コード例 #1
0
    GumbelDistributionFitter::GumbelDistributionFitResult GumbelDistributionFitter::fit(vector<DPosition<2> > & input)
    {

      Eigen::VectorXd x_init (2);
      x_init(0) = init_param_.a;
      x_init(1) = init_param_.b;
      GumbelDistributionFunctor functor (2, &input);
      Eigen::LevenbergMarquardt<GumbelDistributionFunctor> lmSolver (functor);
      Eigen::LevenbergMarquardtSpace::Status status = lmSolver.minimize(x_init);

      //the states are poorly documented. after checking the source, we believe that
      //all states except NotStarted, Running and ImproperInputParameters are good
      //termination states.
      if (status <= Eigen::LevenbergMarquardtSpace::ImproperInputParameters)
      {
        throw Exception::UnableToFit(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "UnableToFit-GumbelDistributionFitter", "Could not fit the gumbel distribution to the data");
      }

#ifdef GUMBEL_DISTRIBUTION_FITTER_VERBOSE
      // build a formula with the fitted parameters for gnuplot
      stringstream formula;
      formula << "f(x)=" << "(1/" << x_init(1) << ") * " << "exp(( " << x_init(0) << "- x)/" << x_init(1) << ") * exp(-exp((" << x_init(0) << " - x)/" << x_init(1) << "))";
      cout << formula.str() << endl;
#endif

      return GumbelDistributionFitResult (x_init(0), x_init(1));
    }
コード例 #2
0
template <typename PointT> void
pcl::SampleConsensusModelCircle2D<PointT>::optimizeModelCoefficients (
      const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients)
{
  optimized_coefficients = model_coefficients;

  // Needs a set of valid model coefficients
  if (model_coefficients.size () != 3)
  {
    PCL_ERROR ("[pcl::SampleConsensusModelCircle2D::optimizeModelCoefficients] Invalid number of model coefficients given (%zu)!\n", model_coefficients.size ());
    return;
  }

  // Need at least 3 samples
  if (inliers.size () <= 3)
  {
    PCL_ERROR ("[pcl::SampleConsensusModelCircle2D::optimizeModelCoefficients] Not enough inliers found to support a model (%zu)! Returning the same coefficients.\n", inliers.size ());
    return;
  }

  tmp_inliers_ = &inliers;

  OptimizationFunctor functor (static_cast<int> (inliers.size ()), this);
  Eigen::NumericalDiff<OptimizationFunctor> num_diff (functor);
  Eigen::LevenbergMarquardt<Eigen::NumericalDiff<OptimizationFunctor>, float> lm (num_diff);
  int info = lm.minimize (optimized_coefficients);

  // Compute the L2 norm of the residuals
  PCL_DEBUG ("[pcl::SampleConsensusModelCircle2D::optimizeModelCoefficients] LM solver finished with exit code %i, having a residual norm of %g. \nInitial solution: %g %g %g \nFinal solution: %g %g %g\n",
             info, lm.fvec.norm (), model_coefficients[0], model_coefficients[1], model_coefficients[2], optimized_coefficients[0], optimized_coefficients[1], optimized_coefficients[2]);
}
コード例 #3
0
ファイル: sac_model_cylinder.hpp プロジェクト: BITVoyager/pcl
template <typename PointT, typename PointNT> void
pcl::SampleConsensusModelCylinder<PointT, PointNT>::optimizeModelCoefficients (
      const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const
{
  optimized_coefficients = model_coefficients;

  // Needs a set of valid model coefficients
  if (model_coefficients.size () != 7)
  {
    PCL_ERROR ("[pcl::SampleConsensusModelCylinder::optimizeModelCoefficients] Invalid number of model coefficients given (%lu)!\n", model_coefficients.size ());
    return;
  }

  if (inliers.empty ())
  {
    PCL_DEBUG ("[pcl::SampleConsensusModelCylinder:optimizeModelCoefficients] Inliers vector empty! Returning the same coefficients.\n"); 
    return;
  }

  OptimizationFunctor functor (this, inliers);
  Eigen::NumericalDiff<OptimizationFunctor > num_diff (functor);
  Eigen::LevenbergMarquardt<Eigen::NumericalDiff<OptimizationFunctor>, float> lm (num_diff);
  int info = lm.minimize (optimized_coefficients);
  
  // Compute the L2 norm of the residuals
  PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::optimizeModelCoefficients] LM solver finished with exit code %i, having a residual norm of %g. \nInitial solution: %g %g %g %g %g %g %g \nFinal solution: %g %g %g %g %g %g %g\n",
             info, lm.fvec.norm (), model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
             model_coefficients[4], model_coefficients[5], model_coefficients[6], optimized_coefficients[0], optimized_coefficients[1], optimized_coefficients[2], optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5], optimized_coefficients[6]);
    
  Eigen::Vector3f line_dir (optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5]);
  line_dir.normalize ();
  optimized_coefficients[3] = line_dir[0];
  optimized_coefficients[4] = line_dir[1];
  optimized_coefficients[5] = line_dir[2];
}
コード例 #4
0
ファイル: GaussFitter.cpp プロジェクト: FabianAicheler/OpenMS
    GaussFitter::GaussFitResult GaussFitter::fit(vector<DPosition<2> > & input) const
    {
      Eigen::VectorXd x_init (3);
      x_init(0) = init_param_.A;
      x_init(1) = init_param_.x0;
      x_init(2) = init_param_.sigma;
      GaussFunctor functor (3, &input);
      Eigen::LevenbergMarquardt<GaussFunctor> lmSolver (functor);
      Eigen::LevenbergMarquardtSpace::Status status = lmSolver.minimize(x_init);

      // the states are poorly documented. after checking the source and
      // http://www.ultimatepp.org/reference%24Eigen_demo%24en-us.html we believe that
      // all states except TooManyFunctionEvaluation and ImproperInputParameters are good
      // termination states.
      if (status == Eigen::LevenbergMarquardtSpace::ImproperInputParameters ||
          status == Eigen::LevenbergMarquardtSpace::TooManyFunctionEvaluation)
      {
          throw Exception::UnableToFit(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "UnableToFit-GaussFitter", "Could not fit the Gaussian to the data: Error " + String(status));
      }
      
      x_init(2) = fabs(x_init(2)); // sigma can be negative, but |sigma| would actually be the correct solution

#ifdef GAUSS_FITTER_VERBOSE
      std::stringstream formula;
      formula << "f(x)=" << result.A << " * exp(-(x - " << result.x0 << ") ** 2 / 2 / (" << result.sigma << ") ** 2)";
      std::cout << formular.str() << std::endl;
#endif
      
      return GaussFitResult (x_init(0), x_init(1), x_init(2));
    }
コード例 #5
0
template <typename PointSource, typename PointTarget> inline void
pcl::registration::TransformationEstimationLM<PointSource, PointTarget>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const std::vector<int> &indices_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    const std::vector<int> &indices_tgt,
    Eigen::Matrix4f &transformation_matrix)
{
  if (indices_src.size () != indices_tgt.size ())
  {
    PCL_ERROR ("[pcl::registration::TransformationEstimationLM::estimateRigidTransformation] Number or points in source (%zu) differs than target (%zu)!\n", indices_src.size (), indices_tgt.size ());
    return;
  }

  if (indices_src.size () < 4)     // need at least 4 samples
  {
    PCL_ERROR ("[pcl::IterativeClosestPointNonLinear::estimateRigidTransformationLM] ");
    PCL_ERROR ("Need at least 4 points to estimate a transform! Source and target have %zu points!",
               indices_src.size ());
    return;
  }

  // If no warp function has been set, use the default (WarpPointRigid6D)
  if (!warp_point_)
    warp_point_.reset (new WarpPointRigid6D<PointSource, PointTarget>);

  int n_unknowns = warp_point_->getDimension ();  // get dimension of unknown space
  Eigen::VectorXd x (n_unknowns);
  x.setConstant (n_unknowns, 0);

  // Set temporary pointers
  tmp_src_ = &cloud_src;
  tmp_tgt_ = &cloud_tgt;
  tmp_idx_src_ = &indices_src;
  tmp_idx_tgt_ = &indices_tgt;

  OptimizationFunctorWithIndices functor (static_cast<int> (indices_src.size ()), this);
  Eigen::NumericalDiff<OptimizationFunctorWithIndices> num_diff (functor);
  Eigen::LevenbergMarquardt<Eigen::NumericalDiff<OptimizationFunctorWithIndices> > lm (num_diff);
  int info = lm.minimize (x);

  // Compute the norm of the residuals
  PCL_DEBUG ("[pcl::registration::TransformationEstimationLM::estimateRigidTransformation]");
  PCL_DEBUG ("LM solver finished with exit code %i, having a residual norm of %g. \n", info, lm.fvec.norm ());
  PCL_DEBUG ("Final solution: [%f", x[0]);
  for (int i = 1; i < n_unknowns; ++i) 
    PCL_DEBUG (" %f", x[i]);
  PCL_DEBUG ("]\n");

  // Return the correct transformation
  Eigen::VectorXf params = x.cast<float> ();
  warp_point_->setParam (params);
  transformation_matrix = warp_point_->getTransform ();

  tmp_src_ = NULL;
  tmp_tgt_ = NULL;
  tmp_idx_src_ = tmp_idx_tgt_ = NULL;
}
コード例 #6
0
template <typename PointSource, typename PointTarget, typename MatScalar> void
pcl::registration::TransformationEstimationLM<PointSource, PointTarget, MatScalar>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    Matrix4 &transformation_matrix) const
{

  // <cloud_src,cloud_src> is the source dataset
  if (cloud_src.points.size () != cloud_tgt.points.size ())
  {
    PCL_ERROR ("[pcl::registration::TransformationEstimationLM::estimateRigidTransformation] ");
    PCL_ERROR ("Number or points in source (%lu) differs than target (%lu)!\n", 
               cloud_src.points.size (), cloud_tgt.points.size ());
    return;
  }
  if (cloud_src.points.size () < 4)     // need at least 4 samples
  {
    PCL_ERROR ("[pcl::registration::TransformationEstimationLM::estimateRigidTransformation] ");
    PCL_ERROR ("Need at least 4 points to estimate a transform! Source and target have %lu points!\n", 
               cloud_src.points.size ());
    return;
  }

  int n_unknowns = warp_point_->getDimension ();
  VectorX x (n_unknowns);
  x.setZero ();
  
  // Set temporary pointers
  tmp_src_ = &cloud_src;
  tmp_tgt_ = &cloud_tgt;

  OptimizationFunctor functor (static_cast<int> (cloud_src.points.size ()), this);
  Eigen::NumericalDiff<OptimizationFunctor> num_diff (functor);
  //Eigen::LevenbergMarquardt<Eigen::NumericalDiff<OptimizationFunctor>, double> lm (num_diff);
  Eigen::LevenbergMarquardt<Eigen::NumericalDiff<OptimizationFunctor>, MatScalar> lm (num_diff);
  int info = lm.minimize (x);

  // Compute the norm of the residuals
  PCL_DEBUG ("[pcl::registration::TransformationEstimationLM::estimateRigidTransformation]");
  PCL_DEBUG ("LM solver finished with exit code %i, having a residual norm of %g. \n", info, lm.fvec.norm ());
  PCL_DEBUG ("Final solution: [%f", x[0]);
  for (int i = 1; i < n_unknowns; ++i) 
    PCL_DEBUG (" %f", x[i]);
  PCL_DEBUG ("]\n");

  // Return the correct transformation
  warp_point_->setParam (x);
  transformation_matrix = warp_point_->getTransform ();

  tmp_src_ = NULL;
  tmp_tgt_ = NULL;
}
コード例 #7
0
  void OptimizePick::optimize(std::vector<PeakShape> & peaks, Data & data)
  {
    if (peaks.empty())
      return;

    size_t global_peak_number = 0;
    data.peaks.assign(peaks.begin(), peaks.end());

    size_t num_dimensions = 4 * data.peaks.size();
    Eigen::VectorXd x_init (num_dimensions);
    x_init.setZero();
    // We have to initialize the parameters for the optimization
    for (size_t i = 0; i < data.peaks.size(); i++)
    {
      PeakShape current_peak = data.peaks[i];
      double h  = current_peak.height;
      double wl = current_peak.left_width;
      double wr = current_peak.right_width;
      double p  = current_peak.mz_position;
      if (boost::math::isnan(wl))
      {
        data.peaks[i].left_width = 1;
        wl = 1.;
      }
      if (boost::math::isnan(wr))
      {
        data.peaks[i].right_width = 1;
        wr = 1.;
      }
      x_init(4 * i) = h;
      x_init(4 * i + 1) = wl;
      x_init(4 * i + 2) = wr;
      x_init(4 * i + 3) = p;
    }

    data.penalties = penalties_;

    unsigned num_data_points = std::max(data.positions.size() + 1, num_dimensions);
    OptPeakFunctor functor (num_dimensions, num_data_points, &data);
    Eigen::LevenbergMarquardt<OptPeakFunctor> lmSolver (functor);
    lmSolver.parameters.maxfev = max_iteration_;
    Eigen::LevenbergMarquardtSpace::Status status = lmSolver.minimize(x_init);
    //the states are poorly documented. after checking the source, we believe that
    //all states except NotStarted, Running and ImproperInputParameters are good
    //termination states.
    if (status <= Eigen::LevenbergMarquardtSpace::ImproperInputParameters)
    {
        throw Exception::UnableToFit(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "UnableToFit-OptimizePeak:", "Could not fit the data: Error " + String(status));
    }

    // iterate over all peaks and store the optimized values in peaks
    for (size_t current_peak = 0; current_peak < data.peaks.size(); current_peak++)
    {
      // Store the current parameters for this peak
      peaks[global_peak_number + current_peak].height =  x_init(4 * current_peak);
      peaks[global_peak_number + current_peak].mz_position = x_init(4 * current_peak + 3);
      peaks[global_peak_number + current_peak].left_width = x_init(4 * current_peak + 1);
      peaks[global_peak_number + current_peak].right_width = x_init(4 * current_peak + 2);

      // compute the area
      // is it a Lorentz or a Sech - Peak?
      if (peaks[global_peak_number + current_peak].type == PeakShape::LORENTZ_PEAK)
      {
        PeakShape p = peaks[global_peak_number + current_peak];
        double x_left_endpoint = p.mz_position - 1 / p.left_width * sqrt(p.height / 1 - 1);
        double x_right_endpoint = p.mz_position + 1 / p.right_width * sqrt(p.height / 1 - 1);
        double area_left = -p.height / p.left_width * atan(p.left_width * (x_left_endpoint - p.mz_position));
        double area_right = -p.height / p.right_width * atan(p.right_width * (p.mz_position - x_right_endpoint));
        peaks[global_peak_number + current_peak].area = area_left + area_right;
#ifdef DEBUG_PEAK_PICKING
        std::cout << "Lorentz " << area_left << " " << area_right
                  << " " << peaks[global_peak_number + current_peak].area << std::endl;
#endif
      }
      else  //It's a Sech - Peak
      {
        PeakShape p = peaks[global_peak_number + current_peak];
        double x_left_endpoint = p.mz_position - 1 / p.left_width * boost::math::acosh(sqrt(p.height / 0.001));
        double x_right_endpoint = p.mz_position + 1 / p.right_width * boost::math::acosh(sqrt(p.height / 0.001));
        double area_left = p.height / p.left_width * (sinh(p.left_width * (p.mz_position - x_left_endpoint)) / cosh(p.left_width * (p.mz_position - x_left_endpoint)));
        double area_right = -p.height / p.right_width * (sinh(p.right_width * (p.mz_position - x_right_endpoint)) / cosh(p.right_width * (p.mz_position - x_right_endpoint)));
        peaks[global_peak_number + current_peak].area = area_left + area_right;
#ifdef DEBUG_PEAK_PICKING
        std::cout << "Sech " << area_left << " " << area_right
                  << " " << peaks[global_peak_number + current_peak].area << std::endl;
        std::cout << p.mz_position << " " << x_left_endpoint << " " << x_right_endpoint << std::endl;
#endif
      }
    }
    //global_peak_number += data.peaks.size();

  }
template <typename PointSource, typename PointTarget> inline void
TransformationEstimationJointOptimize<PointSource, PointTarget>::estimateRigidTransformation (
		const pcl::PointCloud<PointSource> &cloud_src,
		const std::vector<int> &indices_src,
		const std::vector<int> &indices_src_dfp,
		const pcl::PointCloud<PointTarget> &cloud_tgt,
		const std::vector<int> &indices_tgt,
		const std::vector<int> &indices_tgt_dfp,
		float alpha_arg,
		Eigen::Matrix4f &transformation_matrix)
{
	if (indices_src.size () != indices_tgt.size ())
	{
		PCL_ERROR ("[pcl::registration::TransformationEstimationJointOptimize::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", (unsigned long)indices_src.size (), (unsigned long)indices_tgt.size ());
		return;
	}

	if (indices_src_dfp.size () != indices_tgt_dfp.size ())
	{
		PCL_ERROR ("[pcl::registration::TransformationEstimationJointOptimize::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", (unsigned long)indices_src_dfp.size (), (unsigned long)indices_tgt_dfp.size ());
		return;
	}

	if ( (indices_src.size () + indices_tgt_dfp.size () )< 4)     // need at least 4 samples
	{
		PCL_ERROR ("[pcl::registration::TransformationEstimationJointOptimize] ");
		PCL_ERROR ("Need at least 4 points to estimate a transform! Source and target have %lu points!",
				(unsigned long)indices_src.size ());
		return;
	}

	// If no warp function has been set, use the default (WarpPointRigid6D)
	if (!warp_point_)
		warp_point_.reset (new pcl::WarpPointRigid6D<PointSource, PointTarget>);

	int n_unknowns = warp_point_->getDimension ();  // get dimension of unknown space
	int num_p = indices_src.size ();
	int num_dfp = indices_src_dfp.size ();
	Eigen::VectorXd x(n_unknowns);
	x.setConstant (n_unknowns, 0);

	// Set temporary pointers
	tmp_src_ = &cloud_src;
	tmp_tgt_ = &cloud_tgt;
	tmp_idx_src_ = &indices_src;
	tmp_idx_tgt_ = &indices_tgt;
	tmp_idx_src_dfp_ = &indices_src_dfp;
	tmp_idx_tgt_dfp_ = &indices_tgt_dfp;


	// TODO: CHANGE NUMBER OF VALUES TO NUM_P + NUM_DFP
	OptimizationFunctor functor (n_unknowns, 1, num_p, num_dfp, this); // Initialize functor
	Eigen::NumericalDiff<OptimizationFunctor> num_diff (functor); // Add derivative functionality
	Eigen::LevenbergMarquardt<Eigen::NumericalDiff<OptimizationFunctor> > lm (num_diff);
	int info = lm.minimize (x); // Minimize cost

	// Compute the norm of the residuals
//	PCL_DEBUG ("[pcl::registration::TransformationEstimationLM::estimateRigidTransformation]");
//	PCL_DEBUG ("LM solver finished with exit code %i, having a residual norm of %g. \n", info, lm.fvec.norm ());
//	PCL_DEBUG ("Final solution: [%f", x[0]);
	std::cout << "[pcl::registration::TransformationEstimationJointOptimize::estimateRigidTransformation]" << std::endl;
	std::cout << "LM solver finished with exit code " << info <<", having a residual norm of " << lm.fvec.norm () << std::endl;
	std::cout << "Final solution: " << x[0] << std::endl;
	for (int i = 1; i < n_unknowns; ++i)
		PCL_DEBUG (" %f", x[i]);
	PCL_DEBUG ("]\n");

	// Return the correct transformation
	Eigen::VectorXf params = x.cast<float> ();
	warp_point_->setParam (params);
	transformation_matrix = warp_point_->getTransform ();

	tmp_src_ = NULL;
	tmp_tgt_ = NULL;
	tmp_idx_src_ = tmp_idx_tgt_ = NULL;
}
template <typename PointSource, typename PointTarget> inline void
TransformationEstimationJointOptimize<PointSource, PointTarget>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const std::vector<int> &indices_src,
    const std::vector<int> &handles_indices_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    const std::vector<int> &indices_tgt,
    const std::vector<int> &handles_indices_tgt,
    Eigen::Matrix4f &transformation_matrix )
{
	if (indices_src.size () != indices_tgt.size ())
	{
		PCL_ERROR ("[pcl::registration::TransformationEstimationJointOptimize::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", (unsigned long)indices_src.size (), (unsigned long)indices_tgt.size ());
		return;
	}

	if (!((indices_src_dfp_set_)&&(indices_tgt_dfp_set_)))
	{
		PCL_ERROR ("[pcl::registration::TransformationEstimationJointOptimize::estimateRigidTransformation] Correspondences of distinctive feature points in source and target clouds are not set");
		return;
	}

	if (indices_src_dfp_.size () != indices_tgt_dfp_.size ())
	{
		PCL_ERROR ("[pcl::registration::TransformationEstimationJointOptimize::estimateRigidTransformation] Number or distinctive feature points in source (%lu) differs than target (%lu)!\n", (unsigned long)indices_src_dfp_.size (), (unsigned long)indices_tgt_dfp_.size ());
		return;
	}

	if (weights_dfp_set_ && ((weights_dfp_.size () != indices_src_dfp_.size ())))
	{
		PCL_ERROR ("[pcl::registration::TransformationEstimationJointOptimize::estimateRigidTransformation] Number or distinctive feature point pairs weights of  (%lu) differs than number of distinctive feature points (%lu)!\n", (unsigned long)weights_dfp_.size (), (unsigned long)indices_tgt_dfp_.size ());
		return;
	}

	if ( (indices_src.size () + indices_src_dfp_.size()) < 4)     // need at least 4 samples
	{
		PCL_ERROR ("[pcl::registration::TransformationEstimationJointOptimize] ");
		PCL_ERROR ("Need at least 4 points to estimate a transform! Source and target have %lu points!",
				(unsigned long)indices_src.size ());
		return;
	}

	// If no warp function has been set, use the default (WarpPointRigid6D)
	if (!warp_point_)
		warp_point_.reset (new pcl::WarpPointRigid6D<PointSource, PointTarget>);

	int n_unknowns = warp_point_->getDimension ();  // get dimension of unknown space
	int num_p = indices_src.size ();
	int num_dfp = indices_src_dfp_.size ();
	int num_handle_p = handles_indices_src.size ();
	Eigen::VectorXd x(n_unknowns);
	x.setConstant (n_unknowns, 0);

	// Set temporary pointers to clouds
	tmp_src_ = &cloud_src;
	tmp_tgt_ = &cloud_tgt;
	// ... common points
	tmp_idx_src_ = &indices_src;
	tmp_idx_tgt_ = &indices_tgt;
	// ... DF points
	tmp_idx_src_dfp_ = &indices_src_dfp_;
	tmp_idx_tgt_dfp_ = &indices_tgt_dfp_;
	// ... handles
	tmp_idx_src_handles_ = &handles_indices_src;
	tmp_idx_tgt_handles_ = &handles_indices_tgt;

	//std::cerr << "indices_src_dfp_ size " << indices_src_dfp_.size() << " \n ";
	//std::cerr << "indices_tgt_dfp_ size " << indices_tgt_dfp_.size() << " \n ";

	int info;
	double lm_norm;
	int iter;
	if (weights_dfp_set_) {
		// DF Weights are set
		tmp_dfp_weights_ = &weights_dfp_;
		OptimizationFunctorWithWeights functor (n_unknowns, num_handle_p+num_p+num_dfp, num_p, num_dfp, num_handle_p, this); // Initialize functor
		Eigen::NumericalDiff<OptimizationFunctorWithWeights> num_diff (functor); // Add derivative functionality
		Eigen::LevenbergMarquardt<Eigen::NumericalDiff<OptimizationFunctorWithWeights> > lm (num_diff);
		/* From Eigen::  enum  	Status {
		  NotStarted = -2, Running = -1, ImproperInputParameters = 0, RelativeReductionTooSmall = 1,
		  RelativeErrorTooSmall = 2, RelativeErrorAndReductionTooSmall = 3, CosinusTooSmall = 4, TooManyFunctionEvaluation = 5,
		  FtolTooSmall = 6, XtolTooSmall = 7, GtolTooSmall = 8, UserAsked = 9
		} */
		info = lm.minimize (x); // Minimize cost
		lm_norm = lm.fvec.norm ();
		iter = lm.iter;
	} else {
		// DF Weights are not set
		OptimizationFunctor functor (n_unknowns, num_p+num_dfp+num_handle_p, num_p, num_dfp, num_handle_p, this); // Initialize functor
		Eigen::NumericalDiff<OptimizationFunctor> num_diff (functor); // Add derivative functionality

		Eigen::LevenbergMarquardt<Eigen::NumericalDiff<OptimizationFunctor> > lm (num_diff);
		info = lm.minimize (x); // Minimize cost
		lm_norm = lm.fvec.norm ();
		iter = lm.iter;
	}

	// Compute the norm of the residuals
//	PCL_DEBUG ("[pcl::registration::TransformationEstimationLM::estimateRigidTransformation]");
//	PCL_DEBUG ("LM solver finished with exit code %i, having a residual norm of %g. \n", info, lm_norm ());
//	PCL_DEBUG ("Final solution: [%f", x[0]);
//	for (int i = 1; i < n_unknowns; ++i)
//		PCL_DEBUG (" %f", x[i]);
//	PCL_DEBUG ("]\n");
/*
	std::cout << "[pcl::registration::TransformationEstimationJointOptimize::estimateRigidTransformation]" << std::endl;
	std::cout << "LM solver finished with exit code " << info <<", having a residual norm of " << lm_norm
			<< ", in iteration "<< iter << std::endl;
*/
	// Return the correct transformation
	Eigen::VectorXf params = x.cast<float> ();
	warp_point_->setParam (params);
	transformation_matrix = warp_point_->getTransform ();
	//std::cout << "	Obtained transform = " << std::endl << transformation_matrix << std::endl;

	tmp_src_ = NULL;
	tmp_tgt_ = NULL;
	tmp_idx_src_ = tmp_idx_tgt_ = NULL;
	tmp_idx_src_dfp_ = tmp_idx_tgt_dfp_ = NULL;
	tmp_idx_src_handles_ = tmp_idx_tgt_handles_ = NULL;
	tmp_weights_ = NULL;
};