Expression::List TripleContainer::operands() const { Expression::List result; result.append(m_operand1); result.append(m_operand2); result.append(m_operand3); return result; }
Expression::Ptr ExpressionSequence::compress(const StaticContext::Ptr &context) { const Expression::Ptr me(UnlimitedContainer::compress(context)); if(me != this) return me; Expression::List::const_iterator it(m_operands.constBegin()); const Expression::List::const_iterator end(m_operands.constEnd()); Expression::List result; for(; it != end; ++it) { const ID Id = (*it)->id(); /* Remove empty sequences. This is rather important because we have some steps in the parser that * intentionally, unconditionally and for temporary reasons create expressions like (expr, ()). Of course, * empty sequences also occur as part of optimizations. * * User function call sites that are of type empty-sequence() must be avoided since * they may contain calls to fn:error(), which we would rewrite away otherwise. */ if(Id != IDUserFunctionCallsite && (*it)->staticType()->cardinality().isEmpty()) { /* Rewrite "(1, (), 2)" into "(1, 2)" by not * adding (*it) to result. */ continue; } else if(Id == IDExpressionSequence) { /* Rewrite "(1, (2, 3), 4)" into "(1, 2, 3, 4)" */ Expression::List::const_iterator seqIt((*it)->operands().constBegin()); const Expression::List::const_iterator seqEnd((*it)->operands().constEnd()); for(; seqIt != seqEnd; ++seqIt) result.append(*seqIt); } else result.append(*it); } if(result.isEmpty()) return EmptySequence::create(this, context); else if(result.count() == 1) return result.first(); else { m_operands = result; return me; } }
Expression::List PairContainer::operands() const { Expression::List list; list.append(m_operand1); list.append(m_operand2); return list; }
void Expression::typeCheckOperands(const StaticContext::Ptr &context) { const Expression::List ops(operands()); /* Check if this expression has any operands at all. */ if(ops.isEmpty()) return; /* We're done, early exit. */ const SequenceType::List opTypes(expectedOperandTypes()); Expression::List result; /* If we create a focus, we handle the last one specially, so avoid it in the loop. */ const bool createsFocus = has(CreatesFocusForLast); const SequenceType::List::const_iterator typeEnd(createsFocus ? --opTypes.constEnd() : opTypes.constEnd()); const Expression::List::const_iterator end(createsFocus ? --ops.constEnd() : ops.constEnd()); SequenceType::List::const_iterator reqType(opTypes.constBegin()); SequenceType::Ptr t(*reqType); // TODO we assign twice to t here(also below in loop) when ops.size() > 1 Expression::List::const_iterator it(ops.constBegin()); for(; it != end; ++it) { /* This ensures that the last expectedOperandType stays, and is * used for all other operands. This is used for expressions that * have an infinite amount of operands, such as the concat() function. */ if(reqType != typeEnd) { t = *reqType; ++reqType; } /* Let the child & its children typecheck. */ result.append((*it)->typeCheck(context, t)); } if(createsFocus) { const StaticContext::Ptr newContext(finalizeStaticContext(context)); result.append(ops.last()->typeCheck(newContext, opTypes.last())); } setOperands(result); }
Expression::Ptr DocumentFN::typeCheck(const StaticContext::Ptr &context, const SequenceType::Ptr &reqType) { /* See the class documentation for the rewrite that we're doing here. */ /* Generate type checking code for our operands such that they match. */ typeCheckOperands(context); const QSourceLocation myLocation(context->locationFor(this)); const FunctionFactory::Ptr functions(context->functionSignatures()); Expression::Ptr uriSource; { Expression::List distinctValuesArgs; distinctValuesArgs.append(m_operands.first()); uriSource = functions->createFunctionCall(QXmlName(StandardNamespaces::fn, StandardLocalNames::distinct_values), distinctValuesArgs, context, this); context->addLocation(uriSource.data(), myLocation); } const VariableSlotID rangeSlot = context->allocateRangeSlot(); const Expression::Ptr uriReference(new RangeVariableReference(uriSource, rangeSlot)); context->addLocation(uriReference.data(), myLocation); Expression::List docArgs; if(m_operands.count() == 2) { Expression::List baseUriArgs; baseUriArgs.append(uriReference); baseUriArgs.append(m_operands.at(1)); const Expression::Ptr fnBaseUri(functions->createFunctionCall(QXmlName(StandardNamespaces::fn, StandardLocalNames::resolve_uri), baseUriArgs, context, this)); context->addLocation(fnBaseUri.data(), myLocation); docArgs.append(fnBaseUri); } else docArgs.append(uriReference); const Expression::Ptr fnDoc(functions->createFunctionCall(QXmlName(StandardNamespaces::fn, StandardLocalNames::doc), docArgs, context, this)); context->addLocation(fnDoc.data(), myLocation); Expression::Ptr newMe(new ForClause(rangeSlot, uriSource, fnDoc, -1 /* We have no position variable. */)); Expression::Ptr oldMe(this); rewrite(oldMe, newMe, context); return newMe->typeCheck(context, reqType); }
Expression::List SingleContainer::operands() const { Expression::List list; list.append(m_operand); return list; }
Expression::Ptr TypeChecker::verifyType(const Expression::Ptr &operand, const SequenceType::Ptr &reqSeqType, const StaticContext::Ptr &context, const ReportContext::ErrorCode code, const Options options) { const ItemType::Ptr reqType(reqSeqType->itemType()); const Expression::Properties props(operand->properties()); /* If operand requires a focus, do the necessary type checking for that. */ if(props.testFlag(Expression::RequiresFocus) && options.testFlag(CheckFocus)) { const ItemType::Ptr contextType(context->contextItemType()); if(contextType) { if(props.testFlag(Expression::RequiresContextItem)) { Q_ASSERT_X(operand->expectedContextItemType(), Q_FUNC_INFO, "When the Expression sets the RequiresContextItem property, it must " "return a type in expectedContextItemType()"); const ItemType::Ptr expectedContextType(operand->expectedContextItemType()); /* Allow the empty sequence. We don't want to trigger XPTY0020 on ()/... . */ if(!expectedContextType->xdtTypeMatches(contextType) && contextType != CommonSequenceTypes::Empty) { context->error(wrongType(context->namePool(), operand->expectedContextItemType(), contextType), ReportContext::XPTY0020, operand.data()); return operand; } } } else { context->error(QtXmlPatterns::tr("The focus is undefined."), ReportContext::XPDY0002, operand.data()); return operand; } } SequenceType::Ptr operandSeqType(operand->staticType()); ItemType::Ptr operandType(operandSeqType->itemType()); /* This returns the operand if the types are identical or if operandType * is a subtype of reqType. */ if(reqType->xdtTypeMatches(operandType) || *operandType == *CommonSequenceTypes::Empty) return operand; /* Since we haven't exited yet, it means that the operandType is a super type * of reqType, and that there hence is a path down to it through the * type hierachy -- but that doesn't necessarily mean that a up-cast(down the * hierarchy) would succeed. */ Expression::Ptr result(operand); if(reqType->isAtomicType()) { const Expression::ID opID = operand->id(); if((opID == Expression::IDArgumentReference || (opID == Expression::IDCardinalityVerifier && operand->operands().first()->is(Expression::IDArgumentReference))) && *BuiltinTypes::item == *operandType) return Expression::Ptr(new ArgumentConverter(result, reqType)); if(!operandType->isAtomicType()) { result = Expression::Ptr(new Atomizer(result)); /* The atomizer might know more about the type. */ operandType = result->staticType()->itemType(); } if(reqType->xdtTypeMatches(operandType)) { /* Atomization was sufficient. Either the expected type is xs:anyAtomicType * or the type the Atomizer knows it returns, matches the required type. */ return result; } const bool compatModeEnabled = context->compatModeEnabled(); if((options.testFlag(AutomaticallyConvert) && BuiltinTypes::xsUntypedAtomic->xdtTypeMatches(operandType)) || (compatModeEnabled && BuiltinTypes::xsString->xdtTypeMatches(reqType))) { if(*reqType == *BuiltinTypes::numeric) { result = typeCheck(new UntypedAtomicConverter(result, BuiltinTypes::xsDouble, code), context, reqSeqType); } else result = typeCheck(new UntypedAtomicConverter(result, reqType, code), context, reqSeqType); /* The UntypedAtomicConverter might know more about the type, so reload. */ operandType = result->staticType()->itemType(); } else if(compatModeEnabled && *reqType == *BuiltinTypes::xsDouble) { const FunctionFactory::Ptr functions(context->functionSignatures()); Expression::List numberArgs; numberArgs.append(operand); result = functions->createFunctionCall(QXmlName(StandardNamespaces::fn, StandardLocalNames::number), numberArgs, context, operand.data())->typeCheck(context, reqSeqType); operandType = result->staticType()->itemType(); context->wrapExpressionWith(operand.data(), result); } if(reqType->xdtTypeMatches(operandType)) return result; /* Test if promotion will solve it; the xdtTypeMatches didn't * do that. */ if(options.testFlag(AutomaticallyConvert) && promotionPossible(operandType, reqType, context)) { if(options.testFlag(GeneratePromotion)) return Expression::Ptr(new UntypedAtomicConverter(result, reqType)); else return result; } if(operandType->xdtTypeMatches(reqType)) { /* For example, operandType is numeric, and reqType is xs:integer. */ return Expression::Ptr(new ItemVerifier(result, reqType, code)); } else { context->error(wrongType(context->namePool(), reqType, operandType), code, operand.data()); return result; } } else if(reqType->isNodeType()) { ReportContext::ErrorCode myCode; if(*reqType == *CommonSequenceTypes::EBV->itemType()) myCode = ReportContext::FORG0006; else myCode = code; /* empty-sequence() is considered valid because it's ok to do * for example nilled( () ). That is, to pass an empty sequence to a * function requiring for example node()?. */ if(*operandType == *CommonSequenceTypes::Empty) return result; else if(!operandType->xdtTypeMatches(reqType)) { context->error(wrongType(context->namePool(), reqType, operandType), myCode, operand.data()); return result; } /* Operand must be an item. Thus, the sequence can contain both * nodes and atomic values: we have to verify. */ return Expression::Ptr(new ItemVerifier(result, reqType, myCode)); } else { Q_ASSERT(*reqType == *CommonSequenceTypes::Empty); /* element() doesn't match empty-sequence(), but element()* does. */ if(!reqType->xdtTypeMatches(operandType) && !operandSeqType->cardinality().allowsEmpty()) { context->error(wrongType(context->namePool(), reqType, operandType), code, operand.data()); return result; } } /* This line should be reached if required type is * EBVType, and the operand is compatible. */ return result; }
Expression::Ptr Expression::invokeOptimizers(const Expression::Ptr &expr, const StaticContext::Ptr &context) { Q_ASSERT(expr); const OptimizationPass::List opts(expr->optimizationPasses()); if(opts.isEmpty()) /* Early exit. */ { return expr; } const OptimizationPass::List::const_iterator passEnd(opts.constEnd()); const OptimizationPass::List::const_iterator end(opts.constEnd()); OptimizationPass::List::const_iterator passIt(opts.constBegin()); for(; passIt != passEnd; ++passIt) /* Invoke each optimization pass. */ { const OptimizationPass::Ptr pass(*passIt); /* Alias, for readability. */ OptimizationPass::ExpressionMarker sourceMarker(pass->sourceExpression); if(pass->startIdentifier && !pass->startIdentifier->matches(expr)) { /* This pass specified a start identifier and it did * not match -- let's try the next OptimizationPass. */ continue; } const ExpressionIdentifier::List::const_iterator idEnd(pass->operandIdentifiers.constEnd()); ExpressionIdentifier::List::const_iterator idIt(pass->operandIdentifiers.constBegin()); const Expression::List ops(expr->operands()); const Expression::List::const_iterator opEnd(ops.constEnd()); Expression::List::const_iterator opIt(ops.constBegin()); switch(pass->operandsMatchMethod) { case OptimizationPass::Sequential: { for(; opIt != opEnd; ++opIt) { const Expression::Ptr operand(*opIt); /* Alias, for readability. */ const ExpressionIdentifier::Ptr opIdentifier(*idIt); /* Alias, for readability. */ if(opIdentifier && !opIdentifier->matches(operand)) { break; } ++idIt; } if(opIt == opEnd) break; /* All operands matched, so this pass matched. */ else { /* The loop above did not finish which means all operands did not match. Therefore, this OptimizationPass did not match -- let's try the next one. */ continue; } } case OptimizationPass::AnyOrder: { Q_ASSERT_X(ops.count() == 2, Q_FUNC_INFO, "AnyOrder is currently only supported for Expressions with two operands."); if(pass->operandIdentifiers.first()->matches(ops.first()) && pass->operandIdentifiers.last()->matches(ops.last())) { break; } else if(pass->operandIdentifiers.first()->matches(ops.last()) && pass->operandIdentifiers.last()->matches(ops.first())) { sourceMarker.first() = 1; sourceMarker[1] = 0; break; /* This pass matched. */ } else continue; /* This pass didn't match, let's loop through the next pass. */ } } /* Figure out the source Expression, if any. */ Expression::List operands; Expression::Ptr sourceExpr; if(!sourceMarker.isEmpty()) { const OptimizationPass::ExpressionMarker::const_iterator mEnd(sourceMarker.constEnd()); OptimizationPass::ExpressionMarker::const_iterator mIt(sourceMarker.constBegin()); sourceExpr = expr; for(; mIt != mEnd; ++mIt) { Q_ASSERT(*mIt >= 0); sourceExpr = sourceExpr->operands().at(*mIt); } operands.append(sourceExpr); } if(operands.isEmpty()) { Q_ASSERT(pass->resultCreator); return pass->resultCreator->create(Expression::List(), context, expr.data())->compress(context); } else if(pass->resultCreator) return pass->resultCreator->create(operands, context, expr.data())->compress(context); else { return sourceExpr; } } return expr; }