コード例 #1
0
void StateEstimatorKinematic::computeKss(const Eigen::Matrix<double,6,6> &A, const Eigen::Matrix<double,6,6> &C, int zDim )
{

    Eigen::Matrix<double,6,6> B = C.transpose();
    // Eigen::Matrix<double,6,6> P;
    dare(A.transpose(), B, _P, zDim); // A^T is used here
    _K.setZero();
    Eigen::Matrix<double,6,6> PB;
    Eigen::Matrix<double,6,6> BtPB_R;
    if (zDim == 6) {
        PB = _P * B;
        BtPB_R = B.transpose() * PB + _R;
        _K = PB* BtPB_R.inverse()
             ;
    }
    else
    {
        PB.topLeftCorner(6,zDim) = _P * B.topLeftCorner(6,zDim);
        BtPB_R.topLeftCorner(zDim,zDim) = B.topLeftCorner(6,zDim).transpose() * PB.topLeftCorner(6,zDim) + _R.topLeftCorner(zDim,zDim);
        _K.topLeftCorner(6,zDim) = PB.topLeftCorner(6,zDim)* BtPB_R.topLeftCorner(zDim,zDim).inverse();
    }
}
コード例 #2
0
void StateEstimatorKinematic::dare(const Eigen::Matrix<double,6,6> &A, const Eigen::Matrix<double,6,6> &B, Eigen::Matrix<double,6,6> &P,int zDim)
{
    Eigen::Matrix<double,6,6> Ainv = A.inverse();
    Eigen::Matrix<double,6,6> ABRB;
    if (zDim == 6)
    {
        ABRB = Ainv * B * _R.llt().solve(B.transpose());
    }
    else {
        ABRB = Ainv * B.topLeftCorner(6,zDim) * _R.topLeftCorner(zDim,zDim).llt().solve(B.topLeftCorner(6,zDim).transpose());
    }
    Eigen::Matrix<double,2*6,2*6> Z;
    Z.block(0,0,6,6) = Ainv;
    Z.block(0,6,6,6) = ABRB;
    Z.block(6,0,6,6) = _Q * Ainv;
    Z.block(6,6,6,6) = A.transpose() + _Q * ABRB;

    Eigen::ComplexEigenSolver <Eigen::Matrix<double,2*6,2*6> > ces;
    ces.compute(Z);

    Eigen::Matrix<std::complex<double>,2*6,1> eigVal = ces.eigenvalues();
    Eigen::Matrix<std::complex<double>,2*6,2*6> eigVec = ces.eigenvectors();

    Eigen::Matrix<std::complex<double>,2*6,6> unstableEigVec;

    int ctr = 0;
    for (int i = 0; i < 2*6; i++) {
        if (eigVal(i).real()*eigVal(i).real() + eigVal(i).imag()*eigVal(i).imag() > 1) {
            unstableEigVec.col(ctr) = eigVec.col(i);
            ctr++;
            if (ctr > 6)
                break;
        }
    }

    Eigen::Matrix<std::complex<double>,6,6> U21inv = unstableEigVec.block(0,0,6,6).inverse();
    Eigen::Matrix<std::complex<double>,6,6> PP = unstableEigVec.block(6,0,6,6) * U21inv;

    for (int i = 0; i < 6; i++) {
        for (int j = 0; j < 6; j++) {
            P(i,j) = PP(i,j).real();
        }
    }
}
コード例 #3
0
/* static */ bool ocraWbiConversions::wbiToOcraCoMJacobian(const Eigen::MatrixXd &jac, Eigen::Matrix<double,3,Eigen::Dynamic> &J)
    {

        if(DIM_T != jac.rows() || jac.cols() != J.cols())
        {
            std::cout<<"ERROR: Input and output matrices dimensions should be the same" <<std::endl;
            return false;
        }
        Eigen::MatrixXd jac3;
        Eigen::Matrix3d jac1,jac2;
        jac3.resize(3,jac.cols()-6);

        jac1 = jac.topLeftCorner(3,3);
        jac2 = jac.block<3,3>(0,3);
        jac3 = jac.topRightCorner(3,jac.cols()-6);
        J.topLeftCorner(3,3) = jac2;
        J.block<3,3>(0,3) = jac1;
        J.topRightCorner(3,jac.cols()-6) = jac3;


        return true;
    }
コード例 #4
0
ファイル: mrtransform.cpp プロジェクト: emanuele/mrtrix3
void run ()
{
  auto input_header = Header::open (argument[0]);
  Header output_header (input_header);
  output_header.datatype() = DataType::from_command_line (DataType::from<float> ());

  // Linear
  transform_type linear_transform;
  bool linear = false;
  auto opt = get_options ("linear");
  if (opt.size()) {
    linear = true;
    linear_transform = load_transform (opt[0][0]);
  } else {
    linear_transform.setIdentity();
  }

  // Replace
  const bool replace = get_options ("replace").size();
  if (replace && !linear) {
    INFO ("no linear is supplied so replace with the default (identity) transform");
    linear = true;
  }

  // Template
  opt = get_options ("template");
  Header template_header;
  if (opt.size()) {
    if (replace)
      throw Exception ("you cannot use the -replace option with the -template option");
    template_header = Header::open (opt[0][0]);
    for (size_t i = 0; i < 3; ++i) {
      output_header.size(i) = template_header.size(i);
      output_header.spacing(i) = template_header.spacing(i);
    }
    output_header.transform() = template_header.transform();
    add_line (output_header.keyval()["comments"], std::string ("regridded to template image \"" + template_header.name() + "\""));
  }

  // Warp 5D warp
  // TODO add reference to warp format documentation
  opt = get_options ("warp_full");
  Image<default_type> warp;
  if (opt.size()) {
    warp = Image<default_type>::open (opt[0][0]).with_direct_io();
    if (warp.ndim() != 5)
      throw Exception ("the input -warp_full image must be a 5D file.");
    if (warp.size(3) != 3)
      throw Exception ("the input -warp_full image must have 3 volumes (x,y,z) in the 4th dimension.");
    if (warp.size(4) != 4)
      throw Exception ("the input -warp_full image must have 4 volumes in the 5th dimension.");
    if (linear)
      throw Exception ("the -warp_full option cannot be applied in combination with -linear since the "
                       "linear transform is already included in the warp header");
  }

  // Warp from image1 or image2
  int from = 1;
  opt = get_options ("from");
  if (opt.size()) {
    from = opt[0][0];
    if (!warp.valid())
      WARN ("-from option ignored since no 5D warp was input");
  }

  // Warp deformation field
  opt = get_options ("warp");
  if (opt.size()) {
    if (warp.valid())
      throw Exception ("only one warp field can be input with either -warp or -warp_mid");
    warp = Image<default_type>::open (opt[0][0]).with_direct_io (Stride::contiguous_along_axis(3));
    if (warp.ndim() != 4)
      throw Exception ("the input -warp file must be a 4D deformation field");
    if (warp.size(3) != 3)
      throw Exception ("the input -warp file must have 3 volumes in the 4th dimension (x,y,z positions)");
  }

  // Inverse
  const bool inverse = get_options ("inverse").size();
  if (inverse) {
    if (!(linear || warp.valid()))
      throw Exception ("no linear or warp transformation provided for option '-inverse'");
    if (warp.valid())
      if (warp.ndim() == 4)
        throw Exception ("cannot apply -inverse with the input -warp_df deformation field.");
    linear_transform = linear_transform.inverse();
  }

  // Half
  const bool half = get_options ("half").size();
  if (half) {
    if (!(linear))
      throw Exception ("no linear transformation provided for option '-half'");
    {
      Eigen::Matrix<default_type, 4, 4> temp;
      temp.row(3) << 0, 0, 0, 1.0;
      temp.topLeftCorner(3,4) = linear_transform.matrix().topLeftCorner(3,4);
      linear_transform.matrix() = temp.sqrt().topLeftCorner(3,4);
    }
  }

  // Flip
  opt = get_options ("flip");
  if (opt.size()) {
    std::vector<int> axes = opt[0][0];
    transform_type flip;
    flip.setIdentity();
    for (size_t i = 0; i < axes.size(); ++i) {
      if (axes[i] < 0 || axes[i] > 2)
        throw Exception ("axes supplied to -flip are out of bounds (" + std::string (opt[0][0]) + ")");
      flip(axes[i],3) += flip(axes[i],axes[i]) * input_header.spacing(axes[i]) * (input_header.size(axes[i])-1);
      flip(axes[i], axes[i]) *= -1.0;
    }
    if (!replace)
      flip = input_header.transform() * flip * input_header.transform().inverse();
    linear_transform = linear_transform * flip;
    linear = true;
  }

  Stride::List stride = Stride::get (input_header);

  // Detect FOD image for reorientation
  opt = get_options ("noreorientation");
  bool fod_reorientation = false;
  Eigen::MatrixXd directions_cartesian;
  if (!opt.size() && (linear || warp.valid() || template_header.valid()) && input_header.ndim() == 4 &&
      input_header.size(3) >= 6 &&
      input_header.size(3) == (int) Math::SH::NforL (Math::SH::LforN (input_header.size(3)))) {
    CONSOLE ("SH series detected, performing apodised PSF reorientation");
    fod_reorientation = true;

    Eigen::MatrixXd directions_az_el;
    opt = get_options ("directions");
    if (opt.size())
      directions_az_el = load_matrix (opt[0][0]);
    else
      directions_az_el = DWI::Directions::electrostatic_repulsion_300();
    Math::SH::spherical2cartesian (directions_az_el, directions_cartesian);

    // load with SH coeffients contiguous in RAM
    stride = Stride::contiguous_along_axis (3, input_header);
  }

  // Modulate FODs
  bool modulate = false;
  if (get_options ("modulate").size()) {
    modulate = true;
    if (!fod_reorientation)
      throw Exception ("modulation can only be performed with FOD reorientation");
  }

  // Rotate/Flip gradient directions if present
  if (linear && input_header.ndim() == 4 && !warp && !fod_reorientation) {
    try {
      auto grad = DWI::get_DW_scheme (input_header);
      if (input_header.size(3) == (ssize_t) grad.rows()) {
        INFO ("DW gradients detected and will be reoriented");
        Eigen::MatrixXd rotation = linear_transform.linear();
        Eigen::MatrixXd test = rotation.transpose() * rotation;
        test = test.array() / test.diagonal().mean();
        if (!test.isIdentity (0.001))
        WARN ("the input linear transform contains shear or anisotropic scaling and "
              "therefore should not be used to reorient diffusion gradients");
        if (replace)
          rotation = linear_transform.linear() * input_header.transform().linear().inverse();
        for (ssize_t n = 0; n < grad.rows(); ++n) {
          Eigen::Vector3 grad_vector = grad.block<1,3>(n,0);
          grad.block<1,3>(n,0) = rotation * grad_vector;
        }
        DWI::set_DW_scheme (output_header, grad);
      }
    }
    catch (Exception& e) {
      e.display (2);
    }
  }

  // Interpolator
  int interp = 2;  // cubic
  opt = get_options ("interp");
  if (opt.size()) {
    interp = opt[0][0];
    if (!warp && !template_header)
      WARN ("interpolator choice ignored since the input image will not be regridded");
  }

  // Out of bounds value
  float out_of_bounds_value = 0.0;
  opt = get_options ("nan");
  if (opt.size()) {
    out_of_bounds_value = NAN;
    if (!warp && !template_header)
      WARN ("Out of bounds value ignored since the input image will not be regridded");
  }

  auto input = input_header.get_image<float>().with_direct_io (stride);

  // Reslice the image onto template
  if (template_header.valid() && !warp) {
    INFO ("image will be regridded");

    if (get_options ("midway_space").size()) {
      INFO("regridding to midway space");
      std::vector<Header> headers;
      headers.push_back(input_header);
      headers.push_back(template_header);
      std::vector<Eigen::Transform<default_type, 3, Eigen::Projective>> void_trafo;
      auto padding = Eigen::Matrix<double, 4, 1>(1.0, 1.0, 1.0, 1.0);
      int subsampling = 1;
      auto midway_header = compute_minimum_average_header (headers, subsampling, padding, void_trafo);
      for (size_t i = 0; i < 3; ++i) {
        output_header.size(i) = midway_header.size(i);
        output_header.spacing(i) = midway_header.spacing(i);
      }
      output_header.transform() = midway_header.transform();
    }

    if (interp == 0)
      output_header.datatype() = DataType::from_command_line (input_header.datatype());
    auto output = Image<float>::create (argument[1], output_header).with_direct_io();

    switch (interp) {
      case 0:
        Filter::reslice<Interp::Nearest> (input, output, linear_transform, Adapter::AutoOverSample, out_of_bounds_value);
        break;
      case 1:
        Filter::reslice<Interp::Linear> (input, output, linear_transform, Adapter::AutoOverSample, out_of_bounds_value);
        break;
      case 2:
        Filter::reslice<Interp::Cubic> (input, output, linear_transform, Adapter::AutoOverSample, out_of_bounds_value);
        break;
      case 3:
        Filter::reslice<Interp::Sinc> (input, output, linear_transform, Adapter::AutoOverSample, out_of_bounds_value);
        break;
      default:
        assert (0);
        break;
    }

    if (fod_reorientation)
      Registration::Transform::reorient ("reorienting", output, output, linear_transform, directions_cartesian.transpose(), modulate);

  } else if (warp.valid()) {

    if (replace)
      throw Exception ("you cannot use the -replace option with the -warp or -warp_df option");

    if (!template_header) {
      for (size_t i = 0; i < 3; ++i) {
        output_header.size(i) = warp.size(i);
        output_header.spacing(i) = warp.spacing(i);
      }
      output_header.transform() = warp.transform();
      add_line (output_header.keyval()["comments"], std::string ("resliced using warp image \"" + warp.name() + "\""));
    }

    auto output = Image<float>::create(argument[1], output_header).with_direct_io();

    if (warp.ndim() == 5) {
      Image<default_type> warp_deform;

      // Warp to the midway space defined by the warp grid
      if (get_options ("midway_space").size()) {
        warp_deform = Registration::Warp::compute_midway_deformation (warp, from);
      // Use the full transform to warp from the image image to the template
      } else {
        warp_deform = Registration::Warp::compute_full_deformation (warp, template_header, from);
      }
      apply_warp (input, output, warp_deform, interp, out_of_bounds_value);
      if (fod_reorientation)
        Registration::Transform::reorient_warp ("reorienting", output, warp_deform, directions_cartesian.transpose(), modulate);

    // Compose and apply input linear and 4D deformation field
    } else if (warp.ndim() == 4 && linear) {
      auto warp_composed = Image<default_type>::scratch (warp);
      Registration::Warp::compose_linear_deformation (linear_transform, warp, warp_composed);
      apply_warp (input, output, warp_composed, interp, out_of_bounds_value);
      if (fod_reorientation)
        Registration::Transform::reorient_warp ("reorienting", output, warp_composed, directions_cartesian.transpose(), modulate);

    // Apply 4D deformation field only
    } else {
      apply_warp (input, output, warp, interp, out_of_bounds_value);
      if (fod_reorientation)
        Registration::Transform::reorient_warp ("reorienting", output, warp, directions_cartesian.transpose(), modulate);
    }

  // No reslicing required, so just modify the header and do a straight copy of the data
  } else {

    if (get_options ("midway").size())
      throw Exception ("midway option given but no template image defined");

    INFO ("image will not be regridded");
    Eigen::MatrixXd rotation = linear_transform.linear();
    Eigen::MatrixXd temp = rotation.transpose() * rotation;
    if (!temp.isIdentity (0.001))
      WARN("the input linear transform is not orthonormal and therefore applying this without the -template"
           "option will mean the output header transform will also be not orthonormal");

    add_line (output_header.keyval()["comments"], std::string ("transform modified"));
    if (replace)
      output_header.transform() = linear_transform;
    else
      output_header.transform() = linear_transform.inverse() * output_header.transform();
    auto output = Image<float>::create (argument[1], output_header).with_direct_io();
    copy_with_progress (input, output);

    if (fod_reorientation) {
      transform_type transform = linear_transform;
      if (replace)
        transform = linear_transform * output_header.transform().inverse();
      Registration::Transform::reorient ("reorienting", output, output, transform, directions_cartesian.transpose());
    }
  }
}
コード例 #5
0
void RGBDOdometry::getIncrementalTransformation(Eigen::Vector3f & trans,
                                                Eigen::Matrix<float, 3, 3, Eigen::RowMajor> & rot,
                                                const bool & rgbOnly,
                                                const float & icpWeight,
                                                const bool & pyramid,
                                                const bool & fastOdom,
                                                const bool & so3)
{
    bool icp = !rgbOnly && icpWeight > 0;
    bool rgb = rgbOnly || icpWeight < 100;

    Eigen::Matrix<float, 3, 3, Eigen::RowMajor> Rprev = rot;
    Eigen::Vector3f tprev = trans;

    Eigen::Matrix<float, 3, 3, Eigen::RowMajor> Rcurr = Rprev;
    Eigen::Vector3f tcurr = tprev;

    if(rgb)
    {
        for(int i = 0; i < NUM_PYRS; i++)
        {
            computeDerivativeImages(nextImage[i], nextdIdx[i], nextdIdy[i]);
        }
    }

    Eigen::Matrix<double, 3, 3, Eigen::RowMajor> resultR = Eigen::Matrix<double, 3, 3, Eigen::RowMajor>::Identity();

    if(so3)
    {
        int pyramidLevel = 2;

        Eigen::Matrix<float, 3, 3, Eigen::RowMajor> R_lr = Eigen::Matrix<float, 3, 3, Eigen::RowMajor>::Identity();

        Eigen::Matrix<double, 3, 3, Eigen::RowMajor> K = Eigen::Matrix<double, 3, 3, Eigen::RowMajor>::Zero();

        K(0, 0) = intr(pyramidLevel).fx;
        K(1, 1) = intr(pyramidLevel).fy;
        K(0, 2) = intr(pyramidLevel).cx;
        K(1, 2) = intr(pyramidLevel).cy;
        K(2, 2) = 1;

        float lastError = std::numeric_limits<float>::max() / 2;
        float lastCount = std::numeric_limits<float>::max() / 2;

        Eigen::Matrix<double, 3, 3, Eigen::RowMajor> lastResultR = Eigen::Matrix<double, 3, 3, Eigen::RowMajor>::Identity();

        for(int i = 0; i < 10; i++)
        {
            Eigen::Matrix<float, 3, 3, Eigen::RowMajor> jtj;
            Eigen::Matrix<float, 3, 1> jtr;

            Eigen::Matrix<double, 3, 3, Eigen::RowMajor> homography = K * resultR * K.inverse();

            mat33 imageBasis;
            memcpy(&imageBasis.data[0], homography.cast<float>().eval().data(), sizeof(mat33));

            Eigen::Matrix<double, 3, 3, Eigen::RowMajor> K_inv = K.inverse();
            mat33 kinv;
            memcpy(&kinv.data[0], K_inv.cast<float>().eval().data(), sizeof(mat33));

            Eigen::Matrix<double, 3, 3, Eigen::RowMajor> K_R_lr = K * resultR;
            mat33 krlr;
            memcpy(&krlr.data[0], K_R_lr.cast<float>().eval().data(), sizeof(mat33));

            float residual[2];

            TICK("so3Step");
            so3Step(lastNextImage[pyramidLevel],
                    nextImage[pyramidLevel],
                    imageBasis,
                    kinv,
                    krlr,
                    sumDataSO3,
                    outDataSO3,
                    jtj.data(),
                    jtr.data(),
                    &residual[0],
                    GPUConfig::getInstance().so3StepThreads,
                    GPUConfig::getInstance().so3StepBlocks);
            TOCK("so3Step");

            lastSO3Error = sqrt(residual[0]) / residual[1];
            lastSO3Count = residual[1];

            //Converged
            if(lastSO3Error < lastError && lastCount == lastSO3Count)
            {
                break;
            }
            else if(lastSO3Error > lastError + 0.001) //Diverging
            {
                lastSO3Error = lastError;
                lastSO3Count = lastCount;
                resultR = lastResultR;
                break;
            }

            lastError = lastSO3Error;
            lastCount = lastSO3Count;
            lastResultR = resultR;

            Eigen::Vector3f delta = jtj.ldlt().solve(jtr);

            Eigen::Matrix<double, 3, 3, Eigen::RowMajor> rotUpdate = OdometryProvider::rodrigues(delta.cast<double>());

            R_lr = rotUpdate.cast<float>() * R_lr;

            for(int x = 0; x < 3; x++)
            {
                for(int y = 0; y < 3; y++)
                {
                    resultR(x, y) = R_lr(x, y);
                }
            }
        }
    }

    iterations[0] = fastOdom ? 3 : 10;
    iterations[1] = pyramid ? 5 : 0;
    iterations[2] = pyramid ? 4 : 0;

    Eigen::Matrix<float, 3, 3, Eigen::RowMajor> Rprev_inv = Rprev.inverse();
    mat33 device_Rprev_inv = Rprev_inv;
    float3 device_tprev = *reinterpret_cast<float3*>(tprev.data());

    Eigen::Matrix<double, 4, 4, Eigen::RowMajor> resultRt = Eigen::Matrix<double, 4, 4, Eigen::RowMajor>::Identity();

    if(so3)
    {
        for(int x = 0; x < 3; x++)
        {
            for(int y = 0; y < 3; y++)
            {
                resultRt(x, y) = resultR(x, y);
            }
        }
    }

    for(int i = NUM_PYRS - 1; i >= 0; i--)
    {
        if(rgb)
        {
            projectToPointCloud(lastDepth[i], pointClouds[i], intr, i);
        }

        Eigen::Matrix<double, 3, 3, Eigen::RowMajor> K = Eigen::Matrix<double, 3, 3, Eigen::RowMajor>::Zero();

        K(0, 0) = intr(i).fx;
        K(1, 1) = intr(i).fy;
        K(0, 2) = intr(i).cx;
        K(1, 2) = intr(i).cy;
        K(2, 2) = 1;

        lastRGBError = std::numeric_limits<float>::max();

        for(int j = 0; j < iterations[i]; j++)
        {
            Eigen::Matrix<double, 4, 4, Eigen::RowMajor> Rt = resultRt.inverse();

            Eigen::Matrix<double, 3, 3, Eigen::RowMajor> R = Rt.topLeftCorner(3, 3);

            Eigen::Matrix<double, 3, 3, Eigen::RowMajor> KRK_inv = K * R * K.inverse();
            mat33 krkInv;
            memcpy(&krkInv.data[0], KRK_inv.cast<float>().eval().data(), sizeof(mat33));

            Eigen::Vector3d Kt = Rt.topRightCorner(3, 1);
            Kt = K * Kt;
            float3 kt = {(float)Kt(0), (float)Kt(1), (float)Kt(2)};

            int sigma = 0;
            int rgbSize = 0;

            if(rgb)
            {
                TICK("computeRgbResidual");
                computeRgbResidual(pow(minimumGradientMagnitudes[i], 2.0) / pow(sobelScale, 2.0),
                                   nextdIdx[i],
                                   nextdIdy[i],
                                   lastDepth[i],
                                   nextDepth[i],
                                   lastImage[i],
                                   nextImage[i],
                                   corresImg[i],
                                   sumResidualRGB,
                                   maxDepthDeltaRGB,
                                   kt,
                                   krkInv,
                                   sigma,
                                   rgbSize,
                                   GPUConfig::getInstance().rgbResThreads,
                                   GPUConfig::getInstance().rgbResBlocks);
                TOCK("computeRgbResidual");
            }

            float sigmaVal = std::sqrt((float)sigma / rgbSize == 0 ? 1 : rgbSize);
            float rgbError = std::sqrt(sigma) / (rgbSize == 0 ? 1 : rgbSize);

            if(rgbOnly && rgbError > lastRGBError)
            {
                break;
            }

            lastRGBError = rgbError;
            lastRGBCount = rgbSize;

            if(rgbOnly)
            {
                sigmaVal = -1; //Signals the internal optimisation to weight evenly
            }

            Eigen::Matrix<float, 6, 6, Eigen::RowMajor> A_icp;
            Eigen::Matrix<float, 6, 1> b_icp;

            mat33 device_Rcurr = Rcurr;
            float3 device_tcurr = *reinterpret_cast<float3*>(tcurr.data());

            DeviceArray2D<float>& vmap_curr = vmaps_curr_[i];
            DeviceArray2D<float>& nmap_curr = nmaps_curr_[i];

            DeviceArray2D<float>& vmap_g_prev = vmaps_g_prev_[i];
            DeviceArray2D<float>& nmap_g_prev = nmaps_g_prev_[i];

            float residual[2];

            if(icp)
            {
                TICK("icpStep");
                icpStep(device_Rcurr,
                        device_tcurr,
                        vmap_curr,
                        nmap_curr,
                        device_Rprev_inv,
                        device_tprev,
                        intr(i),
                        vmap_g_prev,
                        nmap_g_prev,
                        distThres_,
                        angleThres_,
                        sumDataSE3,
                        outDataSE3,
                        A_icp.data(),
                        b_icp.data(),
                        &residual[0],
                        GPUConfig::getInstance().icpStepThreads,
                        GPUConfig::getInstance().icpStepBlocks);
                TOCK("icpStep");
            }

            lastICPError = sqrt(residual[0]) / residual[1];
            lastICPCount = residual[1];

            Eigen::Matrix<float, 6, 6, Eigen::RowMajor> A_rgbd;
            Eigen::Matrix<float, 6, 1> b_rgbd;

            if(rgb)
            {
                TICK("rgbStep");
                rgbStep(corresImg[i],
                        sigmaVal,
                        pointClouds[i],
                        intr(i).fx,
                        intr(i).fy,
                        nextdIdx[i],
                        nextdIdy[i],
                        sobelScale,
                        sumDataSE3,
                        outDataSE3,
                        A_rgbd.data(),
                        b_rgbd.data(),
                        GPUConfig::getInstance().rgbStepThreads,
                        GPUConfig::getInstance().rgbStepBlocks);
                TOCK("rgbStep");
            }

            Eigen::Matrix<double, 6, 1> result;
            Eigen::Matrix<double, 6, 6, Eigen::RowMajor> dA_rgbd = A_rgbd.cast<double>();
            Eigen::Matrix<double, 6, 6, Eigen::RowMajor> dA_icp = A_icp.cast<double>();
            Eigen::Matrix<double, 6, 1> db_rgbd = b_rgbd.cast<double>();
            Eigen::Matrix<double, 6, 1> db_icp = b_icp.cast<double>();

            if(icp && rgb)
            {
                double w = icpWeight;
                lastA = dA_rgbd + w * w * dA_icp;
                lastb = db_rgbd + w * db_icp;
                result = lastA.ldlt().solve(lastb);
            }
            else if(icp)
            {
                lastA = dA_icp;
                lastb = db_icp;
                result = lastA.ldlt().solve(lastb);
            }
            else if(rgb)
            {
                lastA = dA_rgbd;
                lastb = db_rgbd;
                result = lastA.ldlt().solve(lastb);
            }
            else
            {
                assert(false && "Control shouldn't reach here");
            }

            Eigen::Isometry3f rgbOdom;

            OdometryProvider::computeUpdateSE3(resultRt, result, rgbOdom);

            Eigen::Isometry3f currentT;
            currentT.setIdentity();
            currentT.rotate(Rprev);
            currentT.translation() = tprev;

            currentT = currentT * rgbOdom.inverse();

            tcurr = currentT.translation();
            Rcurr = currentT.rotation();
        }
    }

    if(rgb && (tcurr - tprev).norm() > 0.3)
    {
        Rcurr = Rprev;
        tcurr = tprev;
    }

    if(so3)
    {
        for(int i = 0; i < NUM_PYRS; i++)
        {
            std::swap(lastNextImage[i], nextImage[i]);
        }
    }

    trans = tcurr;
    rot = Rcurr;
}