double footstepHeuristicFollowPathLine( SolverNode<FootstepState, FootstepGraph>::Ptr node, FootstepGraph::Ptr graph) { FootstepState::Ptr state = node->getState(); FootstepState::Ptr goal = graph->getGoal(state->getLeg()); Eigen::Vector3f goal_pos(goal->getPose().translation()); Eigen::Vector3f state_pos(state->getPose().translation()); Eigen::Vector3f state_mid_pos; if (state->getLeg() == jsk_footstep_msgs::Footstep::LEFT) { Eigen::Vector3f p(0, -0.1, 0); state_mid_pos = state->getPose() * p; } else { // Right Eigen::Vector3f p(0, 0.1, 0); state_mid_pos = state->getPose() * p; } double dist, to_goal, alp; int idx; Eigen::Vector3f foot; dist = graph->heuristic_path_->distanceWithInfo(state_mid_pos, foot, to_goal, idx, alp); //jsk_recognition_utils::FiniteLine::Ptr ln = graph->heuristic_path_->at(idx); Eigen::Vector3f dir = graph->heuristic_path_->getDirection(idx); Eigen::Quaternionf path_foot_rot; path_foot_rot.setFromTwoVectors(state->getPose().matrix().block<3, 3>(0, 0) * Eigen::Vector3f::UnitX(), dir); double path_foot_theta = acos(path_foot_rot.w()) * 2; if (path_foot_theta > M_PI) { path_foot_theta = 2.0 * M_PI - path_foot_theta; // foot_theta : [0, M_PI] } double step_cost = to_goal / graph->maxSuccessorDistance(); double follow_cost = dist / 0.02; // ??? double path_foot_rot_cost = path_foot_theta / graph->maxSuccessorRotation(); Eigen::Vector3f goal_diff = goal_pos - state_pos; Eigen::Quaternionf goal_foot_rot; goal_foot_rot.setFromTwoVectors(state->getPose().matrix().block<3, 3>(0, 0) * Eigen::Vector3f::UnitX(), goal->getPose().matrix().block<3, 3>(0, 0) * Eigen::Vector3f::UnitX()); double goal_foot_theta = acos(goal_foot_rot.w()) * 2; if (goal_foot_theta > M_PI) { goal_foot_theta = 2.0 * M_PI - goal_foot_theta; } double goal_foot_rot_cost = goal_foot_theta / graph->maxSuccessorRotation(); //return step_cost + follow_cost + (4.0 * goal_foot_rot_cost) + (0.5 * path_foot_rot_cost); return 2*(step_cost + follow_cost + (0.5 * path_foot_rot_cost)); }
double footstepHeuristicStraightRotation( SolverNode<FootstepState, FootstepGraph>::Ptr node, FootstepGraph::Ptr graph) { FootstepState::Ptr state = node->getState(); FootstepState::Ptr goal = graph->getGoal(state->getLeg()); Eigen::Affine3f transform = state->getPose().inverse() * goal->getPose(); return (std::abs(transform.translation().norm() / graph->maxSuccessorDistance()) + std::abs(Eigen::AngleAxisf(transform.rotation()).angle()) / graph->maxSuccessorRotation()); }
double footstepHeuristicStepCost( SolverNode<FootstepState, FootstepGraph>::Ptr node, FootstepGraph::Ptr graph, double first_rotation_weight, double second_rotation_weight) { FootstepState::Ptr state = node->getState(); FootstepState::Ptr goal = graph->getGoal(state->getLeg()); Eigen::Vector3f goal_pos(goal->getPose().translation()); Eigen::Vector3f diff_pos(goal_pos - state->getPose().translation()); diff_pos[2] = 0.0; // Ignore z distance Eigen::Quaternionf first_rot; // Eigen::Affine3f::rotation is too slow because it calls SVD decomposition first_rot.setFromTwoVectors(state->getPose().matrix().block<3, 3>(0, 0) * Eigen::Vector3f::UnitX(), diff_pos.normalized()); Eigen::Quaternionf second_rot; second_rot.setFromTwoVectors(diff_pos.normalized(), goal->getPose().matrix().block<3, 3>(0, 0) * Eigen::Vector3f::UnitX()); // is it correct?? double first_theta = acos(first_rot.w()) * 2; double second_theta = acos(second_rot.w()) * 2; if (isnan(first_theta)) { first_theta = 0; } if (isnan(second_theta)) { second_theta = 0; } // acos := [0, M_PI] if (first_theta > M_PI) { first_theta = 2.0 * M_PI - first_theta; } if (second_theta > M_PI) { second_theta = 2.0 * M_PI - second_theta; } //return (Eigen::Vector2f(diff_pos[0], diff_pos[1]).norm() / graph->maxSuccessorDistance()) + std::abs(diff_pos[2]) / 0.2 + return (diff_pos.norm() / graph->maxSuccessorDistance()) + std::abs(diff_pos[2]) / 0.2 + (first_theta * first_rotation_weight + second_theta * second_rotation_weight) / graph->maxSuccessorRotation(); }