void Run_KF_SLAM(CConfigFile& cfgFile, const std::string& rawlogFileName) { // The EKF-SLAM class: // Traits for this KF implementation (2D or 3D) using traits_t = kfslam_traits<IMPL>; using ekfslam_t = typename traits_t::ekfslam_t; ekfslam_t mapping; // The rawlog file: // ---------------------------------------- const unsigned int rawlog_offset = cfgFile.read_int("MappingApplication", "rawlog_offset", 0); const unsigned int SAVE_LOG_FREQUENCY = cfgFile.read_int("MappingApplication", "SAVE_LOG_FREQUENCY", 1); const bool SAVE_DA_LOG = cfgFile.read_bool("MappingApplication", "SAVE_DA_LOG", true); const bool SAVE_3D_SCENES = cfgFile.read_bool("MappingApplication", "SAVE_3D_SCENES", true); const bool SAVE_MAP_REPRESENTATIONS = cfgFile.read_bool( "MappingApplication", "SAVE_MAP_REPRESENTATIONS", true); bool SHOW_3D_LIVE = cfgFile.read_bool("MappingApplication", "SHOW_3D_LIVE", false); const bool CAMERA_3DSCENE_FOLLOWS_ROBOT = cfgFile.read_bool( "MappingApplication", "CAMERA_3DSCENE_FOLLOWS_ROBOT", false); #if !MRPT_HAS_WXWIDGETS SHOW_3D_LIVE = false; #endif string OUT_DIR = cfgFile.read_string( "MappingApplication", "logOutput_dir", "OUT_KF-SLAM"); string ground_truth_file = cfgFile.read_string("MappingApplication", "ground_truth_file", ""); string ground_truth_file_robot = cfgFile.read_string( "MappingApplication", "ground_truth_file_robot", ""); string ground_truth_data_association = cfgFile.read_string( "MappingApplication", "ground_truth_data_association", ""); cout << "RAWLOG FILE:" << endl << rawlogFileName << endl; ASSERT_FILE_EXISTS_(rawlogFileName); CFileGZInputStream rawlogFile(rawlogFileName); cout << "---------------------------------------------------" << endl << endl; deleteFilesInDirectory(OUT_DIR); createDirectory(OUT_DIR); // Load the config options for mapping: // ---------------------------------------- mapping.loadOptions(cfgFile); mapping.KF_options.dumpToConsole(); mapping.options.dumpToConsole(); // debug: // mapping.KF_options.use_analytic_observation_jacobian = true; // mapping.KF_options.use_analytic_transition_jacobian = true; // mapping.KF_options.debug_verify_analytic_jacobians = true; // Is there ground truth of the robot poses?? CMatrixDouble GT_PATH(0, 0); if (ground_truth_file_robot.size() && fileExists(ground_truth_file_robot)) { GT_PATH.loadFromTextFile(ground_truth_file_robot); ASSERT_(GT_PATH.rows() > 0 && GT_PATH.cols() == 6); } // Is there a ground truth file of the data association? std::map<double, std::vector<int>> GT_DA; // Map: timestamp -> vector(index in observation -> real index) mrpt::containers::bimap<int, int> DA2GTDA_indices; // Landmark indices // bimapping: SLAM DA <---> // GROUND TRUTH DA if (!ground_truth_data_association.empty() && fileExists(ground_truth_data_association)) { CMatrixDouble mGT_DA; mGT_DA.loadFromTextFile(ground_truth_data_association); ASSERT_ABOVEEQ_(mGT_DA.cols(), 3); // Convert the loaded matrix into a std::map in GT_DA: for (int i = 0; i < mGT_DA.rows(); i++) { std::vector<int>& v = GT_DA[mGT_DA(i, 0)]; if (v.size() <= mGT_DA(i, 1)) v.resize(mGT_DA(i, 1) + 1); v[mGT_DA(i, 1)] = mGT_DA(i, 2); } cout << "Loaded " << GT_DA.size() << " entries from DA ground truth file\n"; } // Create output file for DA perf: std::ofstream out_da_performance_log; { const std::string f = std::string( OUT_DIR + std::string("/data_association_performance.log")); out_da_performance_log.open(f.c_str()); ASSERTMSG_( out_da_performance_log.is_open(), std::string("Error writing to: ") + f); // Header: out_da_performance_log << "% TIMESTAMP INDEX_IN_OBS TruePos " "FalsePos TrueNeg FalseNeg NoGroundTruthSoIDontKnow \n" << "%--------------------------------------------------------------" "--------------------------------------------------\n"; } if (SHOW_3D_LIVE) { win3d = mrpt::make_aligned_shared<mrpt::gui::CDisplayWindow3D>( "KF-SLAM live view", 800, 500); win3d->addTextMessage( 0.01, 0.96, "Red: Estimated path", TColorf(0.8f, 0.8f, 0.8f), 100, MRPT_GLUT_BITMAP_HELVETICA_10); win3d->addTextMessage( 0.01, 0.93, "Black: Ground truth path", TColorf(0.8f, 0.8f, 0.8f), 101, MRPT_GLUT_BITMAP_HELVETICA_10); } // Create DA-log output file: std::ofstream out_da_log; if (SAVE_DA_LOG) { const std::string f = std::string(OUT_DIR + std::string("/data_association.log")); out_da_log.open(f.c_str()); ASSERTMSG_(out_da_log.is_open(), std::string("Error writing to: ") + f); // Header: out_da_log << "% TIMESTAMP INDEX_IN_OBS ID " " RANGE(m) YAW(rad) PITCH(rad) \n" << "%-------------------------------------------------------" "-------------------------------------\n"; } // The main loop: // --------------------------------------- CActionCollection::Ptr action; CSensoryFrame::Ptr observations; size_t rawlogEntry = 0, step = 0; vector<TPose3D> meanPath; // The estimated path typename traits_t::posepdf_t robotPose; const bool is_pose_3d = robotPose.state_length != 3; std::vector<typename IMPL::landmark_point_t> LMs; std::map<unsigned int, CLandmark::TLandmarkID> LM_IDs; CMatrixDouble fullCov; CVectorDouble fullState; CTicTac kftictac; auto rawlogArch = mrpt::serialization::archiveFrom(rawlogFile); for (;;) { if (os::kbhit()) { char pushKey = os::getch(); if (27 == pushKey) break; } // Load action/observation pair from the rawlog: // -------------------------------------------------- if (!CRawlog::readActionObservationPair( rawlogArch, action, observations, rawlogEntry)) break; // file EOF if (rawlogEntry >= rawlog_offset) { // Process the action and observations: // -------------------------------------------- kftictac.Tic(); mapping.processActionObservation(action, observations); const double tim_kf_iter = kftictac.Tac(); // Get current state: // ------------------------------- mapping.getCurrentState(robotPose, LMs, LM_IDs, fullState, fullCov); cout << "Mean pose: " << endl << robotPose.mean << endl; cout << "# of landmarks in the map: " << LMs.size() << endl; // Get the mean robot pose as 3D: const CPose3D robotPoseMean3D = CPose3D(robotPose.mean); // Build the path: meanPath.push_back(robotPoseMean3D.asTPose()); // Save mean pose: if (!(step % SAVE_LOG_FREQUENCY)) { const auto p = robotPose.mean.asVectorVal(); p.saveToTextFile( OUT_DIR + format("/robot_pose_%05u.txt", (unsigned int)step)); } // Save full cov: if (!(step % SAVE_LOG_FREQUENCY)) { fullCov.saveToTextFile( OUT_DIR + format("/full_cov_%05u.txt", (unsigned int)step)); } // Generate Data Association log? if (SAVE_DA_LOG) { const typename ekfslam_t::TDataAssocInfo& da = mapping.getLastDataAssociation(); const CObservationBearingRange::Ptr obs = observations ->getObservationByClass<CObservationBearingRange>(); if (obs) { const CObservationBearingRange* obsRB = obs.get(); const double tim = mrpt::system::timestampToDouble(obsRB->timestamp); for (size_t i = 0; i < obsRB->sensedData.size(); i++) { auto it = da.results.associations.find(i); int assoc_ID_in_SLAM; if (it != da.results.associations.end()) assoc_ID_in_SLAM = it->second; else { // It should be a newly created LM: auto itNewLM = da.newly_inserted_landmarks.find(i); if (itNewLM != da.newly_inserted_landmarks.end()) assoc_ID_in_SLAM = itNewLM->second; else assoc_ID_in_SLAM = -1; } out_da_log << format( "%35.22f %8i %10i %10f %12f %12f\n", tim, (int)i, assoc_ID_in_SLAM, (double)obsRB->sensedData[i].range, (double)obsRB->sensedData[i].yaw, (double)obsRB->sensedData[i].pitch); } } } // Save report on DA performance: { const typename ekfslam_t::TDataAssocInfo& da = mapping.getLastDataAssociation(); const CObservationBearingRange::Ptr obs = observations ->getObservationByClass<CObservationBearingRange>(); if (obs) { const CObservationBearingRange* obsRB = obs.get(); const double tim = mrpt::system::timestampToDouble(obsRB->timestamp); auto itDA = GT_DA.find(tim); for (size_t i = 0; i < obsRB->sensedData.size(); i++) { bool is_FP = false, is_TP = false, is_FN = false, is_TN = false; if (itDA != GT_DA.end()) { const std::vector<int>& vDA = itDA->second; ASSERT_BELOW_(i, vDA.size()); const int GT_ASSOC = vDA[i]; auto it = da.results.associations.find(i); if (it != da.results.associations.end()) { // This observation was assigned the already // existing LM in the map: "it->second" // TruePos -> If that LM index corresponds to // that in the GT (with index mapping): // mrpt::containers::bimap<int,int> // DA2GTDA_indices; // // Landmark indices bimapping: SLAM DA <---> // GROUND TRUTH DA if (DA2GTDA_indices.hasKey(it->second)) { const int slam_asigned_LM_idx = DA2GTDA_indices.direct(it->second); if (slam_asigned_LM_idx == GT_ASSOC) is_TP = true; else is_FP = true; } else { // Is this case possible? Assigned to an // index not ever seen for the first time // with a GT.... // Just in case: is_FP = true; } } else { // No pairing, but should be a newly created LM: auto itNewLM = da.newly_inserted_landmarks.find(i); if (itNewLM != da.newly_inserted_landmarks.end()) { const int new_LM_in_SLAM = itNewLM->second; // Was this really a NEW LM not observed // before? if (DA2GTDA_indices.hasValue(GT_ASSOC)) { // GT says this LM was already observed, // so it shouldn't appear here as new: is_FN = true; } else { // Really observed for the first time: is_TN = true; DA2GTDA_indices.insert( new_LM_in_SLAM, GT_ASSOC); } } else { // Not associated neither inserted: // Shouldn't really never arrive here. } } } // "% TIMESTAMP INDEX_IN_OBS // TruePos FalsePos TrueNeg FalseNeg // NoGroundTruthSoIDontKnow \n" out_da_performance_log << format( "%35.22f %13i %8i %8i %8i %8i %8i\n", tim, (int)i, (int)(is_TP ? 1 : 0), (int)(is_FP ? 1 : 0), (int)(is_TN ? 1 : 0), (int)(is_FN ? 1 : 0), (int)(!is_FP && !is_TP && !is_FN && !is_TN ? 1 : 0)); } } } // Save map to file representations? if (SAVE_MAP_REPRESENTATIONS && !(step % SAVE_LOG_FREQUENCY)) { mapping.saveMapAndPath2DRepresentationAsMATLABFile( OUT_DIR + format("/slam_state_%05u.m", (unsigned int)step)); } // Save 3D view of the filter state: if (win3d || (SAVE_3D_SCENES && !(step % SAVE_LOG_FREQUENCY))) { COpenGLScene::Ptr scene3D = mrpt::make_aligned_shared<COpenGLScene>(); { opengl::CGridPlaneXY::Ptr grid = mrpt::make_aligned_shared<opengl::CGridPlaneXY>( -1000, 1000, -1000, 1000, 0, 5); grid->setColor(0.4, 0.4, 0.4); scene3D->insert(grid); } // Robot path: { opengl::CSetOfLines::Ptr linesPath = mrpt::make_aligned_shared<opengl::CSetOfLines>(); linesPath->setColor(1, 0, 0); TPose3D init_pose; if (!meanPath.empty()) init_pose = CPose3D(meanPath[0]).asTPose(); int path_decim = 0; for (auto& it : meanPath) { linesPath->appendLine(init_pose, it); init_pose = it; if (++path_decim > 10) { path_decim = 0; mrpt::opengl::CSetOfObjects::Ptr xyz = mrpt::opengl::stock_objects::CornerXYZSimple( 0.3f, 2.0f); xyz->setPose(CPose3D(it)); scene3D->insert(xyz); } } scene3D->insert(linesPath); // finally a big corner for the latest robot pose: { mrpt::opengl::CSetOfObjects::Ptr xyz = mrpt::opengl::stock_objects::CornerXYZSimple( 1.0, 2.5); xyz->setPose(robotPoseMean3D); scene3D->insert(xyz); } // The camera pointing to the current robot pose: if (CAMERA_3DSCENE_FOLLOWS_ROBOT) { win3d->setCameraPointingToPoint( robotPoseMean3D.x(), robotPoseMean3D.y(), robotPoseMean3D.z()); } } // Do we have a ground truth? if (GT_PATH.cols() == 6 || GT_PATH.cols() == 3) { opengl::CSetOfLines::Ptr GT_path = mrpt::make_aligned_shared<opengl::CSetOfLines>(); GT_path->setColor(0, 0, 0); size_t N = std::min((int)GT_PATH.rows(), (int)meanPath.size()); if (GT_PATH.cols() == 6) { double gtx0 = 0, gty0 = 0, gtz0 = 0; for (size_t i = 0; i < N; i++) { const CPose3D p( GT_PATH(i, 0), GT_PATH(i, 1), GT_PATH(i, 2), GT_PATH(i, 3), GT_PATH(i, 4), GT_PATH(i, 5)); GT_path->appendLine( gtx0, gty0, gtz0, p.x(), p.y(), p.z()); gtx0 = p.x(); gty0 = p.y(); gtz0 = p.z(); } } else if (GT_PATH.cols() == 3) { double gtx0 = 0, gty0 = 0; for (size_t i = 0; i < N; i++) { const CPose2D p( GT_PATH(i, 0), GT_PATH(i, 1), GT_PATH(i, 2)); GT_path->appendLine(gtx0, gty0, 0, p.x(), p.y(), 0); gtx0 = p.x(); gty0 = p.y(); } } scene3D->insert(GT_path); } // Draw latest data association: { const typename ekfslam_t::TDataAssocInfo& da = mapping.getLastDataAssociation(); mrpt::opengl::CSetOfLines::Ptr lins = mrpt::make_aligned_shared<mrpt::opengl::CSetOfLines>(); lins->setLineWidth(1.2f); lins->setColor(1, 1, 1); for (auto it = da.results.associations.begin(); it != da.results.associations.end(); ++it) { const prediction_index_t idxPred = it->second; // This index must match the internal list of features // in the map: typename ekfslam_t::KFArray_FEAT featMean; mapping.getLandmarkMean(idxPred, featMean); TPoint3D featMean3D; traits_t::landmark_to_3d(featMean, featMean3D); // Line: robot -> landmark: lins->appendLine( robotPoseMean3D.x(), robotPoseMean3D.y(), robotPoseMean3D.z(), featMean3D.x, featMean3D.y, featMean3D.z); } scene3D->insert(lins); } // The current state of KF-SLAM: { opengl::CSetOfObjects::Ptr objs = mrpt::make_aligned_shared<opengl::CSetOfObjects>(); mapping.getAs3DObject(objs); scene3D->insert(objs); } if (win3d) { mrpt::opengl::COpenGLScene::Ptr& scn = win3d->get3DSceneAndLock(); scn = scene3D; // Update text messages: win3d->addTextMessage( 0.02, 0.02, format( "Step %u - Landmarks in the map: %u", (unsigned int)step, (unsigned int)LMs.size()), TColorf(1, 1, 1), 0, MRPT_GLUT_BITMAP_HELVETICA_12); win3d->addTextMessage( 0.02, 0.06, format( is_pose_3d ? "Estimated pose: (x y z qr qx qy qz) = %s" : "Estimated pose: (x y yaw) = %s", robotPose.mean.asString().c_str()), TColorf(1, 1, 1), 1, MRPT_GLUT_BITMAP_HELVETICA_12); static vector<double> estHz_vals; const double curHz = 1.0 / std::max(1e-9, tim_kf_iter); estHz_vals.push_back(curHz); if (estHz_vals.size() > 50) estHz_vals.erase(estHz_vals.begin()); const double meanHz = mrpt::math::mean(estHz_vals); win3d->addTextMessage( 0.02, 0.10, format( "Iteration time: %7ss", mrpt::system::unitsFormat(tim_kf_iter).c_str()), TColorf(1, 1, 1), 2, MRPT_GLUT_BITMAP_HELVETICA_12); win3d->addTextMessage( 0.02, 0.14, format( "Execution rate: %7sHz", mrpt::system::unitsFormat(meanHz).c_str()), TColorf(1, 1, 1), 3, MRPT_GLUT_BITMAP_HELVETICA_12); win3d->unlockAccess3DScene(); win3d->repaint(); } if (SAVE_3D_SCENES && !(step % SAVE_LOG_FREQUENCY)) { // Save to file: CFileGZOutputStream f( OUT_DIR + format("/kf_state_%05u.3Dscene", (unsigned int)step)); mrpt::serialization::archiveFrom(f) << *scene3D; } } // Free rawlog items memory: // -------------------------------------------- action.reset(); observations.reset(); } // (rawlogEntry>=rawlog_offset) cout << format( "\nStep %u - Rawlog entries processed: %i\n", (unsigned int)step, (unsigned int)rawlogEntry); step++; }; // end "while(1)" // Partitioning experiment: Only for 6D SLAM: traits_t::doPartitioningExperiment(mapping, fullCov, OUT_DIR); // Is there ground truth of landmarks positions?? if (ground_truth_file.size() && fileExists(ground_truth_file)) { CMatrixFloat GT(0, 0); try { GT.loadFromTextFile(ground_truth_file); } catch (const std::exception& e) { cerr << "Ignoring the following error loading ground truth file: " << mrpt::exception_to_str(e) << endl; } if (GT.rows() > 0 && !LMs.empty()) { // Each row has: // [0] [1] [2] [6] // x y z ID CVectorDouble ERRS(0); for (size_t i = 0; i < LMs.size(); i++) { // Find the entry in the GT for this mapped LM: bool found = false; for (int r = 0; r < GT.rows(); r++) { if (LM_IDs[i] == GT(r, 6)) { const CPoint3D gtPt(GT(r, 0), GT(r, 1), GT(r, 2)); ERRS.push_back(gtPt.distanceTo( CPoint3D(TPoint3D(LMs[i])))); // All these // conversions // are to make it // work with // either // CPoint3D & // TPoint2D found = true; break; } } if (!found) { cerr << "Ground truth entry not found for landmark ID:" << LM_IDs[i] << endl; } } printf("ERRORS VS. GROUND TRUTH:\n"); printf("Mean Error: %f meters\n", math::mean(ERRS)); printf("Minimum error: %f meters\n", math::minimum(ERRS)); printf("Maximum error: %f meters\n", math::maximum(ERRS)); } } // end if GT cout << "********* KF-SLAM finished! **********" << endl; if (win3d) { cout << "\n Close the 3D window to quit the application.\n"; win3d->waitForKey(); } }
// ------------------------------------------------------ // TestGeometry3D // ------------------------------------------------------ void TestLaser2Imgs() { // Set your rawlog file name if (!mrpt::system::fileExists(RAWLOG_FILE)) THROW_EXCEPTION_FMT( "Rawlog file does not exist: %s", RAWLOG_FILE.c_str()) CActionCollection::Ptr action; CSensoryFrame::Ptr observations; size_t rawlogEntry = 0; // bool end = false; CDisplayWindow wind; // Set relative path for externally-stored images in rawlogs: string rawlog_images_path = extractFileDirectory(RAWLOG_FILE); rawlog_images_path += "/Images"; CImage::setImagesPathBase(rawlog_images_path); // Set it. mrpt::io::CFileGZInputStream rawlogFile(RAWLOG_FILE); for (;;) { if (os::kbhit()) { char c = os::getch(); if (c == 27) break; } // Load action/observation pair from the rawlog: // -------------------------------------------------- cout << "Reading act/oct pair from rawlog..." << endl; auto arch = mrpt::serialization::archiveFrom(rawlogFile); if (!CRawlog::readActionObservationPair( arch, action, observations, rawlogEntry)) break; // file EOF // CAMERA............ // Get CObservationStereoImages CObservationStereoImages::Ptr sImgs; CObservationImage::Ptr Img; sImgs = observations->getObservationByClass<CObservationStereoImages>(); if (!sImgs) { Img = observations->getObservationByClass<CObservationImage>(); if (!Img) continue; } CPose3D cameraPose; // Get Camera Pose (B) (CPose3D) CMatrixDouble33 K; // Get Calibration matrix (K) sImgs ? sImgs->getSensorPose(cameraPose) : Img->getSensorPose(cameraPose); K = sImgs ? sImgs->leftCamera.intrinsicParams : Img->cameraParams.intrinsicParams; // LASER............. // Get CObservationRange2D CObservation2DRangeScan::Ptr laserScan = observations->getObservationByClass<CObservation2DRangeScan>(); if (!laserScan) continue; // Get Laser Pose (A) (CPose3D) CPose3D laserPose; laserScan->getSensorPose(laserPose); if (abs(laserPose.yaw()) > DEG2RAD(90)) continue; // Only front lasers // Get 3D Point relative to the Laser coordinate Frame (P1) (CPoint3D) CPoint3D point; CSimplePointsMap mapa; mapa.insertionOptions.minDistBetweenLaserPoints = 0; observations->insertObservationsInto( &mapa); // <- The map contains the pose of the points (P1) // Get the points into the map vector<float> X, Y, Z; vector<float>::iterator itX, itY, itZ; mapa.getAllPoints(X, Y, Z); unsigned int imgW = sImgs ? sImgs->imageLeft.getWidth() : Img->image.getWidth(); unsigned int imgH = sImgs ? sImgs->imageLeft.getHeight() : Img->image.getHeight(); // unsigned int idx = 0; vector<float> imgX, imgY; vector<float>::iterator itImgX, itImgY; imgX.resize(X.size()); imgY.resize(Y.size()); CImage image; image = sImgs ? sImgs->imageLeft : Img->image; // Get pixels in the image: // Pimg = (kx,ky,k)^T = K(I|0)*P2 // Main loop for (itX = X.begin(), itY = Y.begin(), itZ = Z.begin(), itImgX = imgX.begin(), itImgY = imgY.begin(); itX != X.end(); itX++, itY++, itZ++, itImgX++, itImgY++) { // Coordinates Transformation CPoint3D pLaser(*itX, *itY, *itZ); CPoint3D pCamera(pLaser - cameraPose); if (pCamera.z() > 0) { *itImgX = -K(0, 0) * ((pCamera.x()) / (pCamera.z())) + K(0, 2); *itImgY = -K(1, 1) * ((pCamera.y()) / (pCamera.z())) + K(1, 2); if (*itImgX > 0 && *itImgX<imgW&& * itImgY> 0 && *itImgY < imgH) image.filledRectangle( *itImgX - 1, *itImgY - 1, *itImgX + 1, *itImgY + 1, TColor(255, 0, 0)); } // end if } // end for action.reset(); observations.reset(); wind.showImage(image); std::this_thread::sleep_for(50ms); }; // end for mrpt::system::pause(); }