void QmitkPreprocessingView::DoLengthCorrection() { if (m_DiffusionImage.IsNull()) return; typedef mitk::DiffusionImage<DiffusionPixelType> DiffusionImageType; typedef itk::DwiGradientLengthCorrectionFilter FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetRoundingValue( m_Controls->m_B_ValueMap_Rounder_SpinBox->value()); filter->SetReferenceBValue(m_DiffusionImage->GetReferenceBValue()); filter->SetReferenceGradientDirectionContainer(m_DiffusionImage->GetDirections()); filter->Update(); DiffusionImageType::Pointer image = DiffusionImageType::New(); image->SetVectorImage( m_DiffusionImage->GetVectorImage()); image->SetReferenceBValue( filter->GetNewBValue() ); image->SetDirections( filter->GetOutputGradientDirectionContainer()); image->InitializeFromVectorImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( image ); QString name = m_SelectedDiffusionNodes.front()->GetName().c_str(); imageNode->SetName((name+"_rounded").toStdString().c_str()); GetDefaultDataStorage()->Add(imageNode); }
void QmitkDenoisingView::AfterThread() { m_ThreadIsRunning = false; // stop timer to stop updates of progressbar m_DenoisingTimer->stop(); // make sure progressbar is finished mitk::ProgressBar::GetInstance()->Progress(m_MaxProgressCount); if (m_CompletedCalculation) { switch (m_SelectedFilter) { case NOFILTERSELECTED: case GAUSS: { break; } case NLM: { DiffusionImageType::Pointer image = DiffusionImageType::New(); image->SetVectorImage(m_NonLocalMeansFilter->GetOutput()); image->SetReferenceBValue(m_InputImage->GetReferenceBValue()); image->SetDirections(m_InputImage->GetDirections()); image->InitializeFromVectorImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( image ); QString name = m_ImageNode->GetName().c_str(); //TODO: Rician adaption & joint information in name if (m_Controls->m_RicianCheckbox->isChecked() && !m_Controls->m_JointInformationCheckbox->isChecked()) { imageNode->SetName((name+"_NLMr_"+QString::number(m_Controls->m_SpinBoxParameter1->value())+"-"+QString::number(m_Controls->m_SpinBoxParameter2->value())).toStdString().c_str()); } else if(!m_Controls->m_RicianCheckbox->isChecked() && m_Controls->m_JointInformationCheckbox->isChecked()) { imageNode->SetName((name+"_NLMv_"+QString::number(m_Controls->m_SpinBoxParameter1->value())+"-"+QString::number(m_Controls->m_SpinBoxParameter2->value())).toStdString().c_str()); } else if(m_Controls->m_RicianCheckbox->isChecked() && m_Controls->m_JointInformationCheckbox->isChecked()) { imageNode->SetName((name+"_NLMvr_"+QString::number(m_Controls->m_SpinBoxParameter1->value())+"-"+QString::number(m_Controls->m_SpinBoxParameter2->value())).toStdString().c_str()); } else { imageNode->SetName((name+"_NLM_"+QString::number(m_Controls->m_SpinBoxParameter1->value())+"-"+QString::number(m_Controls->m_SpinBoxParameter2->value())).toStdString().c_str()); } GetDefaultDataStorage()->Add(imageNode); break; } } } m_Controls->m_ParameterBox->setEnabled(true); m_Controls->m_ApplyButton->setText("Apply"); }
/** * Denoises DWI using the Nonlocal - Means algorithm */ int DwiDenoising(int argc, char* argv[]) { ctkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); parser.addArgument("input", "i", ctkCommandLineParser::String, "input image (DWI)", us::Any(), false); parser.addArgument("variance", "v", ctkCommandLineParser::Float, "noise variance", us::Any(), false); parser.addArgument("mask", "m", ctkCommandLineParser::String, "brainmask for input image", us::Any(), true); parser.addArgument("search", "s", ctkCommandLineParser::Int, "search radius", us::Any(), true); parser.addArgument("compare", "c", ctkCommandLineParser::Int, "compare radius", us::Any(), true); parser.addArgument("joint", "j", ctkCommandLineParser::Bool, "use joint information"); parser.addArgument("rician", "r", ctkCommandLineParser::Bool, "use rician adaption"); map<string, us::Any> parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; string inFileName = us::any_cast<string>(parsedArgs["input"]); double variance = static_cast<double>(us::any_cast<float>(parsedArgs["variance"])); string maskName; if (parsedArgs.count("mask")) maskName = us::any_cast<string>(parsedArgs["mask"]); string outFileName = inFileName; boost::algorithm::erase_all(outFileName, ".dwi"); int search = 4; if (parsedArgs.count("search")) search = us::any_cast<int>(parsedArgs["search"]); int compare = 1; if (parsedArgs.count("compare")) compare = us::any_cast<int>(parsedArgs["compare"]); bool joint = false; if (parsedArgs.count("joint")) joint = true; bool rician = false; if (parsedArgs.count("rician")) rician = true; try { if( boost::algorithm::ends_with(inFileName, ".dwi")) { DiffusionImageType::Pointer dwi = dynamic_cast<DiffusionImageType*>(LoadFile(inFileName).GetPointer()); itk::NonLocalMeansDenoisingFilter<short>::Pointer filter = itk::NonLocalMeansDenoisingFilter<short>::New(); filter->SetNumberOfThreads(12); filter->SetInputImage(dwi->GetVectorImage()); if (!maskName.empty()) { mitk::Image::Pointer mask = dynamic_cast<mitk::Image*>(LoadFile(maskName).GetPointer()); ImageType::Pointer itkMask = ImageType::New(); mitk::CastToItkImage(mask, itkMask); filter->SetInputMask(itkMask); } filter->SetUseJointInformation(joint); filter->SetUseRicianAdaption(rician); filter->SetSearchRadius(search); filter->SetComparisonRadius(compare); filter->SetVariance(variance); filter->Update(); DiffusionImageType::Pointer output = DiffusionImageType::New(); output->SetVectorImage(filter->GetOutput()); output->SetReferenceBValue(dwi->GetReferenceBValue()); output->SetDirections(dwi->GetDirections()); output->InitializeFromVectorImage(); std::stringstream name; name << outFileName << "_NLM_" << search << "-" << compare << "-" << variance << ".dwi"; MITK_INFO << "Writing: " << name.str(); mitk::NrrdDiffusionImageWriter<short>::Pointer writer = mitk::NrrdDiffusionImageWriter<short>::New(); writer->SetInput(output); writer->SetFileName(name.str()); writer->Update(); MITK_INFO << "Finish!"; } else { MITK_INFO << "Only supported for .dwi!"; } } catch (itk::ExceptionObject e) { MITK_INFO << e; return EXIT_FAILURE; } catch (std::exception e) { MITK_INFO << e.what(); return EXIT_FAILURE; } catch (...) { MITK_INFO << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; }
void QmitkDenoisingView::StartDenoising() { if (!m_ThreadIsRunning) { if (m_ImageNode.IsNotNull()) { m_LastProgressCount = 0; switch (m_SelectedFilter) { case NOFILTERSELECTED: { break; } case NLM: { // initialize NLM m_InputImage = dynamic_cast<DiffusionImageType*> (m_ImageNode->GetData()); m_NonLocalMeansFilter = NonLocalMeansDenoisingFilterType::New(); if (m_BrainMaskNode.IsNotNull()) { // use brainmask if set m_ImageMask = dynamic_cast<mitk::Image*>(m_BrainMaskNode->GetData()); itk::Image<DiffusionPixelType, 3>::Pointer itkMask; mitk::CastToItkImage(m_ImageMask, itkMask); m_NonLocalMeansFilter->SetInputMask(itkMask); itk::ImageRegionIterator< itk::Image<DiffusionPixelType, 3> > mit(itkMask, itkMask->GetLargestPossibleRegion()); mit.GoToBegin(); itk::Image<DiffusionPixelType, 3>::IndexType minIndex; itk::Image<DiffusionPixelType, 3>::IndexType maxIndex; minIndex.Fill(10000); maxIndex.Fill(0); while (!mit.IsAtEnd()) { if (mit.Get()) { // calculation of the start & end index of the smallest masked region minIndex[0] = minIndex[0] < mit.GetIndex()[0] ? minIndex[0] : mit.GetIndex()[0]; minIndex[1] = minIndex[1] < mit.GetIndex()[1] ? minIndex[1] : mit.GetIndex()[1]; minIndex[2] = minIndex[2] < mit.GetIndex()[2] ? minIndex[2] : mit.GetIndex()[2]; maxIndex[0] = maxIndex[0] > mit.GetIndex()[0] ? maxIndex[0] : mit.GetIndex()[0]; maxIndex[1] = maxIndex[1] > mit.GetIndex()[1] ? maxIndex[1] : mit.GetIndex()[1]; maxIndex[2] = maxIndex[2] > mit.GetIndex()[2] ? maxIndex[2] : mit.GetIndex()[2]; } ++mit; } itk::Image<DiffusionPixelType, 3>::SizeType size; size[0] = maxIndex[0] - minIndex[0] + 1; size[1] = maxIndex[1] - minIndex[1] + 1; size[2] = maxIndex[2] - minIndex[2] + 1; m_MaxProgressCount = size[0] * size[1] * size[2]; } else { // initialize the progressbar m_MaxProgressCount = m_InputImage->GetDimension(0) * m_InputImage->GetDimension(1) * m_InputImage->GetDimension(2); } mitk::ProgressBar::GetInstance()->AddStepsToDo(m_MaxProgressCount); m_NonLocalMeansFilter->SetInputImage(m_InputImage->GetVectorImage()); m_NonLocalMeansFilter->SetUseRicianAdaption(m_Controls->m_RicianCheckbox->isChecked()); m_NonLocalMeansFilter->SetUseJointInformation(m_Controls->m_JointInformationCheckbox->isChecked()); m_NonLocalMeansFilter->SetSearchRadius(m_Controls->m_SpinBoxParameter1->value()); m_NonLocalMeansFilter->SetComparisonRadius(m_Controls->m_SpinBoxParameter2->value()); m_NonLocalMeansFilter->SetVariance(m_Controls->m_DoubleSpinBoxParameter3->value()); // start denoising in detached thread m_DenoisingThread.start(QThread::HighestPriority); break; } case GAUSS: { // initialize GAUSS and run m_InputImage = dynamic_cast<DiffusionImageType*> (m_ImageNode->GetData()); ExtractFilterType::Pointer extractor = ExtractFilterType::New(); extractor->SetInput(m_InputImage->GetVectorImage()); ComposeFilterType::Pointer composer = ComposeFilterType::New(); for (unsigned int i = 0; i < m_InputImage->GetVectorImage()->GetVectorLength(); ++i) { extractor->SetIndex(i); extractor->Update(); m_GaussianFilter = GaussianFilterType::New(); m_GaussianFilter->SetVariance(m_Controls->m_SpinBoxParameter1->value()); if (m_BrainMaskNode.IsNotNull()) { m_ImageMask = dynamic_cast<mitk::Image*>(m_BrainMaskNode->GetData()); itk::Image<DiffusionPixelType, 3>::Pointer itkMask = itk::Image<DiffusionPixelType, 3>::New(); mitk::CastToItkImage(m_ImageMask, itkMask); itk::MaskImageFilter<itk::Image<DiffusionPixelType, 3> , itk::Image<DiffusionPixelType, 3> >::Pointer maskImageFilter = itk::MaskImageFilter<itk::Image<DiffusionPixelType, 3> , itk::Image<DiffusionPixelType, 3> >::New(); maskImageFilter->SetInput(extractor->GetOutput()); maskImageFilter->SetMaskImage(itkMask); maskImageFilter->Update(); m_GaussianFilter->SetInput(maskImageFilter->GetOutput()); } else { m_GaussianFilter->SetInput(extractor->GetOutput()); } m_GaussianFilter->Update(); composer->SetInput(i, m_GaussianFilter->GetOutput()); } composer->Update(); DiffusionImageType::Pointer image = DiffusionImageType::New(); image->SetVectorImage(composer->GetOutput()); image->SetReferenceBValue(m_InputImage->GetReferenceBValue()); image->SetDirections(m_InputImage->GetDirections()); image->InitializeFromVectorImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( image ); QString name = m_ImageNode->GetName().c_str(); imageNode->SetName((name+"_gauss_"+QString::number(m_Controls->m_SpinBoxParameter1->value())).toStdString().c_str()); GetDefaultDataStorage()->Add(imageNode); break; } } } } else { m_NonLocalMeansFilter->AbortGenerateDataOn(); m_CompletedCalculation = false; } }