コード例 #1
0
ファイル: sac_model_cone.hpp プロジェクト: liangdu/pcl
template <typename PointT, typename PointNT> void
pcl::SampleConsensusModelCone<PointT, PointNT>::getDistancesToModel (
    const Eigen::VectorXf &model_coefficients, std::vector<double> &distances)
{
  // Check if the model is valid given the user constraints
  if (!isModelValid (model_coefficients))
  {
    distances.clear ();
    return;
  }

  distances.resize (indices_->size ());

  Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
  Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);
  float opening_angle = model_coefficients[6];

  float apexdotdir = apex.dot (axis_dir);
  float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
  // Iterate through the 3d points and calculate the distances from them to the cone
  for (size_t i = 0; i  < indices_->size (); ++i)
  {
    Eigen::Vector4f pt (input_->points[(*indices_)[i]].x, input_->points[(*indices_)[i]].y, input_->points[(*indices_)[i]].z, 0);
    Eigen::Vector4f n  (normals_->points[(*indices_)[i]].normal[0], normals_->points[(*indices_)[i]].normal[1], normals_->points[(*indices_)[i]].normal[2], 0);

    // Calculate the point's projection on the cone axis
    float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
    Eigen::Vector4f pt_proj = apex + k * axis_dir;
    Eigen::Vector4f dir = pt - pt_proj;
    dir.normalize ();

    // Calculate the actual radius of the cone at the level of the projected point
    Eigen::Vector4f height = apex - pt_proj;
    float actual_cone_radius = tanf (opening_angle) * height.norm ();
    height.normalize ();

    // Calculate the cones perfect normals
    Eigen::Vector4f cone_normal = sinf (opening_angle) * height + cosf (opening_angle) * dir;

    // Aproximate the distance from the point to the cone as the difference between
    // dist(point,cone_axis) and actual cone radius
    double d_euclid = fabs (pointToAxisDistance (pt, model_coefficients) - actual_cone_radius);

    // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
    double d_normal = fabs (getAngle3D (n, cone_normal));
    d_normal = (std::min) (d_normal, M_PI - d_normal);

    distances[i] = fabs (normal_distance_weight_ * d_normal + (1 - normal_distance_weight_) * d_euclid);
  }
}
コード例 #2
0
template <typename PointT> bool
pcl::SampleConsensusModelParallelPlane<PointT>::isModelValid (const Eigen::VectorXf &model_coefficients)
{
  // Needs a valid model coefficients
  if (model_coefficients.size () != 4)
  {
    PCL_ERROR ("[pcl::SampleConsensusModelParallelPlane::isModelValid] Invalid number of model coefficients given (%lu)!\n", (unsigned long)model_coefficients.size ());
    return (false);
  }

  // Check against template, if given
  if (eps_angle_ > 0.0)
  {
    // Obtain the plane normal
    Eigen::Vector4f coeff = model_coefficients;
    coeff[3] = 0;
    coeff.normalize ();

    Eigen::Vector4f axis (axis_[0], axis_[1], axis_[2], 0);
    if (fabs (axis.dot (coeff)) < cos_angle_)
      return  (false);
  }

  return (true);
}
コード例 #3
0
void Plane::transform(Eigen::Matrix4f t){
	Eigen::Vector4f n = t*Eigen::Vector4f(normal_x,normal_y,normal_z,0);//Only use rotational component
	n.normalize();
	normal_x = n(0);
	normal_y = n(1);
	normal_z = n(2);

	Eigen::Vector4f p = t*Eigen::Vector4f(point_x,point_y,point_z,1);
	point_x = p(0);
	point_y = p(1);
	point_z = p(2);
}
コード例 #4
0
ファイル: sac_model_cylinder.hpp プロジェクト: BITVoyager/pcl
template <typename PointT, typename PointNT> void
pcl::SampleConsensusModelCylinder<PointT, PointNT>::selectWithinDistance (
      const Eigen::VectorXf &model_coefficients, const double threshold, std::vector<int> &inliers)
{
  // Check if the model is valid given the user constraints
  if (!isModelValid (model_coefficients))
  {
    inliers.clear ();
    return;
  }

  int nr_p = 0;
  inliers.resize (indices_->size ());
  error_sqr_dists_.resize (indices_->size ());

  Eigen::Vector4f line_pt  (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
  Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);
  float ptdotdir = line_pt.dot (line_dir);
  float dirdotdir = 1.0f / line_dir.dot (line_dir);
  // Iterate through the 3d points and calculate the distances from them to the sphere
  for (size_t i = 0; i < indices_->size (); ++i)
  {
    // Approximate the distance from the point to the cylinder as the difference between
    // dist(point,cylinder_axis) and cylinder radius
    Eigen::Vector4f pt (input_->points[(*indices_)[i]].x, input_->points[(*indices_)[i]].y, input_->points[(*indices_)[i]].z, 0);
    Eigen::Vector4f n  (normals_->points[(*indices_)[i]].normal[0], normals_->points[(*indices_)[i]].normal[1], normals_->points[(*indices_)[i]].normal[2], 0);
    double d_euclid = fabs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]);

    // Calculate the point's projection on the cylinder axis
    float k = (pt.dot (line_dir) - ptdotdir) * dirdotdir;
    Eigen::Vector4f pt_proj = line_pt + k * line_dir;
    Eigen::Vector4f dir = pt - pt_proj;
    dir.normalize ();

    // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
    double d_normal = fabs (getAngle3D (n, dir));
    d_normal = (std::min) (d_normal, M_PI - d_normal);

    double distance = fabs (normal_distance_weight_ * d_normal + (1 - normal_distance_weight_) * d_euclid); 
    if (distance < threshold)
    {
      // Returns the indices of the points whose distances are smaller than the threshold
      inliers[nr_p] = (*indices_)[i];
      error_sqr_dists_[nr_p] = distance;
      ++nr_p;
    }
  }
  inliers.resize (nr_p);
  error_sqr_dists_.resize (nr_p);
}
コード例 #5
0
ファイル: sac_model_cylinder.hpp プロジェクト: Bastl34/PCL
template <typename PointT, typename PointNT> void
pcl::SampleConsensusModelCylinder<PointT, PointNT>::projectPointToCylinder (
      const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients, Eigen::Vector4f &pt_proj)
{
  Eigen::Vector4f line_pt  (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
  Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);

  float k = (pt.dot (line_dir) - line_pt.dot (line_dir)) * line_dir.dot (line_dir);
  pt_proj = line_pt + k * line_dir;

  Eigen::Vector4f dir = pt - pt_proj;
  dir.normalize ();

  // Calculate the projection of the point onto the cylinder
  pt_proj += dir * model_coefficients[6];
}
コード例 #6
0
ファイル: sac_model_cone.hpp プロジェクト: liangdu/pcl
template <typename PointT, typename PointNT> bool
pcl::SampleConsensusModelCone<PointT, PointNT>::doSamplesVerifyModel (
      const std::set<int> &indices, const Eigen::VectorXf &model_coefficients, const double threshold)
{
  // Needs a valid model coefficients
  if (model_coefficients.size () != 7)
  {
    PCL_ERROR ("[pcl::SampleConsensusModelCone::doSamplesVerifyModel] Invalid number of model coefficients given (%lu)!\n", model_coefficients.size ());
    return (false);
  }

  Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
  Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);
  float openning_angle = model_coefficients[6];

  float apexdotdir = apex.dot (axis_dir);
  float dirdotdir = 1.0f / axis_dir.dot (axis_dir);

  // Iterate through the 3d points and calculate the distances from them to the cone
  for (std::set<int>::const_iterator it = indices.begin (); it != indices.end (); ++it)
  {
    Eigen::Vector4f pt (input_->points[*it].x, input_->points[*it].y, input_->points[*it].z, 0);

    // Calculate the point's projection on the cone axis
    float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
    Eigen::Vector4f pt_proj = apex + k * axis_dir;
    Eigen::Vector4f dir = pt - pt_proj;
    dir.normalize ();

    // Calculate the actual radius of the cone at the level of the projected point
    Eigen::Vector4f height = apex - pt_proj;
    double actual_cone_radius = tan (openning_angle) * height.norm ();

    // Aproximate the distance from the point to the cone as the difference between
    // dist(point,cone_axis) and actual cone radius
    if (fabs (static_cast<double>(pointToAxisDistance (pt, model_coefficients) - actual_cone_radius)) > threshold)
      return (false);
  }

  return (true);
}
コード例 #7
0
ファイル: sac_model_cylinder.hpp プロジェクト: Bastl34/PCL
template <typename PointT, typename PointNT> void
pcl::SampleConsensusModelCylinder<PointT, PointNT>::getDistancesToModel (
      const Eigen::VectorXf &model_coefficients, std::vector<double> &distances)
{
  // Check if the model is valid given the user constraints
  if (!isModelValid (model_coefficients))
  {
    distances.clear ();
    return;
  }

  distances.resize (indices_->size ());

  Eigen::Vector4f line_pt  (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
  Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);
  float ptdotdir = line_pt.dot (line_dir);
  float dirdotdir = 1.0f / line_dir.dot (line_dir);
  // Iterate through the 3d points and calculate the distances from them to the sphere
  for (size_t i = 0; i < indices_->size (); ++i)
  {
    // Aproximate the distance from the point to the cylinder as the difference between
    // dist(point,cylinder_axis) and cylinder radius
    // @note need to revise this.
    Eigen::Vector4f pt (input_->points[(*indices_)[i]].x, input_->points[(*indices_)[i]].y, input_->points[(*indices_)[i]].z, 0);
    Eigen::Vector4f n  (normals_->points[(*indices_)[i]].normal[0], normals_->points[(*indices_)[i]].normal[1], normals_->points[(*indices_)[i]].normal[2], 0);

    double d_euclid = fabs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]);

    // Calculate the point's projection on the cylinder axis
    float k = (pt.dot (line_dir) - ptdotdir) * dirdotdir;
    Eigen::Vector4f pt_proj = line_pt + k * line_dir;
    Eigen::Vector4f dir = pt - pt_proj;
    dir.normalize ();

    // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
    double d_normal = fabs (getAngle3D (n, dir));
    d_normal = (std::min) (d_normal, M_PI - d_normal);

    distances[i] = fabs (normal_distance_weight_ * d_normal + (1 - normal_distance_weight_) * d_euclid);
  }
}
コード例 #8
0
ファイル: normal_coherence.hpp プロジェクト: Bardo91/pcl
template <typename PointInT> double 
pcl::tracking::NormalCoherence<PointInT>::computeCoherence (PointInT &source, PointInT &target)
{
    Eigen::Vector4f n = source.getNormalVector4fMap ();
    Eigen::Vector4f n_dash = target.getNormalVector4fMap ();
    if ( n.norm () <= 1e-5 || n_dash.norm () <= 1e-5 )
    {
        PCL_ERROR("norm might be ZERO!\n");
        std::cout << "source: " << source << std::endl;
        std::cout << "target: " << target << std::endl;
        exit (1);
        return 0.0;
    }
    else
    {
        n.normalize ();
        n_dash.normalize ();
        double theta = pcl::getAngle3D (n, n_dash);
        if (!pcl_isnan (theta))
            return 1.0 / (1.0 + weight_ * theta * theta);
        else
            return 0.0;
    }
}
コード例 #9
0
ファイル: sac_model_plane.hpp プロジェクト: KanzhiWu/pcl
template <typename PointT> void
pcl::SampleConsensusModelPlane<PointT>::projectPoints (
      const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields)
{
  // Needs a valid set of model coefficients
  if (model_coefficients.size () != 4)
  {
    PCL_ERROR ("[pcl::SampleConsensusModelPlane::projectPoints] Invalid number of model coefficients given (%zu)!\n", model_coefficients.size ());
    return;
  }

  projected_points.header = input_->header;
  projected_points.is_dense = input_->is_dense;

  Eigen::Vector4f mc (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);

  // normalize the vector perpendicular to the plane...
  mc.normalize ();
  // ... and store the resulting normal as a local copy of the model coefficients
  Eigen::Vector4f tmp_mc = model_coefficients;
  tmp_mc[0] = mc[0];
  tmp_mc[1] = mc[1];
  tmp_mc[2] = mc[2];

  // Copy all the data fields from the input cloud to the projected one?
  if (copy_data_fields)
  {
    // Allocate enough space and copy the basics
    projected_points.points.resize (input_->points.size ());
    projected_points.width    = input_->width;
    projected_points.height   = input_->height;

    typedef typename pcl::traits::fieldList<PointT>::type FieldList;
    // Iterate over each point
    for (size_t i = 0; i < input_->points.size (); ++i)
      // Iterate over each dimension
      pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> (input_->points[i], projected_points.points[i]));

    // Iterate through the 3d points and calculate the distances from them to the plane
    for (size_t i = 0; i < inliers.size (); ++i)
    {
      // Calculate the distance from the point to the plane
      Eigen::Vector4f p (input_->points[inliers[i]].x,
                         input_->points[inliers[i]].y,
                         input_->points[inliers[i]].z,
                         1);
      // use normalized coefficients to calculate the scalar projection
      float distance_to_plane = tmp_mc.dot (p);

      pcl::Vector4fMap pp = projected_points.points[inliers[i]].getVector4fMap ();
      pp.matrix () = p - mc * distance_to_plane;        // mc[3] = 0, therefore the 3rd coordinate is safe
    }
  }
  else
  {
    // Allocate enough space and copy the basics
    projected_points.points.resize (inliers.size ());
    projected_points.width    = static_cast<uint32_t> (inliers.size ());
    projected_points.height   = 1;

    typedef typename pcl::traits::fieldList<PointT>::type FieldList;
    // Iterate over each point
    for (size_t i = 0; i < inliers.size (); ++i)
      // Iterate over each dimension
      pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> (input_->points[inliers[i]], projected_points.points[i]));

    // Iterate through the 3d points and calculate the distances from them to the plane
    for (size_t i = 0; i < inliers.size (); ++i)
    {
      // Calculate the distance from the point to the plane
      Eigen::Vector4f p (input_->points[inliers[i]].x,
                         input_->points[inliers[i]].y,
                         input_->points[inliers[i]].z,
                         1);
      // use normalized coefficients to calculate the scalar projection
      float distance_to_plane = tmp_mc.dot (p);

      pcl::Vector4fMap pp = projected_points.points[i].getVector4fMap ();
      pp.matrix () = p - mc * distance_to_plane;        // mc[3] = 0, therefore the 3rd coordinate is safe
    }
  }
}
コード例 #10
0
ファイル: sac_model_cone.hpp プロジェクト: liangdu/pcl
template <typename PointT, typename PointNT> void
pcl::SampleConsensusModelCone<PointT, PointNT>::projectPoints (
      const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields)
{
  // Needs a valid set of model coefficients
  if (model_coefficients.size () != 7)
  {
    PCL_ERROR ("[pcl::SampleConsensusModelCone::projectPoints] Invalid number of model coefficients given (%lu)!\n", model_coefficients.size ());
    return;
  }

  projected_points.header = input_->header;
  projected_points.is_dense = input_->is_dense;

  Eigen::Vector4f apex  (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
  Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);
  float opening_angle = model_coefficients[6];

  float apexdotdir = apex.dot (axis_dir);
  float dirdotdir = 1.0f / axis_dir.dot (axis_dir);

  // Copy all the data fields from the input cloud to the projected one?
  if (copy_data_fields)
  {
    // Allocate enough space and copy the basics
    projected_points.points.resize (input_->points.size ());
    projected_points.width    = input_->width;
    projected_points.height   = input_->height;

    typedef typename pcl::traits::fieldList<PointT>::type FieldList;
    // Iterate over each point
    for (size_t i = 0; i < projected_points.points.size (); ++i)
      // Iterate over each dimension
      pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> (input_->points[i], projected_points.points[i]));

    // Iterate through the 3d points and calculate the distances from them to the cone
    for (size_t i = 0; i < inliers.size (); ++i)
    {
      Eigen::Vector4f pt (input_->points[inliers[i]].x, 
                          input_->points[inliers[i]].y, 
                          input_->points[inliers[i]].z, 
                          1);

      float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;

      pcl::Vector4fMap pp = projected_points.points[inliers[i]].getVector4fMap ();
      pp.matrix () = apex + k * axis_dir;

      Eigen::Vector4f dir = pt - pp;
      dir.normalize ();

      // Calculate the actual radius of the cone at the level of the projected point
      Eigen::Vector4f height = apex - pp;
      float actual_cone_radius = tanf (opening_angle) * height.norm ();

      // Calculate the projection of the point onto the cone
      pp += dir * actual_cone_radius;
    }
  }
  else
  {
    // Allocate enough space and copy the basics
    projected_points.points.resize (inliers.size ());
    projected_points.width    = static_cast<uint32_t> (inliers.size ());
    projected_points.height   = 1;

    typedef typename pcl::traits::fieldList<PointT>::type FieldList;
    // Iterate over each point
    for (size_t i = 0; i < inliers.size (); ++i)
      // Iterate over each dimension
      pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> (input_->points[inliers[i]], projected_points.points[i]));

    // Iterate through the 3d points and calculate the distances from them to the cone
    for (size_t i = 0; i < inliers.size (); ++i)
    {
      pcl::Vector4fMap pp = projected_points.points[i].getVector4fMap ();
      pcl::Vector4fMapConst pt = input_->points[inliers[i]].getVector4fMap ();

      float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
      // Calculate the projection of the point on the line
      pp.matrix () = apex + k * axis_dir;

      Eigen::Vector4f dir = pt - pp;
      dir.normalize ();

      // Calculate the actual radius of the cone at the level of the projected point
      Eigen::Vector4f height = apex - pp;
      float actual_cone_radius = tanf (opening_angle) * height.norm ();

      // Calculate the projection of the point onto the cone
      pp += dir * actual_cone_radius;
    }
  }
}
int main(int argc, char **argv)
{

    ros::init(argc, argv, "occlusion_culling_test");
    ros::NodeHandle n;

    ros::Publisher pub1 = n.advertise<sensor_msgs::PointCloud2>("original_point_cloud", 100);
    ros::Publisher pub2 = n.advertise<sensor_msgs::PointCloud2>("occlusion_free_cloud", 100);
    ros::Publisher pub3 = n.advertise<sensor_msgs::PointCloud2>("ray_points", 100);
    ros::Publisher pub4 = n.advertise<visualization_msgs::Marker>("box_line_intersection", 10);
    ros::Publisher pub5 = n.advertise<visualization_msgs::Marker>("sensor_origin", 1);


    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PointCloud<pcl::PointXYZ>::Ptr occlusionFreeCloud(new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr rayCloud(new pcl::PointCloud<pcl::PointXYZRGB>);

    std::string path = ros::package::getPath("component_test");
    pcl::io::loadPCDFile<pcl::PointXYZ> (path+"/src/pcd/sphere_densed.pcd", *cloud);

    Eigen::Vector3d a(-3,0,0);
    Eigen::Affine3d pose;
    pose.translation() = a;
    geometry_msgs::Pose output_vector;
    tf::poseEigenToMsg(pose, output_vector);

    tf::Quaternion orientation = tf::createQuaternionFromRPY(0,0,0);;
    Eigen::Quaterniond q;
    geometry_msgs::Quaternion quet;
    tf::quaternionTFToEigen(orientation, q);
    tf::quaternionTFToMsg(orientation,quet);

    pose.translation() = a;
    visualization_msgs::Marker marker;

    //*****************voxel grid occlusion estimation *****************
    Eigen::Quaternionf quat(q.w(),q.x(),q.y(),q.z());
    cloud->sensor_origin_  = Eigen::Vector4f(a[0],a[1],a[2],0);
    cloud->sensor_orientation_= quat;
    pcl::VoxelGridOcclusionEstimationT voxelFilter;
    voxelFilter.setInputCloud (cloud);
    //voxelFilter.setLeafSize (0.03279f, 0.03279f, 0.03279f);
    voxelFilter.setLeafSize (0.04f, 0.04f, 0.04f);
    //voxelFilter.filter(*cloud); // This filter doesn't really work, it introduces points inside the sphere !
    voxelFilter.initializeVoxelGrid();

    int state,ret;
    Eigen::Vector3i t;
    pcl::PointXYZ pt,p1,p2;
    pcl::PointXYZRGB point;
    std::vector<Eigen::Vector3i, Eigen::aligned_allocator<Eigen::Vector3i> > out_ray;
    std::vector<geometry_msgs::Point> lineSegments;
    geometry_msgs::Point linePoint;
    Eigen::Vector3i  min_b = voxelFilter.getMinBoxCoordinates ();
    Eigen::Vector3i  max_b = voxelFilter.getMaxBoxCoordinates ();
    int count = 0;
    bool foundBug = false;
    // iterate over the entire voxel grid
    for (int kk = min_b.z (); kk <= max_b.z () && !foundBug; ++kk)
    {
        for (int jj = min_b.y (); jj <= max_b.y () && !foundBug; ++jj)
        {
            for (int ii = min_b.x (); ii <= max_b.x () && !foundBug; ++ii)
            {
                Eigen::Vector3i ijk (ii, jj, kk);
                // process all free voxels
                int index = voxelFilter.getCentroidIndexAt (ijk);
                Eigen::Vector4f centroid = voxelFilter.getCentroidCoordinate (ijk);
                point = pcl::PointXYZRGB(0,244,0);
                point.x = centroid[0];
                point.y = centroid[1];
                point.z = centroid[2];
                //if(index!=-1 && point.x>1.2 && point.y<0.2 && point.y>-0.2)
                if(index!=-1 )//&& point.x<-1.2 && point.y<0.2 && point.y>-0.2)
                {
                    out_ray.clear();
                    ret = voxelFilter.occlusionEstimation( state,out_ray, ijk);
                    std::cout<<"State is:"<<state<<"\n";
                    /*
                    if(state == 1)
                    {
                        if(count++>=10)
                        {
                            foundBug = true;
                            break;
                        }
                        cout<<"Number of voxels in ray:"<<out_ray.size()<<"\n";
                        for(uint j=0; j< out_ray.size(); j++)
                        {
                            Eigen::Vector4f centroid = voxelFilter.getCentroidCoordinate (out_ray[j]);
                            pcl::PointXYZRGB p = pcl::PointXYZRGB(255,255,0);
                            p.x = centroid[0];
                            p.y = centroid[1];
                            p.z = centroid[2];
                            rayCloud->points.push_back(p);
                            std::cout<<"Ray X:"<<p.x<<" y:"<< p.y<<" z:"<< p.z<<"\n";
                        }
                    }
                    */
                    if(state != 1)
                    {
                        // estimate direction to target voxel
                        Eigen::Vector4f direction = centroid - cloud->sensor_origin_;
                        direction.normalize ();
                        // estimate entry point into the voxel grid
                        float tmin = voxelFilter.rayBoxIntersection (cloud->sensor_origin_, direction,p1,p2);
                        if(tmin!=-1)
                        {
                            // coordinate of the boundary of the voxel grid
                            Eigen::Vector4f start = cloud->sensor_origin_ + tmin * direction;
                            linePoint.x = cloud->sensor_origin_[0]; linePoint.y = cloud->sensor_origin_[1]; linePoint.z = cloud->sensor_origin_[2];
                            //std::cout<<"Box Min X:"<<linePoint.x<<" y:"<< linePoint.y<<" z:"<< linePoint.z<<"\n";
                            lineSegments.push_back(linePoint);

                            linePoint.x = start[0]; linePoint.y = start[1]; linePoint.z = start[2];
                            //std::cout<<"Box Max X:"<<linePoint.x<<" y:"<< linePoint.y<<" z:"<< linePoint.z<<"\n";
                            lineSegments.push_back(linePoint);

                            linePoint.x = start[0]; linePoint.y = start[1]; linePoint.z = start[2];
                            //std::cout<<"Box Max X:"<<linePoint.x<<" y:"<< linePoint.y<<" z:"<< linePoint.z<<"\n";
                            lineSegments.push_back(linePoint);

                            linePoint.x = centroid[0]; linePoint.y = centroid[1]; linePoint.z = centroid[2];
                            //std::cout<<"Box Max X:"<<linePoint.x<<" y:"<< linePoint.y<<" z:"<< linePoint.z<<"\n";
                            lineSegments.push_back(linePoint);

                            rayCloud->points.push_back(point);
                            pt.x = centroid[0];
                            pt.y = centroid[1];
                            pt.z = centroid[2];
                            occlusionFreeCloud->points.push_back(pt);
                        }
                    }
                }
            }
        }
    }
/*
    for ( int i = 0; i < (int)cloud->points.size(); i ++ )
    {
        pt = cloud->points[i];
        t = voxelFilter.getGridCoordinates( pt.x, pt.y, pt.z);

        // check if voxel is occupied, if empty then ignore
        int index = voxelFilter.getCentroidIndexAt (t);
        if (index = -1)
          continue;

        ret = voxelFilter.occlusionEstimation( state,out_ray, t);
        if ( state == -1 )
        {
            std::cout<<"I am -1 negative !\n";
        }
        // estimate direction to target voxel
        Eigen::Vector4f p = voxelFilter.getCentroidCoordinate (t);
        Eigen::Vector4f direction = p - cloud->sensor_origin_;
        direction.normalize ();

        // estimate entry point into the voxel grid
        float tmin = voxelFilter.rayBoxIntersection (cloud->sensor_origin_, direction,p1,p2);
        if(tmin!=-1 && state != 1)
        {
            // coordinate of the boundary of the voxel grid
            Eigen::Vector4f start = cloud->sensor_origin_ + tmin * direction;

            linePoint.x = cloud->sensor_origin_[0]; linePoint.y = cloud->sensor_origin_[1]; linePoint.z = cloud->sensor_origin_[2];
            //            std::cout<<"Box Min X:"<<linePoint.x<<" y:"<< linePoint.y<<" z:"<< linePoint.z<<"\n";
            lineSegments.push_back(linePoint);

            linePoint.x = start[0]; linePoint.y = start[1]; linePoint.z = start[2];
            //            std::cout<<"Box Max X:"<<linePoint.x<<" y:"<< linePoint.y<<" z:"<< linePoint.z<<"\n";
            lineSegments.push_back(linePoint);

            // i,j,k coordinate of the voxel were the ray enters the voxel grid
            Eigen::Vector3i ijk = voxelFilter.getGridCoordinates(start[0], start[1], start[2]);

            // centroid coordinate of the entry voxel
            Eigen::Vector4f voxel_max = voxelFilter.getCentroidCoordinate (ijk);
            Eigen::Vector3f leaf_size_= voxelFilter.getLeafSize();

            //            std::cout<<"voxel_max X:"<<voxel_max[0]<<" y:"<< voxel_max[1]<<" z:"<< voxel_max[2]<<"\n";

            if (direction[0] >= 0)
            {
                voxel_max[0] += leaf_size_[0] * 0.5f;
            }
            else
            {
                voxel_max[0] -= leaf_size_[0] * 0.5f;
            }
            if (direction[1] >= 0)
            {
                voxel_max[1] += leaf_size_[1] * 0.5f;
            }
            else
            {
                voxel_max[1] -= leaf_size_[1] * 0.5f;
            }
            if (direction[2] >= 0)
            {
                voxel_max[2] += leaf_size_[2] * 0.5f;
            }
            else
            {
                voxel_max[2] -= leaf_size_[2] * 0.5f;
            }
            //            std::cout<<"voxel_max X:"<<voxel_max[0]<<" y:"<< voxel_max[1]<<" z:"<< voxel_max[2]<<"\n";

            float t_max_x = tmin + (voxel_max[0] - start[0]) / direction[0];
            float t_max_y = tmin + (voxel_max[1] - start[1]) / direction[1];
            float t_max_z = tmin + (voxel_max[2] - start[2]) / direction[2];

            //            std::cout<<"t_max_x X:"<<t_max_x<<" y:"<< t_max_y<<" z:"<< t_max_z<<"\n";

            float t_delta_x = leaf_size_[0] / static_cast<float> (fabs (direction[0]));
            float t_delta_y = leaf_size_[1] / static_cast<float> (fabs (direction[1]));
            float t_delta_z = leaf_size_[2] / static_cast<float> (fabs (direction[2]));

            //            std::cout<<"Direction X:"<<direction[0]<<" y:"<< direction[1]<<" z:"<< direction[2]<<"\n";
            //            std::cout<<"LeafSize X:"<<leaf_size_[0]<<" y:"<< leaf_size_[1]<<" z:"<< leaf_size_[2]<<"\n";
            //            std::cout<<"Delta X:"<<t_delta_x<<" y:"<< t_delta_y<<" z:"<< t_delta_z<<"\n";

            linePoint.x = start[0]; linePoint.y = start[1]; linePoint.z = start[2];
            //            std::cout<<"Box Max X:"<<linePoint.x<<" y:"<< linePoint.y<<" z:"<< linePoint.z<<"\n";
            lineSegments.push_back(linePoint);

            linePoint.x = pt.x; linePoint.y = pt.y; linePoint.z = pt.z;
            //            std::cout<<"Box Max X:"<<linePoint.x<<" y:"<< linePoint.y<<" z:"<< linePoint.z<<"\n";
            lineSegments.push_back(linePoint);

//            linePoint.x = p1.x; linePoint.y = p1.y; linePoint.z = p1.z;
//            std::cout<<"Box Min X:"<<linePoint.x<<" y:"<< linePoint.y<<" z:"<< linePoint.z<<"\n";
//            lineSegments.push_back(linePoint);
//            linePoint.x = p2.x; linePoint.y = p2.y; linePoint.z = p2.z;
//            std::cout<<"Box Max X:"<<linePoint.x<<" y:"<< linePoint.y<<" z:"<< linePoint.z<<"\n";
//            lineSegments.push_back(linePoint);

            occlusionFreeCloud->points.push_back(pt);
        }
        if(count++<100 && pt.x>=-1.8 && pt.x<-1.1 && pt.y<0.4 && pt.y>-0.4)
        {
            for(uint j=0; j< out_ray.size(); j++)
            {
                point = pcl::PointXYZRGB(255,0,0);
                Eigen::Vector4f centroid = voxelFilter.getCentroidCoordinate (out_ray[j]);
                point.x = centroid[0];
                point.y = centroid[1];
                point.z = centroid[2];
                rayCloud->points.push_back(point);
            }
        }
    }
*/
    visualization_msgs::Marker linesList = drawLines(lineSegments);

    //*****************Rviz Visualization ************
    ros::Rate loop_rate(10);
    while (ros::ok())
    {
        //***marker publishing***
        uint32_t shape = visualization_msgs::Marker::ARROW;
        marker.type = shape;
        marker.action = visualization_msgs::Marker::ADD;
        //visulaization using the markers
        marker.scale.x = 0.5;
        marker.scale.y = 0.1;
        marker.scale.z = 0.1;
        // Set the color -- be sure to set alpha to something non-zero!
        marker.color.r = 0.0f;
        marker.color.g = 1.0f;
        marker.color.b = 0.0f;
        marker.color.a = 1.0;
        marker.ns = "basic_shapes";
        marker.id = 2;
        ROS_INFO("Publishing Marker");
        // Set the frame ID and timestamp. See the TF tutorials for information on these.
        marker.pose =  output_vector;
        marker.pose.orientation  = quet;//output_vector.orientation;
        marker.header.frame_id = "base_point_cloud";
        marker.header.stamp = ros::Time::now();
        marker.lifetime = ros::Duration(10);
        // Publish the marker
        pub5.publish(marker);

        //***frustum cull and occlusion cull publish***
        sensor_msgs::PointCloud2 cloud1;
        sensor_msgs::PointCloud2 cloud2;
        sensor_msgs::PointCloud2 cloud3;

        pcl::toROSMsg(*cloud, cloud1);
        pcl::toROSMsg(*occlusionFreeCloud, cloud2);
        pcl::toROSMsg(*rayCloud, cloud3);

        cloud1.header.frame_id = "base_point_cloud";
        cloud2.header.frame_id = "base_point_cloud";
        cloud3.header.frame_id = "base_point_cloud";

        cloud1.header.stamp = ros::Time::now();
        cloud2.header.stamp = ros::Time::now();
        cloud3.header.stamp = ros::Time::now();

        pub1.publish(cloud1);
        pub2.publish(cloud2);
        pub3.publish(cloud3);
        pub4.publish(linesList);

        ros::spinOnce();
        loop_rate.sleep();
    }
    return 0;
}
コード例 #12
0
pcl::PointCloud<pcl::PointXYZ> OcclusionCulling::extractVisibleSurface(geometry_msgs::Pose location)
{
    // >>>>>>>>>>>>>>>>>>>>
    // 1. Frustum Culling
    // >>>>>>>>>>>>>>>>>>>>
    pcl::PointCloud <pcl::PointXYZ>::Ptr output (new pcl::PointCloud <pcl::PointXYZ>);
    pcl::PointCloud<pcl::PointXYZ>::Ptr occlusionFreeCloud_local(new pcl::PointCloud<pcl::PointXYZ>);

    Eigen::Matrix4f camera_pose;
    Eigen::Matrix3d Rd;
    Eigen::Matrix3f Rf;

    camera_pose.setZero ();


    // Convert quaterion orientation to XYZ angles (?)
    tf::Quaternion qt;
    qt.setX(location.orientation.x);
    qt.setY(location.orientation.y);
    qt.setZ(location.orientation.z);
    qt.setW(location.orientation.w);
    tf::Matrix3x3 R_tf(qt);
    tf::matrixTFToEigen(R_tf,Rd);
    Rf = Rd.cast<float>();

    camera_pose.block (0, 0, 3, 3) = Rf;

    // Set position
    Eigen::Vector3f T;
    T (0) = location.position.x;
    T (1) = location.position.y;
    T (2) = location.position.z;
    camera_pose.block (0, 3, 3, 1) = T;

    // Set pose
    camera_pose (3, 3) = 1;
    fc.setCameraPose (camera_pose);

    // Perform culling
    ros::Time tic = ros::Time::now();
    fc.filter (*output);
    ros::Time toc = ros::Time::now();

    //std::cout<<"\nFrustum Filter took:"<< toc.toSec() - tic.toSec();
    FrustumCloud->points= output->points;



    // >>>>>>>>>>>>>>>>>>>>
    // 2. Voxel grid occlusion estimation
    // >>>>>>>>>>>>>>>>>>>>
    Eigen::Quaternionf quat(qt.w(),qt.x(),qt.y(),qt.z());
    output->sensor_origin_  = Eigen::Vector4f(T[0],T[1],T[2],0);
    output->sensor_orientation_= quat;
    pcl::VoxelGridOcclusionEstimationT voxelFilter;
    voxelFilter.setInputCloud (output);
    voxelFilter.setLeafSize (voxelRes, voxelRes, voxelRes);
    voxelFilter.initializeVoxelGrid();

    int state,ret;

    pcl::PointXYZ pt,p1,p2;
    pcl::PointXYZRGB point;
    std::vector<Eigen::Vector3i, Eigen::aligned_allocator<Eigen::Vector3i> > out_ray;
    //std::vector<geometry_msgs::Point> lineSegments;
    geometry_msgs::Point linePoint;

    // iterate over the entire frustum points
    for ( int i = 0; i < (int)output->points.size(); i ++ )
    {
        // Get voxel centroid corresponding to selected point
        pcl::PointXYZ ptest = output->points[i];
        Eigen::Vector3i ijk = voxelFilter.getGridCoordinates( ptest.x, ptest.y, ptest.z);
        
        if(voxelFilter.getCentroidIndexAt(ijk) == -1 ) {
			// Voxel is out of bounds
            continue;
        }

        Eigen::Vector4f centroid = voxelFilter.getCentroidCoordinate (ijk);
        point = pcl::PointXYZRGB(0,244,0);
        point.x = centroid[0];
        point.y = centroid[1];
        point.z = centroid[2];

		// >>>>>>>>>>>>>>>>>>>>
		// 2.1 Perform occlusion estimation
		// >>>>>>>>>>>>>>>>>>>>
		
		/*
		 * The way this works is it traces a line to the point and finds
		 * the distance to the first occupied voxel in its path (t_min).
		 * It then determines if the distance between the target point and
		 * the collided voxel are close (within voxelRes).
		 * 
		 * If they are, the point is visible. Otherwise, the point is behind
		 * an occluding point
		 * 
		 * 
		 * This is the expected function of the following command:
		 *   ret = voxelFilter.occlusionEstimation( state,out_ray, ijk);
		 * 
		 * However, it sometimes shows occluded points on the edge of the cloud
		 */
		
		// Direction to target voxel
		Eigen::Vector4f direction = centroid - output->sensor_origin_;
		direction.normalize ();
		
		// Estimate entry point into the voxel grid
		float tmin = voxelFilter.rayBoxIntersection (output->sensor_origin_, direction,p1,p2); //where did this 4-input syntax come from?
		
		if(tmin == -1){
			// ray does not intersect with the bounding box
			continue;
		}
		
		// Calculate coordinate of the boundary of the voxel grid
		Eigen::Vector4f start = output->sensor_origin_ + tmin * direction;
		
		// Determine distance between boundary and target voxel centroid
		Eigen::Vector4f dist_vector = centroid-start;
		float distance = (dist_vector).dot(dist_vector);

		if (distance > voxelRes*1.414){ // voxelRes/sqrt(2)
			// ray does not correspond to this point
			continue;
		}
		
		// Save point
		occlusionFreeCloud_local->points.push_back(ptest);
		occlusionFreeCloud->points.push_back(ptest);
		

		// >>>>>>>>>>>>>>>>>>>>
		// 2.2 Save line segment for visualization
		// >>>>>>>>>>>>>>>>>>>>

		linePoint.x = output->sensor_origin_[0];
		linePoint.y = output->sensor_origin_[1];
		linePoint.z = output->sensor_origin_[2];
		lineSegments.push_back(linePoint);

		linePoint.x = start[0];
		linePoint.y = start[1];
		linePoint.z = start[2];
		lineSegments.push_back(linePoint);

		occupancyGrid->points.push_back(point);
    }
    FreeCloud.points = occlusionFreeCloud_local->points;

    return FreeCloud;
}