コード例 #1
0
InternalRouteResult directShortestPathSearch(
    SearchEngineData<mld::Algorithm> &engine_working_data,
    const datafacade::ContiguousInternalMemoryDataFacade<mld::Algorithm> &facade,
    const PhantomNodes &phantom_nodes)
{
    engine_working_data.InitializeOrClearFirstThreadLocalStorage(facade.GetNumberOfNodes());
    auto &forward_heap = *engine_working_data.forward_heap_1;
    auto &reverse_heap = *engine_working_data.reverse_heap_1;
    insertNodesInHeaps(forward_heap, reverse_heap, phantom_nodes);

    // TODO: when structured bindings will be allowed change to
    // auto [weight, source_node, target_node, unpacked_edges] = ...
    EdgeWeight weight = INVALID_EDGE_WEIGHT;
    std::vector<NodeID> unpacked_nodes;
    std::vector<EdgeID> unpacked_edges;
    std::tie(weight, unpacked_nodes, unpacked_edges) = mld::search(engine_working_data,
                                                                   facade,
                                                                   forward_heap,
                                                                   reverse_heap,
                                                                   DO_NOT_FORCE_LOOPS,
                                                                   DO_NOT_FORCE_LOOPS,
                                                                   INVALID_EDGE_WEIGHT,
                                                                   phantom_nodes);

    return extractRoute(facade, weight, phantom_nodes, unpacked_nodes, unpacked_edges);
}
コード例 #2
0
InternalRouteResult
directShortestPathSearch(SearchEngineData<Algorithm> &engine_working_data,
                         const datafacade::ContiguousInternalMemoryDataFacade<Algorithm> &facade,
                         const PhantomNodes &phantom_nodes)
{
    engine_working_data.InitializeOrClearFirstThreadLocalStorage(facade.GetNumberOfNodes());
    auto &forward_heap = *engine_working_data.forward_heap_1;
    auto &reverse_heap = *engine_working_data.reverse_heap_1;
    forward_heap.Clear();
    reverse_heap.Clear();

    EdgeWeight weight = INVALID_EDGE_WEIGHT;
    std::vector<NodeID> packed_leg;
    insertNodesInHeaps(forward_heap, reverse_heap, phantom_nodes);

    search(engine_working_data,
           facade,
           forward_heap,
           reverse_heap,
           weight,
           packed_leg,
           DO_NOT_FORCE_LOOPS,
           DO_NOT_FORCE_LOOPS,
           phantom_nodes);

    std::vector<NodeID> unpacked_nodes;
    std::vector<EdgeID> unpacked_edges;

    if (!packed_leg.empty())
    {
        unpacked_nodes.reserve(packed_leg.size());
        unpacked_edges.reserve(packed_leg.size());
        unpacked_nodes.push_back(packed_leg.front());
        ch::unpackPath(facade,
                       packed_leg.begin(),
                       packed_leg.end(),
                       [&unpacked_nodes, &unpacked_edges](std::pair<NodeID, NodeID> &edge,
                                                          const auto &edge_id) {
                           BOOST_ASSERT(edge.first == unpacked_nodes.back());
                           unpacked_nodes.push_back(edge.second);
                           unpacked_edges.push_back(edge_id);
                       });
    }

    return extractRoute(facade, weight, phantom_nodes, unpacked_nodes, unpacked_edges);
}
コード例 #3
0
InternalRouteResult
shortestPathSearch(SearchEngineData<Algorithm> &engine_working_data,
                   const datafacade::ContiguousInternalMemoryDataFacade<Algorithm> &facade,
                   const std::vector<PhantomNodes> &phantom_nodes_vector,
                   const boost::optional<bool> continue_straight_at_waypoint)
{
    InternalRouteResult raw_route_data;
    raw_route_data.segment_end_coordinates = phantom_nodes_vector;
    const bool allow_uturn_at_waypoint =
        !(continue_straight_at_waypoint ? *continue_straight_at_waypoint
                                        : facade.GetContinueStraightDefault());

    engine_working_data.InitializeOrClearFirstThreadLocalStorage(facade.GetNumberOfNodes());

    auto &forward_heap = *engine_working_data.forward_heap_1;
    auto &reverse_heap = *engine_working_data.reverse_heap_1;

    int total_weight_to_forward = 0;
    int total_weight_to_reverse = 0;
    bool search_from_forward_node =
        phantom_nodes_vector.front().source_phantom.IsValidForwardSource();
    bool search_from_reverse_node =
        phantom_nodes_vector.front().source_phantom.IsValidReverseSource();

    std::vector<NodeID> prev_packed_leg_to_forward;
    std::vector<NodeID> prev_packed_leg_to_reverse;

    std::vector<NodeID> total_packed_path_to_forward;
    std::vector<std::size_t> packed_leg_to_forward_begin;
    std::vector<NodeID> total_packed_path_to_reverse;
    std::vector<std::size_t> packed_leg_to_reverse_begin;

    std::size_t current_leg = 0;
    // this implements a dynamic program that finds the shortest route through
    // a list of vias
    for (const auto &phantom_node_pair : phantom_nodes_vector)
    {
        int new_total_weight_to_forward = INVALID_EDGE_WEIGHT;
        int new_total_weight_to_reverse = INVALID_EDGE_WEIGHT;

        std::vector<NodeID> packed_leg_to_forward;
        std::vector<NodeID> packed_leg_to_reverse;

        const auto &source_phantom = phantom_node_pair.source_phantom;
        const auto &target_phantom = phantom_node_pair.target_phantom;

        bool search_to_forward_node = target_phantom.IsValidForwardTarget();
        bool search_to_reverse_node = target_phantom.IsValidReverseTarget();

        BOOST_ASSERT(!search_from_forward_node || source_phantom.IsValidForwardSource());
        BOOST_ASSERT(!search_from_reverse_node || source_phantom.IsValidReverseSource());

        if (search_to_reverse_node || search_to_forward_node)
        {
            if (allow_uturn_at_waypoint)
            {
                searchWithUTurn(engine_working_data,
                                facade,
                                forward_heap,
                                reverse_heap,
                                search_from_forward_node,
                                search_from_reverse_node,
                                search_to_forward_node,
                                search_to_reverse_node,
                                source_phantom,
                                target_phantom,
                                total_weight_to_forward,
                                total_weight_to_reverse,
                                new_total_weight_to_forward,
                                packed_leg_to_forward);
                // if only the reverse node is valid (e.g. when using the match plugin) we
                // actually need to move
                if (!target_phantom.IsValidForwardTarget())
                {
                    BOOST_ASSERT(target_phantom.IsValidReverseTarget());
                    new_total_weight_to_reverse = new_total_weight_to_forward;
                    packed_leg_to_reverse = std::move(packed_leg_to_forward);
                    new_total_weight_to_forward = INVALID_EDGE_WEIGHT;

                    // (*)
                    //
                    //   Below we have to check if new_total_weight_to_forward is invalid.
                    //   This prevents use-after-move on packed_leg_to_forward.
                }
                else if (target_phantom.IsValidReverseTarget())
                {
                    new_total_weight_to_reverse = new_total_weight_to_forward;
                    packed_leg_to_reverse = packed_leg_to_forward;
                }
            }
            else
            {
                search(engine_working_data,
                       facade,
                       forward_heap,
                       reverse_heap,
                       search_from_forward_node,
                       search_from_reverse_node,
                       search_to_forward_node,
                       search_to_reverse_node,
                       source_phantom,
                       target_phantom,
                       total_weight_to_forward,
                       total_weight_to_reverse,
                       new_total_weight_to_forward,
                       new_total_weight_to_reverse,
                       packed_leg_to_forward,
                       packed_leg_to_reverse);
            }
        }

        // Note: To make sure we do not access the moved-from packed_leg_to_forward
        // we guard its access by a check for invalid edge weight. See  (*) above.

        // No path found for both target nodes?
        if ((INVALID_EDGE_WEIGHT == new_total_weight_to_forward) &&
            (INVALID_EDGE_WEIGHT == new_total_weight_to_reverse))
        {
            return raw_route_data;
        }

        // we need to figure out how the new legs connect to the previous ones
        if (current_leg > 0)
        {
            bool forward_to_forward =
                (new_total_weight_to_forward != INVALID_EDGE_WEIGHT) &&
                packed_leg_to_forward.front() == source_phantom.forward_segment_id.id;
            bool reverse_to_forward =
                (new_total_weight_to_forward != INVALID_EDGE_WEIGHT) &&
                packed_leg_to_forward.front() == source_phantom.reverse_segment_id.id;
            bool forward_to_reverse =
                (new_total_weight_to_reverse != INVALID_EDGE_WEIGHT) &&
                packed_leg_to_reverse.front() == source_phantom.forward_segment_id.id;
            bool reverse_to_reverse =
                (new_total_weight_to_reverse != INVALID_EDGE_WEIGHT) &&
                packed_leg_to_reverse.front() == source_phantom.reverse_segment_id.id;

            BOOST_ASSERT(!forward_to_forward || !reverse_to_forward);
            BOOST_ASSERT(!forward_to_reverse || !reverse_to_reverse);

            // in this case we always need to copy
            if (forward_to_forward && forward_to_reverse)
            {
                // in this case we copy the path leading to the source forward node
                // and change the case
                total_packed_path_to_reverse = total_packed_path_to_forward;
                packed_leg_to_reverse_begin = packed_leg_to_forward_begin;
                forward_to_reverse = false;
                reverse_to_reverse = true;
            }
            else if (reverse_to_forward && reverse_to_reverse)
            {
                total_packed_path_to_forward = total_packed_path_to_reverse;
                packed_leg_to_forward_begin = packed_leg_to_reverse_begin;
                reverse_to_forward = false;
                forward_to_forward = true;
            }
            BOOST_ASSERT(!forward_to_forward || !forward_to_reverse);
            BOOST_ASSERT(!reverse_to_forward || !reverse_to_reverse);

            // in this case we just need to swap to regain the correct mapping
            if (reverse_to_forward || forward_to_reverse)
            {
                total_packed_path_to_forward.swap(total_packed_path_to_reverse);
                packed_leg_to_forward_begin.swap(packed_leg_to_reverse_begin);
            }
        }

        if (new_total_weight_to_forward != INVALID_EDGE_WEIGHT)
        {
            BOOST_ASSERT(target_phantom.IsValidForwardTarget());

            packed_leg_to_forward_begin.push_back(total_packed_path_to_forward.size());
            total_packed_path_to_forward.insert(total_packed_path_to_forward.end(),
                                                packed_leg_to_forward.begin(),
                                                packed_leg_to_forward.end());
            search_from_forward_node = true;
        }
        else
        {
            total_packed_path_to_forward.clear();
            packed_leg_to_forward_begin.clear();
            search_from_forward_node = false;
        }

        if (new_total_weight_to_reverse != INVALID_EDGE_WEIGHT)
        {
            BOOST_ASSERT(target_phantom.IsValidReverseTarget());

            packed_leg_to_reverse_begin.push_back(total_packed_path_to_reverse.size());
            total_packed_path_to_reverse.insert(total_packed_path_to_reverse.end(),
                                                packed_leg_to_reverse.begin(),
                                                packed_leg_to_reverse.end());
            search_from_reverse_node = true;
        }
        else
        {
            total_packed_path_to_reverse.clear();
            packed_leg_to_reverse_begin.clear();
            search_from_reverse_node = false;
        }

        prev_packed_leg_to_forward = std::move(packed_leg_to_forward);
        prev_packed_leg_to_reverse = std::move(packed_leg_to_reverse);

        total_weight_to_forward = new_total_weight_to_forward;
        total_weight_to_reverse = new_total_weight_to_reverse;

        ++current_leg;
    }

    BOOST_ASSERT(total_weight_to_forward != INVALID_EDGE_WEIGHT ||
                 total_weight_to_reverse != INVALID_EDGE_WEIGHT);

    // We make sure the fastest route is always in packed_legs_to_forward
    if (total_weight_to_forward < total_weight_to_reverse ||
        (total_weight_to_forward == total_weight_to_reverse &&
         total_packed_path_to_forward.size() < total_packed_path_to_reverse.size()))
    {
        // insert sentinel
        packed_leg_to_forward_begin.push_back(total_packed_path_to_forward.size());
        BOOST_ASSERT(packed_leg_to_forward_begin.size() == phantom_nodes_vector.size() + 1);

        unpackLegs(facade,
                   phantom_nodes_vector,
                   total_packed_path_to_forward,
                   packed_leg_to_forward_begin,
                   total_weight_to_forward,
                   raw_route_data);
    }
    else
    {
        // insert sentinel
        packed_leg_to_reverse_begin.push_back(total_packed_path_to_reverse.size());
        BOOST_ASSERT(packed_leg_to_reverse_begin.size() == phantom_nodes_vector.size() + 1);

        unpackLegs(facade,
                   phantom_nodes_vector,
                   total_packed_path_to_reverse,
                   packed_leg_to_reverse_begin,
                   total_weight_to_reverse,
                   raw_route_data);
    }

    return raw_route_data;
}
コード例 #4
0
std::vector<EdgeWeight>
manyToManySearch(SearchEngineData &engine_working_data,
                 const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
                 const std::vector<PhantomNode> &phantom_nodes,
                 const std::vector<std::size_t> &source_indices,
                 const std::vector<std::size_t> &target_indices)
{
    const auto number_of_sources =
        source_indices.empty() ? phantom_nodes.size() : source_indices.size();
    const auto number_of_targets =
        target_indices.empty() ? phantom_nodes.size() : target_indices.size();
    const auto number_of_entries = number_of_sources * number_of_targets;

    std::vector<EdgeWeight> weights_table(number_of_entries, INVALID_EDGE_WEIGHT);
    std::vector<EdgeWeight> durations_table(number_of_entries, MAXIMAL_EDGE_DURATION);

    engine_working_data.InitializeOrClearManyToManyThreadLocalStorage(facade.GetNumberOfNodes());

    auto &query_heap = *(engine_working_data.many_to_many_heap);

    SearchSpaceWithBuckets search_space_with_buckets;

    unsigned column_idx = 0;
    const auto search_target_phantom = [&](const PhantomNode &phantom) {
        // clear heap and insert target nodes
        query_heap.Clear();
        insertNodesInHeap<REVERSE_DIRECTION>(query_heap, phantom);

        // explore search space
        while (!query_heap.Empty())
        {
            backwardRoutingStep(facade, column_idx, query_heap, search_space_with_buckets);
        }
        ++column_idx;
    };

    // for each source do forward search
    unsigned row_idx = 0;
    const auto search_source_phantom = [&](const PhantomNode &phantom) {
        // clear heap and insert source nodes
        query_heap.Clear();
        insertNodesInHeap<FORWARD_DIRECTION>(query_heap, phantom);

        // explore search space
        while (!query_heap.Empty())
        {
            forwardRoutingStep(facade,
                               row_idx,
                               number_of_targets,
                               query_heap,
                               search_space_with_buckets,
                               weights_table,
                               durations_table);
        }
        ++row_idx;
    };

    if (target_indices.empty())
    {
        for (const auto &phantom : phantom_nodes)
        {
            search_target_phantom(phantom);
        }
    }
    else
    {
        for (const auto index : target_indices)
        {
            const auto &phantom = phantom_nodes[index];
            search_target_phantom(phantom);
        }
    }

    if (source_indices.empty())
    {
        for (const auto &phantom : phantom_nodes)
        {
            search_source_phantom(phantom);
        }
    }
    else
    {
        for (const auto index : source_indices)
        {
            const auto &phantom = phantom_nodes[index];
            search_source_phantom(phantom);
        }
    }

    return durations_table;
}