コード例 #1
0
ファイル: CGAL_hash.cpp プロジェクト: SoumyajitG/VolRoverN
 std::size_t hash_value(const CGAL::Segment_3<Kernel>& segment)
 {
   std::size_t seed = 0;
   boost::hash_combine(seed, segment.source());
   boost::hash_combine(seed, segment.target());
   return seed;
 }
コード例 #2
0
IGL_INLINE bool igl::copyleft::cgal::segment_segment_squared_distance(
    const CGAL::Segment_3<Kernel> & S1,
    const CGAL::Segment_3<Kernel> & S2,
    CGAL::Point_3<Kernel> & P1,
    CGAL::Point_3<Kernel> & P2,
    typename Kernel::FT & dst)
{
  typedef CGAL::Point_3<Kernel> Point_3;
  typedef CGAL::Vector_3<Kernel> Vector_3;
  typedef typename Kernel::FT EScalar;
  if(S1.is_degenerate())
  {
    // All points on S1 are the same
    P1 = S1.source();
    point_segment_squared_distance(P1,S2,P2,dst);
    return true;
  }else if(S2.is_degenerate())
  {
    assert(!S1.is_degenerate());
    // All points on S2 are the same
    P2 = S2.source();
    point_segment_squared_distance(P2,S1,P1,dst);
    return true;
  }

  assert(!S1.is_degenerate());
  assert(!S2.is_degenerate());

  Vector_3 u = S1.target() - S1.source();
  Vector_3 v = S2.target() - S2.source();
  Vector_3 w = S1.source() - S2.source();

  const auto a = u.dot(u);         // always >= 0
  const auto b = u.dot(v);
  const auto c = v.dot(v);         // always >= 0
  const auto d = u.dot(w);
  const auto e = v.dot(w);
  const auto D = a*c - b*b;        // always >= 0
  assert(D>=0);
  const auto sc=D, sN=D, sD = D;       // sc = sN / sD, default sD = D >= 0
  const auto tc=D, tN=D, tD = D;       // tc = tN / tD, default tD = D >= 0

  bool parallel = false;
  // compute the line parameters of the two closest points
  if (D==0) 
  { 
    // the lines are almost parallel
    parallel = true;
    sN = 0.0;         // force using source point on segment S1
    sD = 1.0;         // to prevent possible division by 0.0 later
    tN = e;
    tD = c;
  } else
  {
    // get the closest points on the infinite lines
    sN = (b*e - c*d);
    tN = (a*e - b*d);
    if (sN < 0.0) 
    { 
      // sc < 0 => the s=0 edge is visible
      sN = 0.0;
      tN = e;
      tD = c;
    } else if (sN > sD) 
    {  // sc > 1  => the s=1 edge is visible
      sN = sD;
      tN = e + b;
      tD = c;
    }
  }

  if (tN < 0.0) 
  {
    // tc < 0 => the t=0 edge is visible
    tN = 0.0;
    // recompute sc for this edge
    if (-d < 0.0)
    {
      sN = 0.0;
    }else if (-d > a)
    {
      sN = sD;
    }else 
    {
      sN = -d;
      sD = a;
    }
  }else if (tN > tD) 
  {
    // tc > 1  => the t=1 edge is visible
    tN = tD;
    // recompute sc for this edge
    if ((-d + b) < 0.0)
    {
      sN = 0;
    }else if ((-d + b) > a)
    {
      sN = sD;
    }else
    {
      sN = (-d +  b);
      sD = a;
    }
  }
  // finally do the division to get sc and tc
  sc = (abs(sN) == 0 ? 0.0 : sN / sD);
  tc = (abs(tN) == 0 ? 0.0 : tN / tD);

  // get the difference of the two closest points
  P1 = S1.source() + sc*(S1.target()-S1.source());
  P2 = S2.source() + sc*(S2.target()-S2.source());
  Vector_3   dP = w + (sc * u) - (tc * v);  // =  S1(sc) - S2(tc)
  assert(dP == (P1-P2));

  dst = dP.squared_length();   // return the closest distance
  return parallel;
}