void QmitkBasicImageProcessing::StartButtonClicked() { if(!m_SelectedImageNode->GetNode()) return; this->BusyCursorOn(); mitk::Image::Pointer newImage; try { newImage = dynamic_cast<mitk::Image*>(m_SelectedImageNode->GetNode()->GetData()); } catch ( std::exception &e ) { QString exceptionString = "An error occured during image loading:\n"; exceptionString.append( e.what() ); QMessageBox::warning( NULL, "Basic Image Processing", exceptionString , QMessageBox::Ok, QMessageBox::NoButton ); this->BusyCursorOff(); return; } // check if input image is valid, casting does not throw exception when casting from 'NULL-Object' if ( (! newImage) || (newImage->IsInitialized() == false) ) { this->BusyCursorOff(); QMessageBox::warning( NULL, "Basic Image Processing", "Input image is broken or not initialized. Returning.", QMessageBox::Ok, QMessageBox::NoButton ); return; } // check if operation is done on 4D a image time step if(newImage->GetDimension() > 3) { mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); timeSelector->SetInput(newImage); timeSelector->SetTimeNr( ((QmitkSliderNavigatorWidget*)m_Controls->sliceNavigatorTime)->GetPos() ); timeSelector->Update(); newImage = timeSelector->GetOutput(); } // check if image or vector image ImageType::Pointer itkImage = ImageType::New(); VectorImageType::Pointer itkVecImage = VectorImageType::New(); int isVectorImage = newImage->GetPixelType().GetNumberOfComponents(); if(isVectorImage > 1) { CastToItkImage( newImage, itkVecImage ); } else { CastToItkImage( newImage, itkImage ); } std::stringstream nameAddition(""); int param1 = m_Controls->sbParam1->value(); int param2 = m_Controls->sbParam2->value(); double dparam1 = m_Controls->dsbParam1->value(); double dparam2 = m_Controls->dsbParam2->value(); double dparam3 = m_Controls->dsbParam3->value(); try{ switch (m_SelectedAction) { case GAUSSIAN: { GaussianFilterType::Pointer gaussianFilter = GaussianFilterType::New(); gaussianFilter->SetInput( itkImage ); gaussianFilter->SetVariance( param1 ); gaussianFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(gaussianFilter->GetOutput())->Clone(); nameAddition << "_Gaussian_var_" << param1; std::cout << "Gaussian filtering successful." << std::endl; break; } case MEDIAN: { MedianFilterType::Pointer medianFilter = MedianFilterType::New(); MedianFilterType::InputSizeType size; size.Fill(param1); medianFilter->SetRadius( size ); medianFilter->SetInput(itkImage); medianFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(medianFilter->GetOutput())->Clone(); nameAddition << "_Median_radius_" << param1; std::cout << "Median Filtering successful." << std::endl; break; } case TOTALVARIATION: { if(isVectorImage > 1) { VectorTotalVariationFilterType::Pointer TVFilter = VectorTotalVariationFilterType::New(); TVFilter->SetInput( itkVecImage.GetPointer() ); TVFilter->SetNumberIterations(param1); TVFilter->SetLambda(double(param2)/1000.); TVFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(TVFilter->GetOutput())->Clone(); } else { ImagePTypeToFloatPTypeCasterType::Pointer floatCaster = ImagePTypeToFloatPTypeCasterType::New(); floatCaster->SetInput( itkImage ); floatCaster->Update(); FloatImageType::Pointer fImage = floatCaster->GetOutput(); TotalVariationFilterType::Pointer TVFilter = TotalVariationFilterType::New(); TVFilter->SetInput( fImage.GetPointer() ); TVFilter->SetNumberIterations(param1); TVFilter->SetLambda(double(param2)/1000.); TVFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(TVFilter->GetOutput())->Clone(); } nameAddition << "_TV_Iter_" << param1 << "_L_" << param2; std::cout << "Total Variation Filtering successful." << std::endl; break; } case DILATION: { BallType binaryBall; binaryBall.SetRadius( param1 ); binaryBall.CreateStructuringElement(); DilationFilterType::Pointer dilationFilter = DilationFilterType::New(); dilationFilter->SetInput( itkImage ); dilationFilter->SetKernel( binaryBall ); dilationFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(dilationFilter->GetOutput())->Clone(); nameAddition << "_Dilated_by_" << param1; std::cout << "Dilation successful." << std::endl; break; } case EROSION: { BallType binaryBall; binaryBall.SetRadius( param1 ); binaryBall.CreateStructuringElement(); ErosionFilterType::Pointer erosionFilter = ErosionFilterType::New(); erosionFilter->SetInput( itkImage ); erosionFilter->SetKernel( binaryBall ); erosionFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(erosionFilter->GetOutput())->Clone(); nameAddition << "_Eroded_by_" << param1; std::cout << "Erosion successful." << std::endl; break; } case OPENING: { BallType binaryBall; binaryBall.SetRadius( param1 ); binaryBall.CreateStructuringElement(); OpeningFilterType::Pointer openFilter = OpeningFilterType::New(); openFilter->SetInput( itkImage ); openFilter->SetKernel( binaryBall ); openFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(openFilter->GetOutput())->Clone(); nameAddition << "_Opened_by_" << param1; std::cout << "Opening successful." << std::endl; break; } case CLOSING: { BallType binaryBall; binaryBall.SetRadius( param1 ); binaryBall.CreateStructuringElement(); ClosingFilterType::Pointer closeFilter = ClosingFilterType::New(); closeFilter->SetInput( itkImage ); closeFilter->SetKernel( binaryBall ); closeFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(closeFilter->GetOutput())->Clone(); nameAddition << "_Closed_by_" << param1; std::cout << "Closing successful." << std::endl; break; } case GRADIENT: { GradientFilterType::Pointer gradientFilter = GradientFilterType::New(); gradientFilter->SetInput( itkImage ); gradientFilter->SetSigma( param1 ); gradientFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(gradientFilter->GetOutput())->Clone(); nameAddition << "_Gradient_sigma_" << param1; std::cout << "Gradient calculation successful." << std::endl; break; } case LAPLACIAN: { // the laplace filter requires a float type image as input, we need to cast the itkImage // to correct type ImagePTypeToFloatPTypeCasterType::Pointer caster = ImagePTypeToFloatPTypeCasterType::New(); caster->SetInput( itkImage ); caster->Update(); FloatImageType::Pointer fImage = caster->GetOutput(); LaplacianFilterType::Pointer laplacianFilter = LaplacianFilterType::New(); laplacianFilter->SetInput( fImage ); laplacianFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(laplacianFilter->GetOutput())->Clone(); nameAddition << "_Second_Derivative"; std::cout << "Laplacian filtering successful." << std::endl; break; } case SOBEL: { // the sobel filter requires a float type image as input, we need to cast the itkImage // to correct type ImagePTypeToFloatPTypeCasterType::Pointer caster = ImagePTypeToFloatPTypeCasterType::New(); caster->SetInput( itkImage ); caster->Update(); FloatImageType::Pointer fImage = caster->GetOutput(); SobelFilterType::Pointer sobelFilter = SobelFilterType::New(); sobelFilter->SetInput( fImage ); sobelFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(sobelFilter->GetOutput())->Clone(); nameAddition << "_Sobel"; std::cout << "Edge Detection successful." << std::endl; break; } case THRESHOLD: { ThresholdFilterType::Pointer thFilter = ThresholdFilterType::New(); thFilter->SetLowerThreshold(param1 < param2 ? param1 : param2); thFilter->SetUpperThreshold(param2 > param1 ? param2 : param1); thFilter->SetInsideValue(1); thFilter->SetOutsideValue(0); thFilter->SetInput(itkImage); thFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(thFilter->GetOutput())->Clone(); nameAddition << "_Threshold"; std::cout << "Thresholding successful." << std::endl; break; } case INVERSION: { InversionFilterType::Pointer invFilter = InversionFilterType::New(); mitk::ScalarType min = newImage->GetScalarValueMin(); mitk::ScalarType max = newImage->GetScalarValueMax(); invFilter->SetMaximum( max + min ); invFilter->SetInput(itkImage); invFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(invFilter->GetOutput())->Clone(); nameAddition << "_Inverted"; std::cout << "Image inversion successful." << std::endl; break; } case DOWNSAMPLING: { ResampleImageFilterType::Pointer downsampler = ResampleImageFilterType::New(); downsampler->SetInput( itkImage ); NearestInterpolatorType::Pointer interpolator = NearestInterpolatorType::New(); downsampler->SetInterpolator( interpolator ); downsampler->SetDefaultPixelValue( 0 ); ResampleImageFilterType::SpacingType spacing = itkImage->GetSpacing(); spacing *= (double) param1; downsampler->SetOutputSpacing( spacing ); downsampler->SetOutputOrigin( itkImage->GetOrigin() ); downsampler->SetOutputDirection( itkImage->GetDirection() ); ResampleImageFilterType::SizeType size = itkImage->GetLargestPossibleRegion().GetSize(); for ( int i = 0; i < 3; ++i ) { size[i] /= param1; } downsampler->SetSize( size ); downsampler->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(downsampler->GetOutput())->Clone(); nameAddition << "_Downsampled_by_" << param1; std::cout << "Downsampling successful." << std::endl; break; } case FLIPPING: { FlipImageFilterType::Pointer flipper = FlipImageFilterType::New(); flipper->SetInput( itkImage ); itk::FixedArray<bool, 3> flipAxes; for(int i=0; i<3; ++i) { if(i == param1) { flipAxes[i] = true; } else { flipAxes[i] = false; } } flipper->SetFlipAxes(flipAxes); flipper->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(flipper->GetOutput())->Clone(); std::cout << "Image flipping successful." << std::endl; break; } case RESAMPLING: { std::string selectedInterpolator; ResampleImageFilterType::Pointer resampler = ResampleImageFilterType::New(); switch (m_SelectedInterpolation) { case LINEAR: { LinearInterpolatorType::Pointer interpolator = LinearInterpolatorType::New(); resampler->SetInterpolator(interpolator); selectedInterpolator = "Linear"; break; } case NEAREST: { NearestInterpolatorType::Pointer interpolator = NearestInterpolatorType::New(); resampler->SetInterpolator(interpolator); selectedInterpolator = "Nearest"; break; } default: { LinearInterpolatorType::Pointer interpolator = LinearInterpolatorType::New(); resampler->SetInterpolator(interpolator); selectedInterpolator = "Linear"; break; } } resampler->SetInput( itkImage ); resampler->SetOutputOrigin( itkImage->GetOrigin() ); ImageType::SizeType input_size = itkImage->GetLargestPossibleRegion().GetSize(); ImageType::SpacingType input_spacing = itkImage->GetSpacing(); ImageType::SizeType output_size; ImageType::SpacingType output_spacing; output_size[0] = input_size[0] * (input_spacing[0] / dparam1); output_size[1] = input_size[1] * (input_spacing[1] / dparam2); output_size[2] = input_size[2] * (input_spacing[2] / dparam3); output_spacing [0] = dparam1; output_spacing [1] = dparam2; output_spacing [2] = dparam3; resampler->SetSize( output_size ); resampler->SetOutputSpacing( output_spacing ); resampler->SetOutputDirection( itkImage->GetDirection() ); resampler->UpdateLargestPossibleRegion(); ImageType::Pointer resampledImage = resampler->GetOutput(); newImage = mitk::ImportItkImage( resampledImage ); nameAddition << "_Resampled_" << selectedInterpolator; std::cout << "Resampling successful." << std::endl; break; } case RESCALE: { FloatImageType::Pointer floatImage = FloatImageType::New(); CastToItkImage( newImage, floatImage ); itk::RescaleIntensityImageFilter<FloatImageType,FloatImageType>::Pointer filter = itk::RescaleIntensityImageFilter<FloatImageType,FloatImageType>::New(); filter->SetInput(0, floatImage); filter->SetOutputMinimum(dparam1); filter->SetOutputMaximum(dparam2); filter->Update(); floatImage = filter->GetOutput(); newImage = mitk::Image::New(); newImage->InitializeByItk(floatImage.GetPointer()); newImage->SetVolume(floatImage->GetBufferPointer()); nameAddition << "_Rescaled"; std::cout << "Rescaling successful." << std::endl; break; } default: this->BusyCursorOff(); return; } } catch (...) { this->BusyCursorOff(); QMessageBox::warning(NULL, "Warning", "Problem when applying filter operation. Check your input..."); return; } newImage->DisconnectPipeline(); // adjust level/window to new image mitk::LevelWindow levelwindow; levelwindow.SetAuto( newImage ); mitk::LevelWindowProperty::Pointer levWinProp = mitk::LevelWindowProperty::New(); levWinProp->SetLevelWindow( levelwindow ); // compose new image name std::string name = m_SelectedImageNode->GetNode()->GetName(); if (name.find(".pic.gz") == name.size() -7 ) { name = name.substr(0,name.size() -7); } name.append( nameAddition.str() ); // create final result MITK data storage node mitk::DataNode::Pointer result = mitk::DataNode::New(); result->SetProperty( "levelwindow", levWinProp ); result->SetProperty( "name", mitk::StringProperty::New( name.c_str() ) ); result->SetData( newImage ); // for vector images, a different mapper is needed if(isVectorImage > 1) { mitk::VectorImageMapper2D::Pointer mapper = mitk::VectorImageMapper2D::New(); result->SetMapper(1,mapper); } // reset GUI to ease further processing // this->ResetOneImageOpPanel(); // add new image to data storage and set as active to ease further processing GetDefaultDataStorage()->Add( result, m_SelectedImageNode->GetNode() ); if ( m_Controls->cbHideOrig->isChecked() == true ) m_SelectedImageNode->GetNode()->SetProperty( "visible", mitk::BoolProperty::New(false) ); // TODO!! m_Controls->m_ImageSelector1->SetSelectedNode(result); // show the results mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->BusyCursorOff(); }
InputImageType::Pointer Curvelet::RunOnInputImage(InputImageType::Pointer InputImage) { //InputImage = NewInputImage; slices = InputImage->GetLargestPossibleRegion().GetSize()[2]; InputImageType::Pointer outputim = InputImageType::New(); outputim->SetRegions(InputImage->GetLargestPossibleRegion()); outputim->Allocate(); FloatImageType::Pointer cosim = FloatImageType::New(); cosim->SetRegions(InputImage->GetLargestPossibleRegion()); cosim->Allocate(); FloatImageType::Pointer sinim = FloatImageType::New(); sinim->SetRegions(InputImage->GetLargestPossibleRegion()); sinim->Allocate(); if(outputim->GetBufferPointer() == NULL || cosim->GetBufferPointer() == NULL || sinim->GetBufferPointer() == NULL) { printf("Couldnt' allocate memory - 3.. going to crash now\n"); } int max_dim = tile_size; int xsize = InputImage->GetLargestPossibleRegion().GetSize()[0]; int ysize = InputImage->GetLargestPossibleRegion().GetSize()[1]; int kx = 0;int ky = 0; kx = xsize /(max_dim-this->border); ky = ysize /(max_dim-this->border); int remx = xsize % (max_dim-this->border); int remy = ysize % (max_dim-this->border); if ( remx > 0 ) kx ++; if ( remy > 0 ) ky ++; for(int xco = 0; xco < kx; xco++) { for(int yco = 0; yco < ky; yco++) { InputImageType::SizeType imsize = InputImage->GetLargestPossibleRegion().GetSize(); InputImageType::IndexType index; InputImageType::SizeType size; InputImageType::RegionType region; index.Fill(0); size[0] = MIN((xco)*(max_dim-this->border)+max_dim-1,imsize[0]-1) - xco * (max_dim-this->border) +1; size[1] = MIN((yco)*(max_dim-this->border)+max_dim-1,imsize[1]-1) - yco * (max_dim-this->border) +1; size[2] = imsize[2]; InputImageType::Pointer imtile = InputImageType::New(); region.SetIndex(index); region.SetSize(size); imtile->SetRegions(region); imtile->Allocate(); if(imtile->GetBufferPointer()==NULL) printf("Couldn't allocate memory - 4 .. going to crash now\n"); InputImageType::RegionType region1; index[0] = xco *(max_dim-this->border); index[1] = yco *(max_dim-this->border); index[2] = 0; region1.SetIndex(index); region1.SetSize(size); typedef itk::ImageRegionIterator<InputImageType> IteratorType; IteratorType iter1(InputImage,region1); IteratorType iter2(imtile,region); //printf("xco = %d yco = %d :\n",xco,yco); region1.Print(std::cout); region.Print(std::cout); iter1.GoToBegin(); iter2.GoToBegin(); for(;!iter1.IsAtEnd();++iter1,++iter2) { iter2.Set(iter1.Get()); } InputImageType::Pointer outputtile = InputImageType::New(); outputtile->SetRegions(imtile->GetLargestPossibleRegion()); outputtile->Allocate(); FloatImageType::Pointer cosimtile = FloatImageType::New(); cosimtile->SetRegions(imtile->GetLargestPossibleRegion()); cosimtile->Allocate(); FloatImageType::Pointer sinimtile = FloatImageType::New(); sinimtile->SetRegions(imtile->GetLargestPossibleRegion()); sinimtile->Allocate(); if(outputtile->GetBufferPointer() == NULL || cosimtile->GetBufferPointer()==NULL || sinimtile->GetBufferPointer() == NULL ) { printf("Couldn't allocate memory - 5 .. going to crash now ..\n"); } { #pragma omp parallel for shared(cosimtile,imtile,sinimtile,outputtile) num_threads(numt) for(int counter = 0; counter < slices; counter++) { //printf("Counter = %d\n",counter); Input2DImageType::Pointer im2d = getSlice(imtile,counter); Input2DImageType::Pointer om2d; Float2DImageType::Pointer cosim2d,sinim2d; //call single slice 2-d curvelets function getCurveletsForOneSlice(im2d,om2d,cosim2d,sinim2d); copyslice<InputPixelType>(om2d,outputtile,counter); copyslice<float>(cosim2d,cosimtile,counter); copyslice<float>(sinim2d,sinimtile,counter); } } //printf("copying the tile\n"); if(xco != 0) { size[0] = size[0] - border/2; index[0] = border/2; } if(xco != kx-1) { size[0] = size[0] - border/2; } if(yco != 0) { size[1] = size[1] - border/2; index[1] = border/2; } if(yco != ky-1) { size[1] = size[1] - border/2; } size[2] = slices; index[2] = 0; region.SetIndex(index); region.SetSize(size); if(xco!=0) { index[0] = xco *(max_dim-border)+border/2; } if(yco!=0) { index[1] = yco *(max_dim-border)+border/2; } index[2] = 0; region1.SetSize(size); region1.SetIndex(index); iter1 = IteratorType(outputim,region1); iter2 = IteratorType(outputtile,region); typedef itk::ImageRegionIterator<FloatImageType> FIteratorType; FIteratorType iter3(cosim,region1); FIteratorType iter4(cosimtile,region); FIteratorType iter5(sinim,region1); FIteratorType iter6(sinimtile, region); iter1.GoToBegin();iter2.GoToBegin(); iter3.GoToBegin();iter4.GoToBegin(); iter5.GoToBegin();iter6.GoToBegin(); for(;!iter1.IsAtEnd();++iter1,++iter2,++iter3,++iter4,++iter5,++iter6) { iter1.Set(iter2.Get()); iter3.Set(iter4.Get()); iter5.Set(iter6.Get()); } //printf("Done with copying the tile to full image\n"); } } return outputim; }