std::tuple< size_t, boost::iterator_range<const size_t*>, boost::iterator_range<const size_t*>, boost::iterator_range<const T*> > map(const boost::numeric::ublas::compressed_matrix<T, boost::numeric::ublas::row_major> &A) { return std::make_tuple( A.size1(), boost::make_iterator_range( A.index1_data().begin(), A.index1_data().end() ), boost::make_iterator_range( A.index2_data().begin(), A.index2_data().end() ), boost::make_iterator_range( A.value_data().begin(), A.value_data().end() ) ); }
matrix_map<T, ptrdiff_t> map(const boost::numeric::ublas::compressed_matrix<T, boost::numeric::ublas::row_major> &A) { return matrix_map<T, ptrdiff_t>( A.size1(), A.size2(), // amgcl expects signed type for row and col data. This should work // for decently sized matrices: reinterpret_cast<const ptrdiff_t*>(A.index1_data().begin()), reinterpret_cast<const ptrdiff_t*>(A.index2_data().begin()), A.value_data().begin() ); }
void axpy( const boost::numeric::ublas::compressed_matrix<real, boost::numeric::ublas::row_major> &A, const boost::numeric::ublas::vector<real> &x, boost::numeric::ublas::vector<real> &y ) { const ptrdiff_t n = A.size1(); const size_t *Arow = A.index1_data().begin(); const size_t *Acol = A.index2_data().begin(); const real *Aval = A.value_data().begin(); #pragma omp parallel for schedule(dynamic, 1024) for(ptrdiff_t i = 0; i < n; ++i) { real buf = 0; for(size_t j = Arow[i], e = Arow[i + 1]; j < e; ++j) buf += Aval[j] * x[Acol[j]]; y[i] = buf; } }