, "The number of redundant actuations must be equal to the number of redundant joints.");

      arma::Cube<double>::fixed<3, 3, 2> model;

      const arma::Col<double>::fixed<3>& endEffectorPosition = endEffectorPose.subvec(0, 2);
      const double& endEffectorRollAngle = endEffectorPose(3);
      const double& endEffectorPitchAngle = endEffectorPose(4);
      const double& endEffectorYawAngle = endEffectorPose(5);

      model.slice(0) = redundantJointStartPositions_;
      for (std::size_t n = 0; n < redundantJointIndicies_.n_elem; n++) {
        const unsigned int& redundantJointIndex = redundantJointIndicies_(n);
        model.slice(0).col(redundantJointIndex) += redundantJointActuations(redundantJointIndex) * redundantJointStartToEndPositions_.col(redundantJointIndex);
      }

      model.slice(1) = get3DRotation(endEffectorRollAngle, endEffectorPitchAngle, endEffectorYawAngle) * endEffectorJointPositions_;
      model.slice(1).each_col() += endEffectorPosition;

      return model;
    }
コード例 #23
0
ファイル: NaiveBayes.cpp プロジェクト: JoshMarler/beatbox-vox
void NaiveBayes<T>::Train(const arma::Mat<T>& trainingData, const arma::Row<int>& classLabels)
{

	//Reset prob states
	priorProbs.zeros();
	featureMeans.zeros();
	featureVariances.zeros();

	//Mean sum. Sum the feature values for each class label instance
	for (size_t j = 0; j < trainingData.n_cols; ++j)
	{
		const auto label = classLabels[j];

		//Increment num occurences of current class in priorProbs set.
		++priorProbs[label];
		featureMeans.col(label) += trainingData.col(j);
	}

	//Normalise mean sums. Divide class feature sums by number of class occurences.
	for (size_t i = 0; i < priorProbs.n_elem; ++i)
	{
		//Check if probability of each class != 0 due to no instance of class in training set.
		//Avoids divide by zero errors.
		if (priorProbs[i] != 0.0)
			featureMeans.col(i) /= priorProbs[i]; //divide by total num class occurences.
	}

	//Variances sum
	for (size_t j = 0; j < trainingData.n_cols; ++j)
	{
		const auto label = classLabels[j];

		/**
		 * Should be real-time safe with arma::square not malloc / dynamic allocating
		 *  due to use of expression templates.
		 */
		featureVariances.col(label) += arma::square(trainingData.col(j) - featureMeans.col(label));
	}

	//Normalise variance sums
	for (size_t i = 0; i < priorProbs.n_elem; ++i)
	{
		if (priorProbs[i] > 1)
			featureVariances.col(i) /= (priorProbs[i] - 1);
	}

	/** Ensure that the featureVariances can be inverted. 
	 *  The distribution calculation takes the standard deviation which 
	 *  is equal to sqrt(featureVariances). The standard deviation is then inverted
	 *  i.e. 1/stdDev or equivalently arma::pow(stdDev, -1). So this will cause a 
	 *  divide by zero type error if any attribute variances are equal to 0.0
	 *  The stdDev will then contain -inf or NaN values which causes calculation errors.
	 *  Replace 0.0 variances with minimal floating point value.
	 */
	
	for (size_t i = 0; i < featureVariances.n_elem; ++i)
	{
		if (featureVariances[i] == 0.0)
			featureVariances[i] = std::numeric_limits<T>::min();
	}


	//Normalise prior probabilities
	priorProbs /= static_cast<T>(trainingData.n_cols);
}
コード例 #24
0
void NeighborSearch<SortPolicy, MetricType, TreeType>::Search(
    const size_t k,
    arma::Mat<size_t>& resultingNeighbors,
    arma::mat& distances)
{
  Timer::Start("computing_neighbors");

  // If we have built the trees ourselves, then we will have to map all the
  // indices back to their original indices when this computation is finished.
  // To avoid an extra copy, we will store the neighbors and distances in a
  // separate matrix.
  arma::Mat<size_t>* neighborPtr = &resultingNeighbors;
  arma::mat* distancePtr = &distances;

  if (ownQueryTree || (ownReferenceTree && !queryTree))
    distancePtr = new arma::mat; // Query indices need to be mapped.
  if (ownReferenceTree || ownQueryTree)
    neighborPtr = new arma::Mat<size_t>; // All indices need mapping.

  // Set the size of the neighbor and distance matrices.
  neighborPtr->set_size(k, querySet.n_cols);
  distancePtr->set_size(k, querySet.n_cols);
  distancePtr->fill(SortPolicy::WorstDistance());

  size_t numPrunes = 0;

  if (singleMode)
  {
    // Create the helper object for the tree traversal.
    typedef NeighborSearchRules<SortPolicy, MetricType, TreeType> RuleType;
    RuleType rules(referenceSet, querySet, *neighborPtr, *distancePtr, metric);

    // Create the traverser.
    typename TreeType::template SingleTreeTraverser<RuleType> traverser(rules);

    // Now have it traverse for each point.
    for (size_t i = 0; i < querySet.n_cols; ++i)
      traverser.Traverse(i, *referenceTree);

    numPrunes = traverser.NumPrunes();
  }
  else // Dual-tree recursion.
  {
    // Create the helper object for the tree traversal.
    typedef NeighborSearchRules<SortPolicy, MetricType, TreeType> RuleType;
    RuleType rules(referenceSet, querySet, *neighborPtr, *distancePtr, metric);

    typename TreeType::template DualTreeTraverser<RuleType> traverser(rules);

    if (queryTree)
      traverser.Traverse(*queryTree, *referenceTree);
    else
      traverser.Traverse(*referenceTree, *referenceTree);

    numPrunes = traverser.NumPrunes();
  }

  Log::Warn << "Pruned " << numPrunes << " nodes." << std::endl;

  Timer::Stop("computing_neighbors");

  // Now, do we need to do mapping of indices?
  if (!ownReferenceTree && !ownQueryTree)
  {
    // No mapping needed.  We are done.
    return;
  }
  else if (ownReferenceTree && ownQueryTree) // Map references and queries.
  {
    // Set size of output matrices correctly.
    resultingNeighbors.set_size(k, querySet.n_cols);
    distances.set_size(k, querySet.n_cols);

    for (size_t i = 0; i < distances.n_cols; i++)
    {
      // Map distances (copy a column).
      distances.col(oldFromNewQueries[i]) = distancePtr->col(i);

      // Map indices of neighbors.
      for (size_t j = 0; j < distances.n_rows; j++)
      {
        resultingNeighbors(j, oldFromNewQueries[i]) =
            oldFromNewReferences[(*neighborPtr)(j, i)];
      }
    }

    // Finished with temporary matrices.
    delete neighborPtr;
    delete distancePtr;
  }
  else if (ownReferenceTree)
  {
    if (!queryTree) // No query tree -- map both references and queries.
    {
      resultingNeighbors.set_size(k, querySet.n_cols);
      distances.set_size(k, querySet.n_cols);

      for (size_t i = 0; i < distances.n_cols; i++)
      {
        // Map distances (copy a column).
        distances.col(oldFromNewReferences[i]) = distancePtr->col(i);

        // Map indices of neighbors.
        for (size_t j = 0; j < distances.n_rows; j++)
        {
          resultingNeighbors(j, oldFromNewReferences[i]) =
              oldFromNewReferences[(*neighborPtr)(j, i)];
        }
      }
    }
    else // Map only references.
    {
      // Set size of neighbor indices matrix correctly.
      resultingNeighbors.set_size(k, querySet.n_cols);

      // Map indices of neighbors.
      for (size_t i = 0; i < resultingNeighbors.n_cols; i++)
      {
        for (size_t j = 0; j < resultingNeighbors.n_rows; j++)
        {
          resultingNeighbors(j, i) = oldFromNewReferences[(*neighborPtr)(j, i)];
        }
      }
    }

    // Finished with temporary matrix.
    delete neighborPtr;
  }
  else if (ownQueryTree)
  {
    // Set size of matrices correctly.
    resultingNeighbors.set_size(k, querySet.n_cols);
    distances.set_size(k, querySet.n_cols);

    for (size_t i = 0; i < distances.n_cols; i++)
    {
      // Map distances (copy a column).
      distances.col(oldFromNewQueries[i]) = distancePtr->col(i);

      // Map indices of neighbors.
      resultingNeighbors.col(oldFromNewQueries[i]) = neighborPtr->col(i);
    }

    // Finished with temporary matrices.
    delete neighborPtr;
    delete distancePtr;
  }
} // Search
コード例 #25
0
ファイル: PCAUtils.cpp プロジェクト: Pfern/sailfish
void remove_column_means(arma::Mat<double>& data, const arma::Col<double>& means) {
	if (data.n_cols != means.n_elem)
		throw std::range_error("Number of elements of means is not equal to the number of columns of data");
    for (long i=0; i<long(data.n_cols); ++i)
    	data.col(i) -= means(i);
}