void L1DistanceMatrix(direction_t dirA, direction_t dirB, T alpha, const El::Matrix<T> &A, const El::Matrix<T> &B, T beta, El::Matrix<T> &C) { // TODO verify sizes const T *a = A.LockedBuffer(); El::Int ldA = A.LDim(); const T *b = B.LockedBuffer(); El::Int ldB = B.LDim(); T *c = C.Buffer(); El::Int ldC = C.LDim(); El::Int d = A.Height(); /* Not the most efficient way... but mimicking BLAS is too much work! */ if (dirA == base::COLUMNS && dirB == base::COLUMNS) { for (El::Int j = 0; j < B.Width(); j++) for (El::Int i = 0; i < A.Width(); i++) { T v = 0.0; for (El::Int k = 0; k < d; k++) v += std::abs(b[j * ldB + k] - a[i * ldA + k]); c[j * ldC + i] = beta * c[j * ldC + i] + alpha * v; } } // TODO the rest of the cases. }
void SymmetricL1DistanceMatrix(El::UpperOrLower uplo, direction_t dir, T alpha, const El::Matrix<T> &A, T beta, El::Matrix<T> &C) { const T *a = A.LockedBuffer(); El::Int ldA = A.LDim(); T *c = C.Buffer(); El::Int ldC = C.LDim(); El::Int n = A.Width(); El::Int d = A.Height(); /* Not the most efficient way... but mimicking BLAS is too much work! */ if (dir == base::COLUMNS) { for (El::Int j = 0; j < n; j++) for(El::Int i = ((uplo == El::UPPER) ? 0 : j); i < ((uplo == El::UPPER) ? (j + 1) : n); i++) for (El::Int i = 0; i < A.Width(); i++) { T v = 0.0; for (El::Int k = 0; k < d; k++) v += std::abs(a[j * ldA + k] - a[i * ldA + k]); c[j * ldC + i] = beta * c[j * ldC + i] + alpha * v; } } // TODO the rest of the cases. }
inline void Gemv(El::Orientation oA, T alpha, const sparse_matrix_t<T>& A, const El::Matrix<T>& x, T beta, El::Matrix<T>& y) { // TODO verify sizes etc. const int* indptr = A.indptr(); const int* indices = A.indices(); const double *values = A.locked_values(); double *yd = y.Buffer(); const double *xd = x.LockedBuffer(); int n = A.width(); if (oA == El::NORMAL) { El::Scale(beta, y); # if SKYLARK_HAVE_OPENMP # pragma omp parallel for # endif for(int col = 0; col < n; col++) { T xv = alpha * xd[col]; for (int j = indptr[col]; j < indptr[col + 1]; j++) { int row = indices[j]; T val = values[j]; yd[row] += val * xv; } } } else { # if SKYLARK_HAVE_OPENMP # pragma omp parallel for # endif for(int col = 0; col < n; col++) { double yv = beta * yd[col]; for (int j = indptr[col]; j < indptr[col + 1]; j++) { int row = indices[j]; T val = values[j]; yv += alpha * val * xd[row]; } yd[col] = yv; } } }