Plane::Plane( const cc::Vec3f& a, const cc::Vec3f& b, const cc::Vec3f& c ) { const cc::Vec3f ab = b - a; const cc::Vec3f ac = c - a; const cc::Vec3f cross = ab.cross(ac); _normal = cross.normalized(); _d = -_normal.dot(a); }
cc::Vec3f GeometricPlane::getNormal() { const cc::Vec3f p0 = (_xform.getWorld() * cc::Vec4f(_verts[0].position, 1.0f)).truncated(); const cc::Vec3f p1 = (_xform.getWorld() * cc::Vec4f(_verts[1].position, 1.0f)).truncated(); const cc::Vec3f p2 = (_xform.getWorld() * cc::Vec4f(_verts[2].position, 1.0f)).truncated(); const cc::Vec3f p3 = (_xform.getWorld() * cc::Vec4f(_verts[3].position, 1.0f)).truncated(); const cc::Vec3f a = p1 - p0; const cc::Vec3f b = p3 - p0; return a.cross(b).normalized(); }
bool ClipMesh::getTriangles( std::vector<int>& indices ) { const size_t numFaces = _faces.size(); for( size_t currFace = 0; currFace < numFaces; ++currFace ) { CFace& face = _faces[currFace]; if( !face.visible ) { continue; } const size_t numEdges = face.edges.size(); //assert(numEdges >= 3); // unexpected condition if( numEdges < 3 ) { return false; } std::vector<int> vOrdered(numEdges+1); if( !orderVertices(face, vOrdered) ) { return false; } const int v0 = vOrdered[0]; const int v2 = vOrdered[numEdges - 1]; const int v1 = vOrdered[(numEdges - 1) >> 1]; const cc::Vec3f diff1 = _vertices[v1].point - _vertices[v0].point; const cc::Vec3f diff2 = _vertices[v2].point - _vertices[v0].point; const float sgnVolume = face.normal.dot(diff1.cross(diff2)); if( sgnVolume < 0.0f ) { // feel free to invert this test // clockwise, need to swap for( unsigned int i = 1; i + 1 < numEdges; ++i ) { indices.push_back(v0); indices.push_back(vOrdered[i + 1]); indices.push_back(vOrdered[i]); } } else { // counterclockwise for( unsigned int i = 1; i + 1 < numEdges; ++i ) { indices.push_back(v0); indices.push_back(vOrdered[i]); indices.push_back(vOrdered[i + 1]); } } } return true; }