void GestureClassifierByHistogram::drawMatchedIdPatternHistogram(const boost::circular_buffer<size_t> &matchedHistogramIndexes, const std::string &windowName) const { // calculate matched index histogram cv::MatND hist; #if defined(__GNUC__) { cv::Mat tmpmat(std::vector<unsigned char>(matchedHistogramIndexes.begin(), matchedHistogramIndexes.end())); cv::calcHist(&tmpmat, 1, local::indexHistChannels, cv::Mat(), hist, local::histDims, local::indexHistSize, local::indexHistRanges, true, false); } #else cv::calcHist(&cv::Mat(std::vector<unsigned char>(matchedHistogramIndexes.begin(), matchedHistogramIndexes.end())), 1, local::indexHistChannels, cv::Mat(), hist, local::histDims, local::indexHistSize, local::indexHistRanges, true, false); #endif // normalize histogram //HistogramUtil::normalizeHistogram(hist, params_.maxMatchedHistogramNum); // draw matched index histogram cv::Mat histImg(cv::Mat::zeros(local::indexHistMaxHeight, local::indexHistBins*local::indexHistBinWidth, CV_8UC3)); HistogramUtil::drawHistogram1D(hist, local::indexHistBins, params_.maxMatchedHistogramNum, local::indexHistBinWidth, local::indexHistMaxHeight, histImg); std::ostringstream sstream; sstream << "count: " << matchedHistogramIndexes.size(); cv::putText(histImg, sstream.str(), cv::Point(10, 15), cv::FONT_HERSHEY_COMPLEX, 0.5, CV_RGB(255, 0, 255), 1, 8, false); cv::imshow(windowName, histImg); }
void image_obj_callback(const autoware_msgs::image_obj::ConstPtr& image_obj_msg) { pthread_mutex_lock(&mutex); image_obj_ringbuf.push_front(*image_obj_msg); //vscan_image is empty if (vscan_image_ringbuf.begin() == vscan_image_ringbuf.end()) { pthread_mutex_unlock(&mutex); ROS_INFO("vscan_image ring buffer is empty"); return; } buf_flag = true; // image_obj > vscan_image if (get_time(&(image_obj_ringbuf.front().header)) >= get_time(&(vscan_image_ringbuf.front().header))) { vscan_image_buf = vscan_image_ringbuf.front(); boost::circular_buffer<autoware_msgs::image_obj>::iterator it = image_obj_ringbuf.begin(); if (image_obj_ringbuf.size() == 1) { image_obj_buf = *it; pthread_mutex_unlock(&mutex); return; } else { for (it++; it != image_obj_ringbuf.end(); it++) { if (fabs_time_diff(&(vscan_image_ringbuf.front().header), &((it-1)->header)) < fabs_time_diff(&(vscan_image_ringbuf.front().header), &(it->header))) { image_obj_buf = *(it-1); break; } } if (it == image_obj_ringbuf.end()) { image_obj_buf = image_obj_ringbuf.back(); } } } else { image_obj_buf = image_obj_ringbuf.front(); boost::circular_buffer<autoware_msgs::PointsImage>::iterator it = vscan_image_ringbuf.begin(); if (vscan_image_ringbuf.size() == 1) { vscan_image_buf = *it; pthread_mutex_unlock(&mutex); return; } for (it++; it != vscan_image_ringbuf.end(); it++) { if (fabs_time_diff(&(image_obj_ringbuf.front().header), &((it-1)->header)) < fabs_time_diff(&(image_obj_ringbuf.front().header), &(it->header))) { vscan_image_buf = *(it-1); break; } } if (it == vscan_image_ringbuf.end()) { vscan_image_buf = vscan_image_ringbuf.back(); } } pthread_mutex_unlock(&mutex); }
void image_obj_ranged_callback(const cv_tracker::image_obj_ranged::ConstPtr& image_obj_ranged_msg) { pthread_mutex_lock(&mutex); image_obj_ranged_ringbuf.push_front(*image_obj_ranged_msg); //image_raw is empty if (image_raw_ringbuf.begin() == image_raw_ringbuf.end()) { pthread_mutex_unlock(&mutex); ROS_INFO("image_raw ring buffer is empty"); return; } buf_flag = true; // image_obj_ranged > image_raw if (get_time(&(image_obj_ranged_ringbuf.front().header)) >= get_time(&(image_raw_ringbuf.front().header))) { image_raw_buf = image_raw_ringbuf.front(); boost::circular_buffer<cv_tracker::image_obj_ranged>::iterator it = image_obj_ranged_ringbuf.begin(); if (image_obj_ranged_ringbuf.size() == 1) { image_obj_ranged_buf = *it; pthread_mutex_unlock(&mutex); return; } else { for (it++; it != image_obj_ranged_ringbuf.end(); it++) { if (fabs_time_diff(&(image_raw_ringbuf.front().header), &((it-1)->header)) < fabs_time_diff(&(image_raw_ringbuf.front().header), &(it->header))) { image_obj_ranged_buf = *(it-1); break; } } if (it == image_obj_ranged_ringbuf.end()) { image_obj_ranged_buf = image_obj_ranged_ringbuf.back(); } } } else { image_obj_ranged_buf = image_obj_ranged_ringbuf.front(); boost::circular_buffer<sensor_msgs::Image>::iterator it = image_raw_ringbuf.begin(); if (image_raw_ringbuf.size() == 1) { image_raw_buf = *it; pthread_mutex_unlock(&mutex); return; } for (it++; it != image_raw_ringbuf.end(); it++) { if (fabs_time_diff(&(image_obj_ranged_ringbuf.front().header), &((it-1)->header)) < fabs_time_diff(&(image_obj_ranged_ringbuf.front().header), &(it->header))) { image_raw_buf = *(it-1); break; } } if (it == image_raw_ringbuf.end()) { image_raw_buf = image_raw_ringbuf.back(); } } pthread_mutex_unlock(&mutex); }
//! Dump Legendre polynomial cache data to stream (table and history). void dumpLegendrePolynomialCacheData( std::ostream& outputStream, boost::unordered_map< Point, double > cacheTable, boost::circular_buffer< Point > cacheHistory ) { outputStream << "Table:\n"; for ( boost::unordered_map< Point, double >::iterator iteratorCacheTable = cacheTable.begin( ); iteratorCacheTable != cacheTable.end( ); iteratorCacheTable++ ) { outputStream << "\t" << writeLegendrePolynomialStructureToString( iteratorCacheTable->first ).c_str( ) << " => " << iteratorCacheTable->second << std::endl; } outputStream << "History:\n"; for ( boost::circular_buffer< Point >::iterator iteratorCacheHistory = cacheHistory.begin( ); iteratorCacheHistory != cacheHistory.end( ); iteratorCacheHistory++ ) { outputStream << "\t" << writeLegendrePolynomialStructureToString( *iteratorCacheHistory ).c_str( ) << ", "; } outputStream << std::endl; }
/** Try to write a value to the pipe \param[in] value is what we want to write \param[in] blocking specify if the call wait for the operation to succeed \return true on success \todo provide a && version */ bool write(const T &value, bool blocking = false) { // Lock the pipe to avoid being disturbed std::unique_lock<std::mutex> ul { cb_mutex }; TRISYCL_DUMP_T("Write pipe full = " << full() << " value = " << value); if (blocking) /* If in blocking mode, wait for the not full condition, that may be changed when a read is done */ read_done.wait(ul, [&] { return !full(); }); else if (full()) return false; cb.push_back(value); TRISYCL_DUMP_T("Write pipe front = " << cb.front() << " back = " << cb.back() << " cb.begin() = " << (void *)&*cb.begin() << " cb.size() = " << cb.size() << " cb.end() = " << (void *)&*cb.end() << " reserved_for_reading() = " << reserved_for_reading() << " reserved_for_writing() = " << reserved_for_writing()); // Notify the clients waiting to read something from the pipe write_done.notify_all(); return true; }
size_t GestureClassifierByHistogram::matchHistogramByGestureIdPattern(const boost::circular_buffer<size_t> &matchedHistogramIndexes, const std::vector<histogram_type> &gestureIdPatternHistograms, const double histDistThreshold) const { // create matched ID histogram #if 0 cv::MatND hist; cv::calcHist( &cv::Mat(std::vector<unsigned char>(matchedHistogramIndexes.begin(), matchedHistogramIndexes.end())), 1, phaseHistChannels, cv::Mat(), hist, histDims, phaseHistSize, phaseHistRanges, true, false ); #else cv::MatND hist = cv::MatND::zeros(local::gesturePatternHistogramBinNum, 1, CV_32F); float *binPtr = (float *)hist.data; for (boost::circular_buffer<size_t>::const_iterator it = matchedHistogramIndexes.begin(); it != matchedHistogramIndexes.end(); ++it) if (*it != (size_t)-1) ++(binPtr[*it]); #endif // match histogram double minHistDist = std::numeric_limits<double>::max(); const size_t &matchedIdx = gestureIdPatternHistograms.empty() ? -1 : HistogramMatcher::match(gestureIdPatternHistograms, hist, minHistDist); // FIXME [delete] >> //std::cout << "\t\t\t*** " << minHistDist << std::endl; return minHistDist < histDistThreshold ? matchedIdx : -1; }
/** Compute the amount of elements blocked by write reservations, not yet committed This includes some normal writes to pipes between/after un-committed reservations This function assumes that the data structure is locked */ std::size_t reserved_for_writing() const { if (w_rid_q.empty()) // No on-going reservation return 0; else /* The reserved size is from the first element of the first on-going reservation up to the end of the pipe content */ return cb.end() - w_rid_q.front().start; }
/** Get the current number of elements in the pipe that can be read This is obviously a volatile value which is constrained by the theory of restricted relativity. Note that on some devices it may be costly to implement (for example on FPGA). */ std::size_t size() const { TRISYCL_DUMP_T("size() cb.size() = " << cb.size() << " cb.end() = " << (void *)&*cb.end() << " reserved_for_reading() = " << reserved_for_reading() << " reserved_for_writing() = " << reserved_for_writing()); /* The actual number of available elements depends from the elements blocked by some reservations. This prevents a consumer to read into reserved area. */ return cb.size() - reserved_for_reading() - reserved_for_writing(); }
// Helper function: compute the median of a circular buffer double circ_buff_median(const boost::circular_buffer<double>& cb) const { // FIXME: naive implementation; creates a copy as a vector std::vector<double> v; for (boost::circular_buffer<double>::const_iterator i = cb.begin(); i != cb.end(); ++i) { v.push_back(*i); } size_t n = v.size() / 2; std::nth_element(v.begin(), v.begin()+n, v.end()); return v[n]; }
ros::Time find(ros::Time sensor_time) { boost::circular_buffer<ros::Time>::iterator it = sensor.begin(); for (int i = 0; it != sensor.end(); it++, i++) { if (it->sec == sensor_time.sec && it->nsec == sensor_time.nsec) { return execution.at(i); // find } } ROS_ERROR("error:not found a pair"); ros::Time failed; failed.sec = 0; failed.nsec = 0; return failed; // not find }
void CSearchDialog::SaveEntry(int comboBoxId, boost::circular_buffer<std::wstring> &buffer) { TCHAR entry[MAX_PATH]; GetDlgItemText(m_hDlg, comboBoxId, entry, SIZEOF_ARRAY(entry)); std::wstring strEntry(entry); auto itr = std::find_if(buffer.begin(), buffer.end(), [strEntry] (const std::wstring Pattern) { return Pattern.compare(strEntry) == 0; }); HWND hComboBox = GetDlgItem(m_hDlg, comboBoxId); ComboBox_SetCurSel(hComboBox, -1); if(itr != buffer.end()) { /* Remove the current element from both the list and the combo box. It will be reinserted at the front of both below. */ auto index = std::distance(buffer.begin(), itr); SendMessage(hComboBox, CB_DELETESTRING, index, 0); buffer.erase(itr); } buffer.push_front(entry); SendMessage(hComboBox, CB_INSERTSTRING, 0, reinterpret_cast<LPARAM>(entry)); ComboBox_SetCurSel(hComboBox, 0); ComboBox_SetEditSel(hComboBox, -1, -1); if(ComboBox_GetCount(hComboBox) > buffer.capacity()) { SendMessage(hComboBox, CB_DELETESTRING, ComboBox_GetCount(hComboBox) - 1, 0); } }
void vscan_image_callback(const autoware_msgs::PointsImage::ConstPtr& vscan_image_msg) { pthread_mutex_lock(&mutex); vscan_image_ringbuf.push_front(*vscan_image_msg); //image_obj is empty if (image_obj_ringbuf.begin() == image_obj_ringbuf.end()) { ROS_INFO("image_obj ring buffer is empty"); buf_flag = false; pthread_mutex_unlock(&mutex); return; } buf_flag = true; pthread_mutex_unlock(&mutex); if (image_obj_ranged_flag == true) { publish(); } }
void image_obj_callback(const autoware_msgs::image_obj::ConstPtr& image_obj_msg) { pthread_mutex_lock(&mutex); image_obj_ringbuf.push_front(*image_obj_msg); //vscan_image is empty if (vscan_image_ringbuf.begin() == vscan_image_ringbuf.end()) { ROS_INFO("vscan_image ring buffer is empty"); buf_flag = false; pthread_mutex_unlock(&mutex); return; } buf_flag = true; pthread_mutex_unlock(&mutex); if (image_obj_ranged_flag == true) { publish(); } }
void CTimeSmoother::BinData(const boost::circular_buffer<double> &data, vector<double> &bins, const double threshold, const unsigned int minbinsize) { if (!data.size()) return; bins.clear(); vector<unsigned int> counts; for (boost::circular_buffer<double>::const_iterator i = data.begin(); i != data.end(); ++i) { bool found = false; for (unsigned int j = 0; j < bins.size(); ++j) { if (fabs(*i - bins[j]) < threshold*bins[j]) { found = true; // update our bin mean and count bins[j] = (bins[j]*counts[j] + *i)/(counts[j]+1); counts[j]++; break; } } if (!found) { bins.push_back(*i); counts.push_back(1); } } if (minbinsize) { assert(counts.size() == bins.size()); assert(counts.size()); // filter out any bins that are not large enough (and any bins that aren't positive) for (unsigned int j = 0; j < counts.size(); ) { if (counts[j] < minbinsize || bins[j] < 0.05) { bins.erase(bins.begin() + j); counts.erase(counts.begin() + j); } else j++; } } }
void image_raw_callback(const sensor_msgs::Image::ConstPtr& image_raw_msg) { pthread_mutex_lock(&mutex); image_raw_ringbuf.push_front(*image_raw_msg); //image_obj_ranged is empty if (image_obj_ranged_ringbuf.begin() == image_obj_ranged_ringbuf.end()) { ROS_INFO("image_obj_ranged ring buffer is empty"); buf_flag = false; pthread_mutex_unlock(&mutex); return; } buf_flag = true; pthread_mutex_unlock(&mutex); pthread_mutex_lock(&mutex); if (image_obj_tracked_flag == true) { publish(); } pthread_mutex_unlock(&mutex); }
void CTimeSmoother::GetIntRepresentation(const boost::circular_buffer<double> &data, vector<unsigned int> &intData, const vector<double> &bins, const vector<unsigned int> &intBins) { intData.clear(); for (boost::circular_buffer<double>::const_iterator i = data.begin(); i != data.end(); ++i) { double min_r2 = numeric_limits<double>::max(); unsigned int min_j = 0; for (unsigned int j = 0; j < bins.size(); ++j) { double d = MathUtils::round_int(*i/bins[j]); double r2 = (*i - bins[j]*d)*(*i - bins[j]*d); if (r2 < min_r2) { min_j = j; min_r2 = r2; } } intData.push_back(MathUtils::round_int(*i/bins[min_j])*intBins[min_j]); } }
/** Reserve some part of the pipe for writing \param[in] s is the number of element to reserve \param[out] rid is an iterator to a description of the reservation that has been done if successful \param[in] blocking specify if the call wait for the operation to succeed \return true if the reservation was successful */ bool reserve_write(std::size_t s, rid_iterator &rid, bool blocking = false) { // Lock the pipe to avoid being disturbed std::unique_lock<std::mutex> ul { cb_mutex }; TRISYCL_DUMP_T("Before write reservation cb.size() = " << cb.size() << " size() = " << size()); if (s == 0) // Empty reservation requested, so nothing to do return false; if (blocking) /* If in blocking mode, wait for enough room in the pipe, that may be changed when a read is done. Do not use a difference here because it is only about unsigned values */ read_done.wait(ul, [&] { return cb.size() + s <= capacity(); }); else if (cb.size() + s > capacity()) // Not enough room in the pipe for the reservation return false; /* If there is enough room in the pipe, just create default values in it to do the reservation */ for (std::size_t i = 0; i != s; ++i) cb.push_back(); /* Compute the location of the first element a posteriori since it may not exist a priori if cb was empty before */ auto first = cb.end() - s; /* Add a description of the reservation at the end of the reservation queue */ w_rid_q.emplace_back(first, s); // Return the iterator to the last reservation descriptor rid = w_rid_q.end() - 1; TRISYCL_DUMP_T("After reservation cb.size() = " << cb.size() << " size() = " << size()); return true; }
size_t GestureClassifierByHistogram::matchHistogramByFrequency(const boost::circular_buffer<size_t> &matchedHistogramIndexes, const size_t countThreshold) const { std::map<const size_t, size_t> freqs; for (boost::circular_buffer<size_t>::const_iterator it = matchedHistogramIndexes.begin(); it != matchedHistogramIndexes.end(); ++it) { if (freqs.find(*it) == freqs.end()) freqs[*it] = 1; else ++freqs[*it]; } std::map<const size_t, size_t>::const_iterator itMaxFreq = std::max_element(freqs.begin(), freqs.end(), local::MaxFrequencyComparator()); return (freqs.end() != itMaxFreq && itMaxFreq->second > countThreshold) ? itMaxFreq->first : -1; }
bool publish() { if (buf_flag) { pthread_mutex_lock(&mutex); //image_obj is empty if (image_obj_ringbuf.begin() == image_obj_ringbuf.end()) { pthread_mutex_unlock(&mutex); ROS_INFO("image_obj ring buffer is empty"); return false; } //vscan_image is empty if (vscan_image_ringbuf.begin() == vscan_image_ringbuf.end()) { pthread_mutex_unlock(&mutex); ROS_INFO("vscan_image ring buffer is empty"); return false; } // image_obj > vscan_image if (get_time(&(image_obj_ringbuf.front().header)) >= get_time(&(vscan_image_ringbuf.front().header))) { p_vscan_image_buf = &(vscan_image_ringbuf.front()); boost::circular_buffer<autoware_msgs::image_obj>::iterator it = image_obj_ringbuf.begin(); if (image_obj_ringbuf.size() == 1) { p_image_obj_buf = &*it; publish_msg(p_image_obj_buf, p_vscan_image_buf); pthread_mutex_unlock(&mutex); return true; } else { for (it++; it != image_obj_ringbuf.end(); it++) { if (fabs_time_diff(&(vscan_image_ringbuf.front().header), &((it-1)->header)) < fabs_time_diff(&(vscan_image_ringbuf.front().header), &(it->header))) { p_image_obj_buf = &*(it-1); break; } } if (it == image_obj_ringbuf.end()) { p_image_obj_buf = &(image_obj_ringbuf.back()); } } } // image_obj < vscan_image else { p_image_obj_buf = &(image_obj_ringbuf.front()); boost::circular_buffer<autoware_msgs::PointsImage>::iterator it = vscan_image_ringbuf.begin(); if (vscan_image_ringbuf.size() == 1) { p_vscan_image_buf = &*it; publish_msg(p_image_obj_buf, p_vscan_image_buf); pthread_mutex_unlock(&mutex); return true; } for (it++; it != vscan_image_ringbuf.end(); it++) { if (fabs_time_diff(&(image_obj_ringbuf.front().header), &((it-1)->header)) < fabs_time_diff(&(image_obj_ringbuf.front().header), &(it->header))) { p_vscan_image_buf = &*(it-1); break; } } if (it == vscan_image_ringbuf.end()) { p_vscan_image_buf = &(vscan_image_ringbuf.back()); } } publish_msg(p_image_obj_buf, p_vscan_image_buf); if (image_obj_ranged_flag == true){ buf_flag = false; image_obj_ranged_flag = false; pthread_mutex_unlock(&flag_mutex); image_obj_ringbuf.clear(); vscan_image_ringbuf.clear(); } return true; } else { return false; } }
template<typename T> std::vector<T> buf2vec(boost::circular_buffer<T> buf) const { std::vector<T> vec(buf.begin(), buf.end()); return vec; }
void callback(const sensor_msgs::ImageConstPtr &img, const sensor_msgs::CameraInfoConstPtr &info) { boost::mutex::scoped_lock lock(mutex_); ros::Time now = ros::Time::now(); static boost::circular_buffer<double> in_times(100); static boost::circular_buffer<double> out_times(100); static boost::circular_buffer<double> in_bytes(100); static boost::circular_buffer<double> out_bytes(100); ROS_DEBUG("resize: callback"); if ( !publish_once_ || cp_.getNumSubscribers () == 0 ) { ROS_DEBUG("resize: number of subscribers is 0, ignoring image"); return; } in_times.push_front((now - last_subscribe_time_).toSec()); in_bytes.push_front(img->data.size()); // try { int width = dst_width_ ? dst_width_ : (resize_x_ * info->width); int height = dst_height_ ? dst_height_ : (resize_y_ * info->height); double scale_x = dst_width_ ? ((double)dst_width_)/info->width : resize_x_; double scale_y = dst_height_ ? ((double)dst_height_)/info->height : resize_y_; cv_bridge::CvImagePtr cv_img = cv_bridge::toCvCopy(img); cv::Mat tmpmat(height, width, cv_img->image.type()); cv::resize(cv_img->image, tmpmat, cv::Size(width, height)); cv_img->image = tmpmat; sensor_msgs::CameraInfo tinfo = *info; tinfo.height = height; tinfo.width = width; tinfo.K[0] = tinfo.K[0] * scale_x; // fx tinfo.K[2] = tinfo.K[2] * scale_x; // cx tinfo.K[4] = tinfo.K[4] * scale_y; // fy tinfo.K[5] = tinfo.K[5] * scale_y; // cy tinfo.P[0] = tinfo.P[0] * scale_x; // fx tinfo.P[2] = tinfo.P[2] * scale_x; // cx tinfo.P[3] = tinfo.P[3] * scale_x; // T tinfo.P[5] = tinfo.P[5] * scale_y; // fy tinfo.P[6] = tinfo.P[6] * scale_y; // cy if ( !use_messages_ || now - last_publish_time_ > period_ ) { cp_.publish(cv_img->toImageMsg(), boost::make_shared<sensor_msgs::CameraInfo> (tinfo)); out_times.push_front((now - last_publish_time_).toSec()); out_bytes.push_front(cv_img->image.total()*cv_img->image.elemSize()); last_publish_time_ = now; } } catch( cv::Exception& e ) { ROS_ERROR("%s", e.what()); } float duration = (now - last_rosinfo_time_).toSec(); if ( duration > 2 ) { int in_time_n = in_times.size(); int out_time_n = out_times.size(); double in_time_mean = 0, in_time_rate = 1.0, in_time_std_dev = 0.0, in_time_max_delta, in_time_min_delta; double out_time_mean = 0, out_time_rate = 1.0, out_time_std_dev = 0.0, out_time_max_delta, out_time_min_delta; std::for_each( in_times.begin(), in_times.end(), (in_time_mean += boost::lambda::_1) ); in_time_mean /= in_time_n; in_time_rate /= in_time_mean; std::for_each( in_times.begin(), in_times.end(), (in_time_std_dev += (boost::lambda::_1 - in_time_mean)*(boost::lambda::_1 - in_time_mean) ) ); in_time_std_dev = sqrt(in_time_std_dev/in_time_n); if ( in_time_n > 1 ) { in_time_min_delta = *std::min_element(in_times.begin(), in_times.end()); in_time_max_delta = *std::max_element(in_times.begin(), in_times.end()); } std::for_each( out_times.begin(), out_times.end(), (out_time_mean += boost::lambda::_1) ); out_time_mean /= out_time_n; out_time_rate /= out_time_mean; std::for_each( out_times.begin(), out_times.end(), (out_time_std_dev += (boost::lambda::_1 - out_time_mean)*(boost::lambda::_1 - out_time_mean) ) ); out_time_std_dev = sqrt(out_time_std_dev/out_time_n); if ( out_time_n > 1 ) { out_time_min_delta = *std::min_element(out_times.begin(), out_times.end()); out_time_max_delta = *std::max_element(out_times.begin(), out_times.end()); } double in_byte_mean = 0, out_byte_mean = 0; std::for_each( in_bytes.begin(), in_bytes.end(), (in_byte_mean += boost::lambda::_1) ); std::for_each( out_bytes.begin(), out_bytes.end(), (out_byte_mean += boost::lambda::_1) ); in_byte_mean /= duration; out_byte_mean /= duration; ROS_INFO_STREAM(" in bandwidth: " << std::fixed << std::setw(11) << std::setprecision(3) << in_byte_mean/1000*8 << " Kbps rate:" << std::fixed << std::setw(7) << std::setprecision(3) << in_time_rate << " hz min:" << std::fixed << std::setw(7) << std::setprecision(3) << in_time_min_delta << " s max: " << std::fixed << std::setw(7) << std::setprecision(3) << in_time_max_delta << " s std_dev: "<< std::fixed << std::setw(7) << std::setprecision(3) << in_time_std_dev << "s n: " << in_time_n); ROS_INFO_STREAM(" out bandwidth: " << std::fixed << std::setw(11) << std::setprecision(3) << out_byte_mean/1000*8 << " kbps rate:" << std::fixed << std::setw(7) << std::setprecision(3) << out_time_rate << " hz min:" << std::fixed << std::setw(7) << std::setprecision(3) << out_time_min_delta << " s max: " << std::fixed << std::setw(7) << std::setprecision(3) << out_time_max_delta << " s std_dev: "<< std::fixed << std::setw(7) << std::setprecision(3) << out_time_std_dev << "s n: " << out_time_n); in_times.clear(); in_bytes.clear(); out_times.clear(); out_bytes.clear(); last_rosinfo_time_ = now; } last_subscribe_time_ = now; if(use_snapshot_) { publish_once_ = false; } }
void ShowFrameDurationPlot() { Vec2i windowSize = mainApp->getWindow()->getSize(); size_t maxSamples = size_t(windowSize.x); if(maxSamples != frameDurationPlotValues.capacity()) { frameDurationPlotValues.set_capacity(maxSamples); } if(maxSamples != frameDurationPlotVertices.size()) { frameDurationPlotVertices.resize(maxSamples); } GRenderer->ResetTexture(0); frameDurationPlotValues.push_front(toMs(g_platformTime.lastFrameDuration())); float avg = std::accumulate(frameDurationPlotValues.begin(), frameDurationPlotValues.end(), 0.f) / frameDurationPlotValues.size(); float worst = *std::max_element(frameDurationPlotValues.begin(), frameDurationPlotValues.end()); const float OFFSET_Y = 80.f; const float SCALE_Y = 4.0f; for(size_t i = 0; i < frameDurationPlotValues.size(); ++i) { float time = frameDurationPlotValues[i]; frameDurationPlotVertices[i].color = Color::white.toRGB(); frameDurationPlotVertices[i].p.x = i; frameDurationPlotVertices[i].p.y = OFFSET_Y + (time * SCALE_Y); frameDurationPlotVertices[i].p.z = 1.0f; frameDurationPlotVertices[i].w = 1.0f; } EERIEDRAWPRIM(Renderer::LineStrip, &frameDurationPlotVertices[0], frameDurationPlotValues.size()); Color avgColor = Color::blue * 0.5f + Color::white * 0.5f; float avgPos = OFFSET_Y + (avg * SCALE_Y); drawLine(Vec2f(0, avgPos), Vec2f(windowSize.x, avgPos), 1.0f, Color::blue); Color worstColor = Color::red * 0.5f + Color::white * 0.5f; float worstPos = OFFSET_Y + (worst * SCALE_Y); drawLine(Vec2f(0, worstPos), Vec2f(windowSize.x, worstPos), 1.0f, Color::red); Font * font = hFontDebug; float lineOffset = font->getLineHeight() + 2; std::string labels[3] = { "Average: ", "Worst: ", "Current: " }; Color colors[3] = { avgColor, worstColor, Color::white }; float values[3] = { avg, worst, frameDurationPlotValues[0] }; std::string texts[3]; float widths[3]; static float labelWidth = 0.f; static float valueWidth = 0.f; for(size_t i = 0; i < 3; i++) { // Format value std::ostringstream oss; oss << std::fixed << std::setprecision(2) << values[i] << " ms ("<< 1.f / (values[i] * 0.001f) << " FPS)"; texts[i] = oss.str(); // Calculate widths (could be done more efficiently for monospace fonts...) labelWidth = std::max(labelWidth, float(font->getTextSize(labels[i]).width())); widths[i] = font->getTextSize(texts[i]).width(); valueWidth = std::max(valueWidth, widths[i]); } float x = 10; float y = 10; float xend = x + labelWidth + 10 + valueWidth; for(size_t i = 0; i < 3; i++) { font->draw(Vec2i(x, y), labels[i], Color::gray(0.8f)); font->draw(Vec2i(xend - widths[i], y), texts[i], colors[i]); y += lineOffset; } }
bool publish() { if (buf_flag) { //image_obj_ranged is empty if (image_obj_ranged_ringbuf.begin() == image_obj_ranged_ringbuf.end()) { ROS_INFO("image_obj_ranged ring buffer is empty"); return false; } //image_raw is empty if (image_raw_ringbuf.begin() == image_raw_ringbuf.end()) { ROS_INFO("image_raw ring buffer is empty"); return false; } // image_obj_ranged > image_raw if (get_time(&(image_obj_ranged_ringbuf.front().header)) >= get_time(&(image_raw_ringbuf.front().header))) { p_image_raw_buf = &(image_raw_ringbuf.front()); boost::circular_buffer<cv_tracker::image_obj_ranged>::iterator it = image_obj_ranged_ringbuf.begin(); if (image_obj_ranged_ringbuf.size() == 1) { p_image_obj_ranged_buf = &*it; publish_msg(p_image_obj_ranged_buf, p_image_raw_buf); if (image_obj_tracked_flag == true){ buf_flag = false; image_obj_tracked_flag = false; image_obj_ranged_ringbuf.clear(); image_raw_ringbuf.clear(); } return true; } else { for (it++; it != image_obj_ranged_ringbuf.end(); it++) { if (fabs_time_diff(&(image_raw_ringbuf.front().header), &((it-1)->header)) < fabs_time_diff(&(image_raw_ringbuf.front().header), &(it->header))) { p_image_obj_ranged_buf = &*(it-1); break; } } if (it == image_obj_ranged_ringbuf.end()) { p_image_obj_ranged_buf = &(image_obj_ranged_ringbuf.back()); } } } // image_obj_ranged < image_raw else { p_image_obj_ranged_buf = &(image_obj_ranged_ringbuf.front()); boost::circular_buffer<sensor_msgs::Image>::iterator it = image_raw_ringbuf.begin(); if (image_raw_ringbuf.size() == 1) { p_image_raw_buf = &*it; publish_msg(p_image_obj_ranged_buf, p_image_raw_buf); if (image_obj_tracked_flag == true){ buf_flag = false; image_obj_tracked_flag = false; image_obj_ranged_ringbuf.clear(); image_raw_ringbuf.clear(); } return true; } for (it++; it != image_raw_ringbuf.end(); it++) { if (fabs_time_diff(&(image_obj_ranged_ringbuf.front().header), &((it-1)->header)) < fabs_time_diff(&(image_obj_ranged_ringbuf.front().header), &(it->header))) { p_image_raw_buf = &*(it-1); break; } } if (it == image_raw_ringbuf.end()) { p_image_raw_buf = &(image_raw_ringbuf.back()); } } publish_msg(p_image_obj_ranged_buf, p_image_raw_buf); if (image_obj_tracked_flag == true){ buf_flag = false; image_obj_tracked_flag = false; image_obj_ranged_ringbuf.clear(); image_raw_ringbuf.clear(); } return true; } else { return false; } }