void Regression::write(cv::InputArray array) { write() << "kind" << array.kind(); write() << "type" << array.type(); if (isVector(array)) { int total = (int)array.total(); int idx = regRNG.uniform(0, total); write() << "len" << total; write() << "idx" << idx; cv::Mat m = array.getMat(idx); if (m.total() * m.channels() < 26) //5x5 or smaller write() << "val" << m; else write(m); } else { if (array.total() * array.channels() < 26) //5x5 or smaller write() << "val" << array.getMat(); else write(array.getMat()); } }
void illuminationChange(cv::InputArray _src, cv::InputArray _mask, cv::OutputArray _dst, float a, float b) { Mat src = _src.getMat(); Mat mask = _mask.getMat(); _dst.create(src.size(), src.type()); Mat blend = _dst.getMat(); float alpha = a; float beta = b; Mat gray = Mat::zeros(mask.size(), CV_8UC1); if(mask.channels() == 3) cvtColor(mask, gray, COLOR_BGR2GRAY); else gray = mask; Mat cs_mask = Mat::zeros(src.size(), CV_8UC3); src.copyTo(cs_mask, gray); Cloning obj; obj.illum_change(src, cs_mask, gray, blend, alpha, beta); }
void stereo_disparity_normal(cv::InputArray left_image, cv::InputArray right_image, cv::OutputArray disp_, int max_dis_level, int scale, float sigma) { cv::Mat imL = left_image.getMat(); cv::Mat imR = right_image.getMat(); CV_Assert(imL.size() == imR.size()); CV_Assert(imL.type() == CV_8UC3 && imR.type() == CV_8UC3); cv::Size imageSize = imL.size(); disp_.create(imageSize, CV_8U); cv::Mat disp = disp_.getMat(); CDisparityHelper dispHelper; //step 1: cost initialization cv::Mat costVol = dispHelper.GetMatchingCost(imL, imR, max_dis_level); //step 2: cost aggregation CSegmentTree stree; CColorWeight cWeight(imL); stree.BuildSegmentTree(imL.size(), sigma, TAU, cWeight); stree.Filter(costVol, max_dis_level); //step 3: disparity computation cv::Mat disparity = dispHelper.GetDisparity_WTA((float*)costVol.data, imageSize.width, imageSize.height, max_dis_level); MeanFilter(disparity, disparity, 3); disparity *= scale; disparity.copyTo(disp); }
void colorChange(cv::InputArray _src, cv::InputArray _mask, cv::OutputArray _dst, float r, float g, float b) { Mat src = _src.getMat(); Mat mask = _mask.getMat(); _dst.create(src.size(), src.type()); Mat blend = _dst.getMat(); float red = r; float green = g; float blue = b; Mat gray = Mat::zeros(mask.size(), CV_8UC1); if(mask.channels() == 3) cvtColor(mask, gray, COLOR_BGR2GRAY); else gray = mask; Mat cs_mask = Mat::zeros(src.size(), CV_8UC3); src.copyTo(cs_mask, gray); Cloning obj; obj.local_color_change(src, cs_mask, gray, blend, red, green, blue); }
void textureFlattening(cv::InputArray _src, cv::InputArray _mask, cv::OutputArray _dst, double low_threshold, double high_threshold, int kernel_size) { Mat src = _src.getMat(); Mat mask = _mask.getMat(); _dst.create(src.size(), src.type()); Mat blend = _dst.getMat(); Mat gray = Mat::zeros(mask.size(), CV_8UC1); if(mask.channels() == 3) cvtColor(mask, gray, COLOR_BGR2GRAY); else gray = mask; Mat cs_mask = Mat::zeros(src.size(), CV_8UC3); src.copyTo(cs_mask, gray); Cloning obj; obj.texture_flatten(src, cs_mask, gray, low_threshold, high_threshold, kernel_size, blend); }
void globalMatting(cv::InputArray _image, cv::InputArray _trimap, cv::OutputArray _foreground, cv::OutputArray _alpha, cv::OutputArray _conf) { cv::Mat image = _image.getMat(); cv::Mat trimap = _trimap.getMat(); if (image.empty()) CV_Error(CV_StsBadArg, "image is empty"); if (image.type() != CV_8UC3) CV_Error(CV_StsBadArg, "image mush have CV_8UC3 type"); if (trimap.empty()) CV_Error(CV_StsBadArg, "trimap is empty"); if (trimap.type() != CV_8UC1) CV_Error(CV_StsBadArg, "trimap mush have CV_8UC1 type"); if (image.size() != trimap.size()) CV_Error(CV_StsBadArg, "image and trimap mush have same size"); cv::Mat &foreground = _foreground.getMatRef(); cv::Mat &alpha = _alpha.getMatRef(); cv::Mat tempConf; globalMattingHelper(image, trimap, foreground, alpha, tempConf); if(_conf.needed()) tempConf.copyTo(_conf); }
FilterCall::FilterCall(cv::InputArray in, cv::InputArray out, impl::CallMetaData data, QString type, QString description, QString requestedView) : Call{ data, std::move(type), std::move(description), std::move(requestedView) }, input_{ in.getMat().clone() }, output_{ out.getMat().clone() } { }
void sadTemplate(cv::InputArray tar, cv::InputArray tmp, cv::OutputArray res, int *minx, int *miny){ //引数の入力をMatとして受け取る cv::Mat tarM = tar.getMat(); cv::Mat tmpM = tmp.getMat(); cv::Mat resM = res.getMat(); //sadが最小値のところがマッチングしたい箇所なので int minsad = std::numeric_limits<int>::max(); int sad = 0; //各回のsadを格納 int diff; //sadに加算する前の作業変数 int tarx,tary; //目的のxy座標 for(int y=0;y<tarM.rows - tmpM.rows;y++){ for(int x=0;x<tarM.cols - tmpM.cols;x++){ sad = 0; //次の領域の計算の前に初期化 //探索 for(int yt = 0; yt < tmpM.rows; yt++){ for(int xt = 0; xt < tmpM.cols; xt++){ diff = (int)(tarM.at<uchar>(y+yt,x+xt) - tmpM.at<uchar>(yt,xt)); if(diff < 0){ //負なら正に変換 diff = -diff; } sad += diff; ////残差逐次検定法 if(sad > minsad){ yt = tmpM.rows; break; } } } //探索結果:sadが今までで最小なら if(sad < minsad){ minsad = sad; //最小値を更新 //目的のxyを格納 tarx = x; tary = y; } } } //outputに出力 for(int y=0;y<resM.rows;y++){ for(int x=0;x<resM.cols;x++){ if(x==tarx && y==tary){ resM.at<uchar>(y,x) = (uchar)0; }else{ resM.at<uchar>(y,x) = (uchar)255; } } } std::cout << "最小値=" << minsad << std::endl; std::cout << "最小点=[" << tarx << ", " << tary << "]" << std::endl; *minx = tarx; *miny = tary; }
void stereo::stereoMatching(cv::InputArray _recImage1, cv::InputArray _recIamge2, cv::OutputArray _disparityMap, int minDisparity, int numDisparities, int SADWindowSize, int P1, int P2) { Mat img1 = _recImage1.getMat(); Mat img2 = _recIamge2.getMat(); _disparityMap.create(img1.size(), CV_16S); Mat dis = _disparityMap.getMat(); StereoSGBM matcher(minDisparity, numDisparities, SADWindowSize, P1, P2); matcher(img1, img2, dis); dis = dis / 16.0; }
void testFunction(cv::InputArray ip, cv::InputArray op) { cv::Mat img = ip.getMat(); cv::Mat obj = op.getMat(); printMatrix(img); printMatrix(obj); // std::cerr<<img.checkVector()<<std::endl; }
void IPPE::PoseSolver::solveGeneric(cv::InputArray _objectPoints, cv::InputArray _normalizedInputPoints, cv::OutputArray _Ma, cv::OutputArray _Mb) { //argument checking: size_t n = _objectPoints.rows() * _objectPoints.cols(); //number of points int objType = _objectPoints.type(); int type_input = _normalizedInputPoints.type(); assert((objType == CV_32FC3) | (objType == CV_64FC3)); assert((type_input == CV_32FC2) | (type_input == CV_64FC2)); assert((_objectPoints.rows() == 1) | (_objectPoints.cols() == 1)); assert((_objectPoints.rows() >= 4) | (_objectPoints.cols() >= 4)); assert((_normalizedInputPoints.rows() == 1) | (_normalizedInputPoints.cols() == 1)); assert(static_cast<size_t>(_objectPoints.rows() * _objectPoints.cols()) == n); cv::Mat normalizedInputPoints; if (type_input == CV_32FC2) { _normalizedInputPoints.getMat().convertTo(normalizedInputPoints, CV_64FC2); } else { normalizedInputPoints = _normalizedInputPoints.getMat(); } cv::Mat objectInputPoints; if (type_input == CV_32FC3) { _objectPoints.getMat().convertTo(objectInputPoints, CV_64FC3); } else { objectInputPoints = _objectPoints.getMat(); } cv::Mat canonicalObjPoints; cv::Mat MmodelPoints2Canonical; //transform object points to the canonical position (zero centred and on the plane z=0): makeCanonicalObjectPoints(objectInputPoints, canonicalObjPoints, MmodelPoints2Canonical); //compute the homography mapping the model's points to normalizedInputPoints cv::Mat H; HomographyHO::homographyHO(canonicalObjPoints, _normalizedInputPoints, H); //now solve cv::Mat MaCanon, MbCanon; solveCanonicalForm(canonicalObjPoints, normalizedInputPoints, H, MaCanon, MbCanon); //transform computed poses to account for canonical transform: cv::Mat Ma = MaCanon * MmodelPoints2Canonical; cv::Mat Mb = MbCanon * MmodelPoints2Canonical; //output poses: Ma.copyTo(_Ma); Mb.copyTo(_Mb); }
void stereo::stereoRectify(cv::InputArray _K1, cv::InputArray _K2, cv::InputArray _R, cv::InputArray _T, cv::OutputArray _R1, cv::OutputArray _R2, cv::OutputArray _P1, cv::OutputArray _P2) { Mat K1 = _K1.getMat(), K2 = _K2.getMat(), R = _R.getMat(), T = _T.getMat(); _R1.create(3, 3, CV_32F); _R2.create(3, 3, CV_32F); Mat R1 = _R1.getMat(); Mat R2 = _R2.getMat(); _P1.create(3, 4, CV_32F); _P2.create(3, 4, CV_32F); Mat P1 = _P1.getMat(); Mat P2 = _P2.getMat(); if(K1.type()!=CV_32F) K1.convertTo(K1,CV_32F); if(K2.type()!=CV_32F) K2.convertTo(K2,CV_32F); if(R.type()!=CV_32F) R.convertTo(R,CV_32F); if(T.type()!=CV_32F) T.convertTo(T,CV_32F); if(T.rows != 3) T = T.t(); // R and T is the transformation from the first to the second camera // Get the transformation from the second to the first camera Mat R_inv = R.t(); Mat T_inv = -R.t()*T; Mat e1, e2, e3; e1 = T_inv.t() / norm(T_inv); /*Mat z = (Mat_<float>(1, 3) << 0.0,0.0,-1.0); e2 = e1.cross(z); e2 = e2 / norm(e2);*/ e2 = (Mat_<float>(1,3) << T_inv.at<float>(1)*-1, T_inv.at<float>(0), 0.0 ); e2 = e2 / (sqrt(e2.at<float>(0)*e2.at<float>(0) + e2.at<float>(1)*e2.at<float>(1))); e3 = e1.cross(e2); e3 = e3 / norm(e3); e1.copyTo(R1.row(0)); e2.copyTo(R1.row(1)); e3.copyTo(R1.row(2)); R2 = R_inv * R1; P1.setTo(Scalar(0)); R1.copyTo(P1.colRange(0, 3)); P1 = K1 * P1; P2.setTo(Scalar(0)); R2.copyTo(P2.colRange(0, 3)); P2 = K2 * P2; }
cv::Mat flutter::estimate_rigid_transform(cv::InputArray src1, cv::InputArray src2, double ransac_good_ratio, double ransac_threshold) { Mat M(2, 3, CV_64F), A = src1.getMat(), B = src2.getMat(); CvMat matA = A, matB = B, matM = M; int err = estimate_rigid_transform_detail(&matA, &matB, &matM, ransac_good_ratio, ransac_threshold); if (err == 1) { return M; } else { return Mat(); } }
void StereoMatch::StereoMatching(cv::InputArray rec_image1, cv::InputArray rec_image2, cv::OutputArray disparity_map, int min_disparity, int num_disparities, int SAD_window_size, int P1, int P2) { cv::Mat img1 = rec_image1.getMat(); cv::Mat img2 = rec_image2.getMat(); disparity_map.create(img1.size(), CV_16S); cv::Mat dis = disparity_map.getMat(); cv::StereoSGBM matcher(min_disparity, num_disparities, SAD_window_size, P1, P2); matcher(img1, img2, dis); dis = dis / 16.0; }
void cv::SCascade::detect(cv::InputArray _image, cv::InputArray _rois, std::vector<Detection>& objects) const { // only color images are supperted cv::Mat image = _image.getMat(); CV_Assert(image.type() == CV_8UC3); Fields& fld = *fields; fld.calcLevels(image.size(),(float) minScale, (float)maxScale, scales); objects.clear(); if (_rois.empty()) return detectNoRoi(image, objects); int shr = fld.shrinkage; cv::Mat roi = _rois.getMat(); cv::Mat mask(image.rows / shr, image.cols / shr, CV_8UC1); mask.setTo(cv::Scalar::all(0)); cv::Rect* r = roi.ptr<cv::Rect>(0); for (int i = 0; i < (int)roi.cols; ++i) cv::Mat(mask, cv::Rect(r[i].x / shr, r[i].y / shr, r[i].width / shr , r[i].height / shr)).setTo(cv::Scalar::all(1)); // create integrals ChannelStorage storage(image, shr); typedef std::vector<Level>::const_iterator lIt; for (lIt it = fld.levels.begin(); it != fld.levels.end(); ++it) { const Level& level = *it; // we train only 3 scales. if (level.origScale > 2.5) break; for (int dy = 0; dy < level.workRect.height; ++dy) { uchar* m = mask.ptr<uchar>(dy); for (int dx = 0; dx < level.workRect.width; ++dx) { if (m[dx]) { storage.offset = dy * storage.step + dx; fld.detectAt(dx, dy, level, storage, objects); } } } } if (rejCriteria != NO_REJECT) suppress(rejCriteria, objects); }
void Picture::setAnimation(const AnimationEnum &animationEnum, const cv::InputArray &startImg, const cv::InputArray &endImg) { delete animation; Mat startImage = startImg.getMat(); Mat endImage = endImg.getMat(); if (!startImg.empty() && startImg.size() != this->size()) cv::resize(startImg, startImage, this->size()); if (!endImg.empty() && endImg.size() != this->size()) cv::resize(endImg, endImage, this->size()); animation = AnimationFactory::createAnimation(animationEnum, startImage, endImage); }
void CV_HomographyTest::check_transform_quality(cv::InputArray src_points, cv::InputArray dst_points, const cv::Mat& H, const int norm_type) { Mat src, dst_original; cv::transpose(src_points.getMat(), src); cv::transpose(dst_points.getMat(), dst_original); cv::Mat src_3d(src.rows+1, src.cols, CV_32FC1); src_3d(Rect(0, 0, src.rows, src.cols)) = src; src_3d(Rect(src.rows, 0, 1, src.cols)) = Mat(1, src.cols, CV_32FC1, Scalar(1.0f)); cv::Mat dst_found, dst_found_3d; cv::multiply(H, src_3d, dst_found_3d); dst_found = dst_found_3d/dst_found_3d.row(dst_found_3d.rows-1); double reprojection_error = cv::norm(dst_original, dst_found, norm_type); CV_Assert ( reprojection_error > max_diff ); }
void printSmallMatrixCVChar(char *title, cv::InputArray inArr) { printf("%s\n", title); printf("----------------------------------\n"); for (int rows = 0; rows < inArr.getMat().rows; rows++) { printf("ROW: %02d ---> ", rows); for (int cols = 0; cols < IMG_WIDTH; cols++) { printf(" %04d ", inArr.getMat().at<unsigned char>(rows, cols)); } printf("\n"); } printf("\n"); }
void Tools::ReduceRowByMost(cv::InputArray _src, cv::OutputArray _dst, cv::InputArray _mask) { cv::Mat src = _src.getMat(); _dst.create(1, src.cols, CV_8UC1); cv::Mat dst = _dst.getMat(); cv::Mat mask = _mask.getMat(); if (src.depth() != CV_8U || mask.depth() != CV_8U) { throw "TYPE DON'T SUPPORT"; } int i, j, addr; cv::Size size = src.size(); uchar *srcd = src.data; uchar *dstd = dst.data; uchar *maskd = mask.data; std::map<uchar, int> m; std::map<uchar, int>::iterator p; uchar mostVal; uchar rVal; int r; for (i = 0;i < size.width;++i) { m.clear(); mostVal = 0; for (j = 0;j < size.height;++j) { addr = j*size.width + i; if (!maskd[addr]) continue; for (r = -2;r <= 2;++r) { rVal = (uchar)(((int)srcd[addr] + r) % 180); if (m.find(rVal) != m.end()) { m[rVal]++; } else { m[rVal] = 1; } } } if (m.size() == 0) { dstd[i] = 0; continue; } mostVal = m.begin()->first; for (p = m.begin();p != m.end();++p) { if (p->second > m[mostVal]) { mostVal = p->first; } } dstd[i] = mostVal; } }
void BackgroundSubtractorMedian::operator()(cv::InputArray _image, cv::OutputArray _fgmask, double learningRate) { framecount++; cv::Mat image = _image.getMat(); if (image.channels() > 1) { cvtColor(image,image,CV_BGR2GRAY); } if (image.cols == 0 || image.rows == 0) { return; } _fgmask.create(image.size(), CV_8U); cv::Mat fgmask = _fgmask.getMat(); if (!init) { init = true; bgmodel = cv::Mat(image.size(), CV_8U); } //printf("(%d,%d)(%d) ",image.cols,image.rows,image.type()); //printf("(%d,%d)(%d)\n",bgmodel.cols,bgmodel.rows,bgmodel.type()); cv::Mat cmpArr = cv::Mat(image.size(),CV_8U); cv::compare(image, bgmodel, cmpArr, CV_CMP_GT); cv::bitwise_and(cmpArr, 1, cmpArr); cv::add(bgmodel, cmpArr, bgmodel); cmpArr = cv::Mat(image.size(),CV_8U); cv::compare(image, bgmodel, cmpArr, CV_CMP_LT); cv::bitwise_and(cmpArr, 1, cmpArr); cv::subtract(bgmodel, cmpArr, bgmodel); cv::absdiff(image, bgmodel,fgmask); cv::threshold(fgmask,fgmask,fg_threshold,255,CV_THRESH_TOZERO); cv::medianBlur(fgmask,fgmask,median_filter_level); }
// Computes an Lidfaces model with images in src and corresponding labels // in labels. void Lidfaces::train(cv::InputArrayOfArrays src, cv::InputArray labels) { std::vector<std::vector<cv::KeyPoint> > allKeyPoints; cv::Mat descriptors; // Get SIFT keypoints and LID descriptors detectKeypointsAndDescriptors(src, allKeyPoints, descriptors); // kmeans function requires points to be CV_32F descriptors.convertTo(descriptors, CV_32FC1); // Do k-means clustering const int CLUSTER_COUNT = params::lidFace::clustersAsPercentageOfKeypoints*descriptors.rows; cv::Mat histogramLabels; // This function populates histogram bin labels // The nth element of histogramLabels is an integer which represents the cluster that the // nth element of allKeyPoints is a member of. kmeans( descriptors, // The points we are clustering are the descriptors CLUSTER_COUNT, // The number of clusters (K) histogramLabels, // The label of the corresponding keypoint params::kmeans::termCriteria, params::kmeans::attempts, params::kmeans::flags, mCenters); // Convert to single channel 32 bit float as the matrix needs to be in a form supported // by calcHist histogramLabels.convertTo(histogramLabels, CV_32FC1); // We end up with a histogram for each image const size_t NUM_IMAGES = getSize(src); std::vector<cv::Mat> hists(NUM_IMAGES); // mCodebook.resize(NUM_IMAGES); // The histogramLabels vector contains ALL the points from EVERY image. We need to split // it up into groups of points for each image. // Because there are the same number of points in each image, and the points were put // into the labels vector in order, we can simply divide the labels vector evenly to get // the individual image's points. std::vector<cv::Mat> separatedLabels; for (unsigned int i = 0, startRow = 0; i < NUM_IMAGES; ++i) { separatedLabels.push_back( histogramLabels.rowRange( startRow, startRow + allKeyPoints[i].size())); startRow += allKeyPoints[i].size(); } // Populate the hists vector generateHistograms(hists, separatedLabels, CLUSTER_COUNT); // Make the magnitude of each histogram equal to 1 normalizeHistograms(hists); mCodebook = hists; mLabels = labels.getMat(); }
void showWindow(const string &winName, cv::InputArray mat) { Mat temp(mat.size(), mat.type()); mat.getMat().copyTo(temp); namedWindow(winName, WINDOW_NORMAL); // Create a window for display. imshow(winName, temp); // Show our image inside it. }
int boostColor(cv::InputArray src, cv::OutputArray dst, float intensity) { const int MAX_INTENSITY = 255; Mat srcImg = src.getMat(); CV_Assert(srcImg.channels() == 3); CV_Assert(intensity >= 0.0f && intensity <= 1.0f); if (srcImg.type() != CV_8UC3) { srcImg.convertTo(srcImg, CV_8UC3); } Mat srcHls; cvtColor(srcImg, srcHls, CV_BGR2HLS); int intensityInt = intensity * MAX_INTENSITY; srcHls += Scalar(0, 0, intensityInt); cvtColor(srcHls, dst, CV_HLS2BGR); dst.getMat().convertTo(dst, srcImg.type()); return 0; }
void EdgeDetector_<ParallelUtils::eGLSL>::apply_async_glimpl(cv::InputArray _oNextImage, bool bRebindAll, double dThreshold) { m_dCurrThreshold = dThreshold; cv::Mat oNextInputImg = _oNextImage.getMat(); CV_Assert(oNextInputImg.size()==m_oFrameSize); CV_Assert(oNextInputImg.isContinuous()); GLImageProcAlgo::apply_async(oNextInputImg,bRebindAll); }
void IEdgeDetector_GLSL::apply_gl(cv::InputArray _oNextImage, bool bRebindAll, double dThreshold) { lvAssert_(GLImageProcAlgo::m_bGLInitialized,"algo must be initialized first"); m_dCurrThreshold = dThreshold; cv::Mat oNextInputImg = _oNextImage.getMat(); lvAssert_(oNextInputImg.size()==GLImageProcAlgo::m_oFrameSize,"input image size must match initialization size"); lvAssert_(oNextInputImg.isContinuous(),"input image must be continuous"); GLImageProcAlgo::apply_gl(oNextInputImg,bRebindAll); }
void stereo::stereoMatching(cv::InputArray _recImage1, cv::InputArray _recIamge2, cv::OutputArray _disparityMap, int minDisparity, int numDisparities, int SADWindowSize, int P1, int P2) { Mat img1 = _recImage1.getMat(); Mat img2 = _recIamge2.getMat(); _disparityMap.create(img1.size(), CV_16S); Mat dis = _disparityMap.getMat(); // create(int minDisparity, int numDisparities, int blockSize,) Ptr<StereoSGBM> matcher = StereoSGBM::create(minDisparity, numDisparities, SADWindowSize); matcher->setP1(P1); matcher->setP2(P2); matcher->compute(img1, img2, dis); //StereoSGBM matcher(minDisparity, numDisparities, SADWindowSize, P1, P2); //matcher(img1, img2, dis); dis = dis / 16.0; }
inline void normAssert(cv::InputArray ref, cv::InputArray test, const char *comment = "", double l1 = 0.00001, double lInf = 0.0001) { double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total(); EXPECT_LE(normL1, l1) << comment; double normInf = cvtest::norm(ref, test, cv::NORM_INF); EXPECT_LE(normInf, lInf) << comment; }
void _SLICSegment2Vector3D_(cv::InputArray segment, cv::InputArray signal, T invalidValue, std::vector<std::vector<cv::Point3_<S>>>& segmentPoint) { Mat sig = signal.getMat(); Mat seg = segment.getMat(); for (int j = 0; j < seg.rows; ++j) { int* s = seg.ptr<int>(j); T* value = sig.ptr<T>(j); for (int i = 0; i < seg.cols; ++i) { if (value[i] != invalidValue) { segmentPoint[s[i]].push_back(Point3_<S>((S)i, (S)j, (S)value[i])); } } } }
void warmify(cv::InputArray src, cv::OutputArray dst, uchar delta) { CV_Assert(src.type() == CV_8UC3); Mat imgSrc = src.getMat(); CV_Assert(imgSrc.data); dst.create(src.size(), CV_8UC3); Mat imgDst = dst.getMat(); imgDst = imgSrc + Scalar(0, delta, delta); }
void IBackgroundSubtractor_GLSL::apply_gl(cv::InputArray _oNextImage, bool bRebindAll, double dLearningRate) { glAssert(m_bInitialized && m_bModelInitialized); m_dCurrLearningRate = dLearningRate; cv::Mat oNextInputImg = _oNextImage.getMat(); CV_Assert(oNextInputImg.type()==m_nImgType && oNextInputImg.size()==m_oImgSize); CV_Assert(oNextInputImg.isContinuous()); ++m_nFrameIdx; GLImageProcAlgo::apply_gl(oNextInputImg,bRebindAll); oNextInputImg.copyTo(m_oLastColorFrame); }