//fix phase of eigensystem and store phase of first entry of each eigenvector void fix_phase(Eigen::MatrixXcd& V, Eigen::MatrixXcd& V_fix, std::vector<double>& phase) { const int V3 = pars -> get_int("V3"); //helper variables: //Number of eigenvectors int n_ev; //negative imaginary std::complex<double> i_neg (0,-1); //tmp factor and phase std::complex<double> fac (1.,1.); double tmp_phase = 0; //get sizes right, resize if necessary n_ev = V.cols(); if (phase.size() != n_ev) phase.resize(n_ev); if (V_fix.cols() != n_ev) V_fix.resize(3*V3,n_ev); //loop over all eigenvectors of system for (int n = 0; n < n_ev; ++n) { tmp_phase = std::arg(V(0,n)); phase.at(n) = tmp_phase; fac = std::exp(i_neg*tmp_phase); //Fix phase of eigenvector with negative polar angle of first entry V_fix.col(n) = fac * V.col(n); } }
//Reads in Eigenvectors from one Timeslice in binary format to V void read_evectors_bin_ts(const char * path, const char* prefix, const int config_i, const int t, const int nb_ev, Eigen::MatrixXcd& V) { int V3 = pars -> get_int("V3"); //bool thorough = pars -> get_int("strict"); const int dim_row = 3 * V3; //TODO: Change path getting to something keyword independent //buffer for read in std::complex<double>* eigen_vec = new std::complex<double>[dim_row]; //setting up file char filename[200]; sprintf(filename, "%s/%s.%04d.%03d", path, prefix, config_i, t); std::cout << "Reading file: " << filename << std::endl; std::ifstream infile(filename, std::ifstream::binary); for (int nev = 0; nev < nb_ev; ++nev) { infile.read( reinterpret_cast<char*> (eigen_vec), 2*dim_row*sizeof(double)); V.col(nev) = Eigen::Map<Eigen::VectorXcd, 0 >(eigen_vec, dim_row); eof_check(t,nev,nb_ev,infile.eof()); } if(check_trace(V, nb_ev) != true){ std::cout << "Timeslice: " << t << ": Eigenvectors damaged, exiting" << std::endl; exit(0); } //clean up delete[] eigen_vec; infile.close(); }
//TODO complex values as matrix entries too //TODO support endomorphisms over Rn too Expression EigenvectorsCommand::operator()(const QList< Analitza::Expression >& args) { Expression ret; QStringList errors; const Eigen::MatrixXcd eigeninfo = executeEigenSolver(args, true, errors); if (!errors.isEmpty()) { ret.addError(errors.first()); return ret; } const int neigenvectors = eigeninfo.rows(); QScopedPointer<Analitza::List> list(new Analitza::List); for (int j = 0; j < neigenvectors; ++j) { const Eigen::VectorXcd col = eigeninfo.col(j); QScopedPointer<Analitza::Vector> eigenvector(new Analitza::Vector(neigenvectors)); for (int i = 0; i < neigenvectors; ++i) { const std::complex<double> eigenvalue = col(i); const double realpart = eigenvalue.real(); const double imagpart = eigenvalue.imag(); if (std::isnan(realpart) || std::isnan(imagpart)) { ret.addError(QCoreApplication::tr("Returned eigenvalue is NaN", "NaN means Not a Number, is an invalid float number")); return ret; } else if (std::isinf(realpart) || std::isinf(imagpart)) { ret.addError(QCoreApplication::tr("Returned eigenvalue is too big")); return ret; } else { bool isonlyreal = true; if (std::isnormal(imagpart)) { isonlyreal = false; } Analitza::Cn * eigenvalueobj = 0; if (isonlyreal) { eigenvalueobj = new Analitza::Cn(realpart); } else { eigenvalueobj = new Analitza::Cn(realpart, imagpart); } eigenvector->appendBranch(eigenvalueobj); } } list->appendBranch(eigenvector.take()); } ret.setTree(list.take()); return ret; }
// TODO: work on interface with eigenvector class // transform matrix of eigenvectors with gauge array Eigen::MatrixXcd GaugeField::trafo_ev(const Eigen::MatrixXcd &eig_sys) { const ssize_t dim_row = eig_sys.rows(); const ssize_t dim_col = eig_sys.cols(); Eigen::MatrixXcd ret(dim_row, dim_col); if (omega.shape()[0] == 0) build_gauge_array(1); // write_gauge_matrices("ev_trafo_log.bin",Omega); for (ssize_t nev = 0; nev < dim_col; ++nev) { for (ssize_t vol = 0; vol < dim_row; ++vol) { int ind_c = vol % 3; Eigen::Vector3cd tmp = omega[0][ind_c].adjoint() * (eig_sys.col(nev)).segment(ind_c, 3); (ret.col(nev)).segment(ind_c, 3) = tmp; } // end loop nev } // end loop vol return ret; }
// ----------------------------------------------------------------------------- // ----------------------------------------------------------------------------- void LapH::OperatorsForMesons::build_rvdaggervr( const LapH::RandomVector& rnd_vec) { // check of vdaggerv is already build if(not is_vdaggerv_set){ std::cout << "\n\n\tCaution: vdaggerv is not set and rvdaggervr cannot be" << " computed\n\n" << std::endl; exit(0); } clock_t t2 = clock(); std::cout << "\tbuild rvdaggervr:"; for(auto& rvdvr_level1 : rvdaggervr) for(auto& rvdvr_level2 : rvdvr_level1) for(auto& rvdvr_level3 : rvdvr_level2) rvdvr_level3 = Eigen::MatrixXcd::Zero(4*dilE, 4*dilE); #pragma omp parallel for schedule(dynamic) for(size_t t = 0; t < Lt; t++){ // rvdaggervr is calculated by multiplying vdaggerv with the same quantum // numbers with random vectors from right and left. for(const auto& op : operator_lookuptable.rvdaggervr_lookuptable){ Eigen::MatrixXcd vdv; if(op.need_vdaggerv_daggering == false) vdv = vdaggerv[op.id_vdaggerv][t]; else vdv = vdaggerv[op.id_vdaggerv][t].adjoint(); size_t rid = 0; int check = -1; Eigen::MatrixXcd M; // Intermediate memory for(const auto& rnd_id : operator_lookuptable.ricQ2_lookup[op.id_ricQ_lookup].rnd_vec_ids){ if(check != rnd_id.first){ // this avoids recomputation M = Eigen::MatrixXcd::Zero(nb_ev, 4*dilE); for(size_t block = 0; block < 4; block++){ for(size_t vec_i = 0; vec_i < nb_ev; vec_i++) { size_t blk = block + (vec_i + nb_ev * t) * 4; M.block(0, vec_i%dilE + dilE*block, nb_ev, 1) += vdv.col(vec_i) * rnd_vec(rnd_id.first, blk); }} } for(size_t block_x = 0; block_x < 4; block_x++){ for(size_t block_y = 0; block_y < 4; block_y++){ for(size_t vec_y = 0; vec_y < nb_ev; ++vec_y) { size_t blk = block_y + (vec_y + nb_ev * t) * 4; rvdaggervr[op.id][t][rid].block( dilE*block_y + vec_y%dilE, dilE*block_x, 1, dilE) += M.block(vec_y, dilE*block_x, 1, dilE) * std::conj(rnd_vec(rnd_id.second, blk)); }}} check = rnd_id.first; rid++; } }}// time and operator loops end here t2 = clock() - t2; std::cout << std::setprecision(1) << "\t\tSUCCESS - " << std::fixed << ((float) t2)/CLOCKS_PER_SEC << " seconds" << std::endl; }
// ----------------------------------------------------------------------------- // ----------------------------------------------------------------------------- void LapH::distillery::create_source(const size_t dil_t, const size_t dil_e, std::complex<double>* source) { if(dil_t >= param.dilution_size_so[0] || dil_e >= param.dilution_size_so[1] ){ std::cout << "dilution is out of bounds in \"create_source\"" << std::endl; exit(0); } const size_t Lt = param.Lt; const size_t Ls = param.Ls; const size_t number_of_eigen_vec = param.nb_ev; const size_t Vs = Ls*Ls*Ls; const size_t dim_row = Vs*3; int numprocs = 0, myid = 0; MPI_Comm_size(MPI_COMM_WORLD, &numprocs); MPI_Comm_rank(MPI_COMM_WORLD, &myid); // setting source to zero for(size_t dil_d = 0; dil_d < param.dilution_size_so[2]; ++dil_d) for(size_t i = 0; i < 12*Vs*Lt/numprocs; ++i) source[dil_d*12*Vs*Lt/numprocs + i] = {0.0, 0.0}; // indices of timeslices with non-zero entries size_t nb_of_nonzero_t = Lt/param.dilution_size_so[0]; // TODO: think about smart pointer here! size_t* t_index = new size_t[nb_of_nonzero_t]; create_dilution_lookup(nb_of_nonzero_t, param.dilution_size_so[0], dil_t, param.dilution_type_so[0], t_index); // indices of eigenvectors to be combined size_t nb_of_ev_combined = number_of_eigen_vec/param.dilution_size_so[1]; size_t* ev_index = new size_t[nb_of_ev_combined]; create_dilution_lookup(nb_of_ev_combined, param.dilution_size_so[1], dil_e, param.dilution_type_so[1], ev_index); // indices of Dirac components to be combined // TODO: This is needed only once - could be part of class size_t nb_of_dirac_combined = 4/param.dilution_size_so[2]; size_t** d_index = new size_t*[param.dilution_size_so[2]]; for(size_t i = 0; i < param.dilution_size_so[2]; ++i) d_index[i] = new size_t[nb_of_dirac_combined]; for(size_t dil_d = 0; dil_d < param.dilution_size_so[2]; ++dil_d) create_dilution_lookup(nb_of_dirac_combined, param.dilution_size_so[2], dil_d, param.dilution_type_so[2], d_index[dil_d]); // creating the source // running over nonzero timeslices for(size_t t = 0; t < nb_of_nonzero_t; ++t){ // intermidiate memory Eigen::MatrixXcd S = Eigen::MatrixXcd::Zero(dim_row, 4); size_t time = t_index[t]; // helper index if((int) (time / (Lt/numprocs)) == myid) { size_t time_id = time % (Lt/numprocs); // helper index // building source on one timeslice for(size_t ev = 0; ev < nb_of_ev_combined; ++ev){ size_t ev_h = ev_index[ev] * 4; // helper index for(size_t d = 0; d < 4; ++d){ S.col(d) += random_vector[time](ev_h+d) * (V[time_id]).col(ev_index[ev]); } } // copy the created source into output array size_t t_h = time_id*Vs; // helper index for(size_t x = 0; x < Vs; ++x){ size_t x_h = (t_h + x)*12; // helper index size_t x_h2 = x*3; // helper index for(size_t d2 = 0; d2 < param.dilution_size_so[2]; ++d2){ for(size_t d3 = 0; d3 < nb_of_dirac_combined; ++d3){ size_t d_h = x_h + d_index[d2][d3]*3; // helper index for(size_t c = 0; c < 3; ++c){ source[d2*12*Vs*Lt/numprocs + d_h + c] = S(x_h2 + c, d_index[d2][d3]); } } } } } } // end of loop over nonzero timeslices MPI_Barrier(MPI_COMM_WORLD); // freeing memory delete[] t_index; delete[] ev_index; for(size_t i = 0; i < param.dilution_size_so[2]; ++i) delete[] d_index[i]; delete[] d_index; t_index = NULL; ev_index = NULL; d_index = NULL; }