コード例 #1
0
// FIXME: why is 'transform' argument not used?
void
PrintLatex::print_pathvector(SVGOStringStream &os, Geom::PathVector const &pathv_in, const Geom::Affine & /*transform*/)
{
    if (pathv_in.empty())
        return;

//    Geom::Affine tf=transform;   // why was this here?
    Geom::Affine tf_stack=m_tr_stack.top(); // and why is transform argument not used?
    Geom::PathVector pathv = pathv_in * tf_stack; // generates new path, which is a bit slow, but this doesn't have to be performance optimized

    os << "\\newpath\n";

    for(Geom::PathVector::const_iterator it = pathv.begin(); it != pathv.end(); ++it) {

        os << "\\moveto(" << it->initialPoint()[Geom::X] << "," << it->initialPoint()[Geom::Y] << ")\n";

        for(Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) {
            print_2geomcurve(os, *cit);
        }

        if (it->closed()) {
            os << "\\closepath\n";
        }

    }
}
コード例 #2
0
ファイル: geom.cpp プロジェクト: asitti/inkscape
/*
 * Converts all segments in all paths to Geom::LineSegment or Geom::HLineSegment or
 * Geom::VLineSegment or Geom::CubicBezier.
 */
Geom::PathVector
pathv_to_linear_and_cubic_beziers( Geom::PathVector const &pathv )
{
    Geom::PathVector output;

    for (Geom::PathVector::const_iterator pit = pathv.begin(); pit != pathv.end(); ++pit) {
        output.push_back( Geom::Path() );
        output.back().start( pit->initialPoint() );
        output.back().close( pit->closed() );

        for (Geom::Path::const_iterator cit = pit->begin(); cit != pit->end_open(); ++cit) {
            if (is_straight_curve(*cit)) {
                Geom::LineSegment l(cit->initialPoint(), cit->finalPoint());
                output.back().append(l);
            } else {
                Geom::BezierCurve const *curve = dynamic_cast<Geom::BezierCurve const *>(&*cit);
                if (curve && curve->order() == 3) {
                    Geom::CubicBezier b((*curve)[0], (*curve)[1], (*curve)[2], (*curve)[3]);
                    output.back().append(b);
                } else {
                    // convert all other curve types to cubicbeziers
                    Geom::Path cubicbezier_path = Geom::cubicbezierpath_from_sbasis(cit->toSBasis(), 0.1);
                    output.back().append(cubicbezier_path);
                }
            }
        }
    }
    
    return output;
}
コード例 #3
0
ファイル: cairo-utils.cpp プロジェクト: Spin0za/inkscape
/** Feeds path-creating calls to the cairo context translating them from the PathVector
 *  One must have done cairo_new_path(ct); before calling this function. */
void
feed_pathvector_to_cairo (cairo_t *ct, Geom::PathVector const &pathv)
{
    if (pathv.empty())
        return;

    for(Geom::PathVector::const_iterator it = pathv.begin(); it != pathv.end(); ++it) {
        feed_path_to_cairo(ct, *it);
    }
}
コード例 #4
0
ファイル: cairo-utils.cpp プロジェクト: Spin0za/inkscape
/** Feeds path-creating calls to the cairo context translating them from the PathVector, with the given transform and shift
 *  One must have done cairo_new_path(ct); before calling this function. */
void
feed_pathvector_to_cairo (cairo_t *ct, Geom::PathVector const &pathv, Geom::Affine trans, Geom::OptRect area, bool optimize_stroke, double stroke_width)
{
    if (!area)
        return;
    if (pathv.empty())
        return;

    for(Geom::PathVector::const_iterator it = pathv.begin(); it != pathv.end(); ++it) {
        feed_path_to_cairo(ct, *it, trans, area, optimize_stroke, stroke_width);
    }
}
コード例 #5
0
ファイル: geom.cpp プロジェクト: asitti/inkscape
/*
 * Converts all segments in all paths to Geom::LineSegment.  There is an intermediate
 * stage where some may be converted to beziers.  maxdisp is the maximum displacement from
 * the line segment to the bezier curve; ** maxdisp is not used at this moment **.
 *
 * This is NOT a terribly fast method, but it should give a solution close to the one with the
 * fewest points.
 */
Geom::PathVector
pathv_to_linear( Geom::PathVector const &pathv, double /*maxdisp*/)
{
    Geom::PathVector output;
    Geom::PathVector tmppath = pathv_to_linear_and_cubic_beziers(pathv);
    
    // Now all path segments are either already lines, or they are beziers.

    for (Geom::PathVector::const_iterator pit = tmppath.begin(); pit != tmppath.end(); ++pit) {
        output.push_back( Geom::Path() );
        output.back().start( pit->initialPoint() );
        output.back().close( pit->closed() );

        for (Geom::Path::const_iterator cit = pit->begin(); cit != pit->end_open(); ++cit) {
            if (is_straight_curve(*cit)) {
                Geom::LineSegment ls(cit->initialPoint(), cit->finalPoint());
                output.back().append(ls);
            } 
            else { /* all others must be Bezier curves */
                Geom::BezierCurve const *curve = dynamic_cast<Geom::BezierCurve const *>(&*cit);
                Geom::CubicBezier b((*curve)[0], (*curve)[1], (*curve)[2], (*curve)[3]);
                std::vector<Geom::Point> bzrpoints = b.points();
                Geom::Point A = bzrpoints[0];
                Geom::Point B = bzrpoints[1];
                Geom::Point C = bzrpoints[2];
                Geom::Point D = bzrpoints[3];
                std::vector<Geom::Point> pointlist;
                pointlist.push_back(A);
                recursive_bezier4(
                   A[X], A[Y], 
                   B[X], B[Y], 
                   C[X], C[Y], 
                   D[X], D[Y],
                   pointlist, 
                   0);
                pointlist.push_back(D);
                Geom::Point r1 = pointlist[0];
                for (unsigned int i=1; i<pointlist.size();i++){
                   Geom::Point prev_r1 = r1;
                   r1 = pointlist[i];
                   Geom::LineSegment ls(prev_r1, r1);
                   output.back().append(ls);
                }
                pointlist.clear();
           }
        }
    }
    
    return output;
}
コード例 #6
0
ファイル: geom.cpp プロジェクト: asitti/inkscape
Geom::OptRect
bounds_exact_transformed(Geom::PathVector const & pv, Geom::Affine const & t)
{
    if (pv.empty())
        return Geom::OptRect();

    Geom::Point initial = pv.front().initialPoint() * t;
    Geom::Rect bbox(initial, initial);        // obtain well defined bbox as starting point to unionWith

    for (Geom::PathVector::const_iterator it = pv.begin(); it != pv.end(); ++it) {
        bbox.expandTo(it->initialPoint() * t);

        // don't loop including closing segment, since that segment can never increase the bbox
        for (Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) {
            Geom::Curve const &c = *cit;

            unsigned order = 0;
            if (Geom::BezierCurve const* b = dynamic_cast<Geom::BezierCurve const*>(&c)) {
                order = b->order();
            }

            if (order == 1) { // line segment
                bbox.expandTo(c.finalPoint() * t);

            // TODO: we can make the case for quadratics faster by degree elevating them to
            // cubic and then taking the bbox of that.

            } else if (order == 3) { // cubic bezier
                Geom::CubicBezier const &cubic_bezier = static_cast<Geom::CubicBezier const&>(c);
                Geom::Point c0 = cubic_bezier[0] * t;
                Geom::Point c1 = cubic_bezier[1] * t;
                Geom::Point c2 = cubic_bezier[2] * t;
                Geom::Point c3 = cubic_bezier[3] * t;
                cubic_bbox(c0[0], c0[1], c1[0], c1[1], c2[0], c2[1], c3[0], c3[1], bbox);
            } else {
                // should handle all not-so-easy curves:
                Geom::Curve *ctemp = cit->transformed(t);
                bbox.unionWith( ctemp->boundsExact());
                delete ctemp;
            }
        }
    }
    //return Geom::bounds_exact(pv * t);
    return bbox;
}
コード例 #7
0
ファイル: geom.cpp プロジェクト: Spin0za/inkscape
Geom::OptRect
bounds_exact_transformed(Geom::PathVector const & pv, Geom::Affine const & t)
{
    if (pv.empty())
        return Geom::OptRect();

    Geom::Point initial = pv.front().initialPoint() * t;
    Geom::Rect bbox(initial, initial);        // obtain well defined bbox as starting point to unionWith

    for (Geom::PathVector::const_iterator it = pv.begin(); it != pv.end(); ++it) {
        bbox.expandTo(it->initialPoint() * t);

        // don't loop including closing segment, since that segment can never increase the bbox
        for (Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) {
            Geom::Curve const &c = *cit;

            if( is_straight_curve(c) )
            {
                bbox.expandTo( c.finalPoint() * t );
            }
            else if(Geom::CubicBezier const *cubic_bezier = dynamic_cast<Geom::CubicBezier const  *>(&c))
            {
                Geom::Point c0 = (*cubic_bezier)[0] * t;
                Geom::Point c1 = (*cubic_bezier)[1] * t;
                Geom::Point c2 = (*cubic_bezier)[2] * t;
                Geom::Point c3 = (*cubic_bezier)[3] * t;
                cubic_bbox( c0[0], c0[1],
                            c1[0], c1[1],
                            c2[0], c2[1],
                            c3[0], c3[1],
                            bbox );
            }
            else
            {
                // should handle all not-so-easy curves:
                Geom::Curve *ctemp = cit->transformed(t);
                bbox.unionWith( ctemp->boundsExact());
                delete ctemp;
            }
        }
    }
    //return Geom::bounds_exact(pv * t);
    return bbox;
}
コード例 #8
0
ファイル: geom.cpp プロジェクト: asitti/inkscape
/* Calculates...
   and returns ... in *wind and the distance to ... in *dist.
   Returns bounding box in *bbox if bbox!=NULL.
 */
void
pathv_matrix_point_bbox_wind_distance (Geom::PathVector const & pathv, Geom::Affine const &m, Geom::Point const &pt,
                         Geom::Rect *bbox, int *wind, Geom::Coord *dist,
                         Geom::Coord tolerance, Geom::Rect const *viewbox)
{
    if (pathv.empty()) {
        if (wind) *wind = 0;
        if (dist) *dist = Geom::infinity();
        return;
    }

    // remember last point of last curve
    Geom::Point p0(0,0);

    // remembering the start of subpath
    Geom::Point p_start(0,0);
    bool start_set = false;

    for (Geom::PathVector::const_iterator it = pathv.begin(); it != pathv.end(); ++it) {

        if (start_set) { // this is a new subpath
            if (wind && (p0 != p_start)) // for correct fill picking, each subpath must be closed
                geom_line_wind_distance (p0[X], p0[Y], p_start[X], p_start[Y], pt, wind, dist);
        }
        p0 = it->initialPoint() * m;
        p_start = p0;
        start_set = true;
        if (bbox) {
            bbox->expandTo(p0);
        }

        // loop including closing segment if path is closed
        for (Geom::Path::const_iterator cit = it->begin(); cit != it->end_default(); ++cit) {
            geom_curve_bbox_wind_distance(*cit, m, pt, bbox, wind, dist, tolerance, viewbox, p0);
        }
    }

    if (start_set) { 
        if (wind && (p0 != p_start)) // for correct picking, each subpath must be closed
            geom_line_wind_distance (p0[X], p0[Y], p_start[X], p_start[Y], pt, wind, dist);
    }
}
コード例 #9
0
ファイル: lpe-spiro.cpp プロジェクト: wdmchaft/DoonSketch
void
LPESpiro::doEffect(SPCurve * curve)
{
    using Geom::X;
    using Geom::Y;

    // Make copy of old path as it is changed during processing
    Geom::PathVector const original_pathv = curve->get_pathvector();
    guint len = curve->get_segment_count() + 2;

    curve->reset();
    bezctx *bc = new_bezctx_ink(curve);
    spiro_cp *path = g_new (spiro_cp, len);
    int ip = 0;

    for(Geom::PathVector::const_iterator path_it = original_pathv.begin(); path_it != original_pathv.end(); ++path_it) {
        if (path_it->empty())
            continue;

        // start of path
        {
            Geom::Point p = path_it->front().pointAt(0);
            path[ip].x = p[X];
            path[ip].y = p[Y];
            path[ip].ty = '{' ;  // for closed paths, this is overwritten
            ip++;
        }

        // midpoints
        Geom::Path::const_iterator curve_it1 = path_it->begin();      // incoming curve
        Geom::Path::const_iterator curve_it2 = ++(path_it->begin());         // outgoing curve

        Geom::Path::const_iterator curve_endit = path_it->end_default(); // this determines when the loop has to stop
        if (path_it->closed()) {
            // if the path is closed, maybe we have to stop a bit earlier because the closing line segment has zerolength.
            const Geom::Curve &closingline = path_it->back_closed(); // the closing line segment is always of type Geom::LineSegment.
            if (are_near(closingline.initialPoint(), closingline.finalPoint())) {
                // closingline.isDegenerate() did not work, because it only checks for *exact* zero length, which goes wrong for relative coordinates and rounding errors...
                // the closing line segment has zero-length. So stop before that one!
                curve_endit = path_it->end_open();
            }
        }

        while ( curve_it2 != curve_endit )
        {
            /* This deals with the node between curve_it1 and curve_it2.
             * Loop to end_default (so without last segment), loop ends when curve_it2 hits the end
             * and then curve_it1 points to end or closing segment */
            Geom::Point p = curve_it1->finalPoint();
            path[ip].x = p[X];
            path[ip].y = p[Y];

            // Determine type of spiro node this is, determined by the tangents (angles) of the curves
            // TODO: see if this can be simplified by using /helpers/geom-nodetype.cpp:get_nodetype
            bool this_is_line = is_straight_curve(*curve_it1);
            bool next_is_line = is_straight_curve(*curve_it2);

            Geom::NodeType nodetype = Geom::get_nodetype(*curve_it1, *curve_it2);

            if ( nodetype == Geom::NODE_SMOOTH || nodetype == Geom::NODE_SYMM )
            {
                if (this_is_line && !next_is_line) {
                    path[ip].ty = ']';
                } else if (next_is_line && !this_is_line) {
                    path[ip].ty = '[';
                } else {
                    path[ip].ty = 'c';
                }
            } else {
                path[ip].ty = 'v';
            }

            ++curve_it1;
            ++curve_it2;
            ip++;
        }

        // add last point to the spiropath
        Geom::Point p = curve_it1->finalPoint();
        path[ip].x = p[X];
        path[ip].y = p[Y];
        if (path_it->closed()) {
            // curve_it1 points to the (visually) closing segment. determine the match between first and this last segment (the closing node)
            Geom::NodeType nodetype = Geom::get_nodetype(*curve_it1, path_it->front());
            switch (nodetype) {
                case Geom::NODE_NONE: // can't happen! but if it does, it means the path isn't closed :-)
                    path[ip].ty = '}';
                    ip++;
                    break;
                case Geom::NODE_CUSP:
                    path[0].ty = path[ip].ty = 'v';
                    break;
                case Geom::NODE_SMOOTH:
                case Geom::NODE_SYMM:
                    path[0].ty = path[ip].ty = 'c';
                    break;
            }
        } else {
            // set type to path closer
            path[ip].ty = '}';
            ip++;
        }

        // run subpath through spiro
        int sp_len = ip;
        spiro_seg *s = run_spiro(path, sp_len);
        spiro_to_bpath(s, sp_len, bc);
        free(s);
        ip = 0;
    }

    g_free (path);
}
コード例 #10
0
ファイル: lpe-spiro.cpp プロジェクト: AakashDabas/inkscape
void sp_spiro_do_effect(SPCurve *curve){
    using Geom::X;
    using Geom::Y;

    // Make copy of old path as it is changed during processing
    Geom::PathVector const original_pathv = curve->get_pathvector();
    guint len = curve->get_segment_count() + 2;

    curve->reset();
    Spiro::spiro_cp *path = g_new (Spiro::spiro_cp, len);
    int ip = 0;

    for(Geom::PathVector::const_iterator path_it = original_pathv.begin(); path_it != original_pathv.end(); ++path_it) {
        if (path_it->empty())
            continue;

        // start of path
        {
            Geom::Point p = path_it->initialPoint();
            path[ip].x = p[X];
            path[ip].y = p[Y];
            path[ip].ty = '{' ;  // for closed paths, this is overwritten
            ip++;
        }

        // midpoints
        Geom::Path::const_iterator curve_it1 = path_it->begin();      // incoming curve
        Geom::Path::const_iterator curve_it2 = ++(path_it->begin());         // outgoing curve
        Geom::Path::const_iterator curve_endit = path_it->end_default(); // this determines when the loop has to stop

        while ( curve_it2 != curve_endit )
        {
            /* This deals with the node between curve_it1 and curve_it2.
             * Loop to end_default (so without last segment), loop ends when curve_it2 hits the end
             * and then curve_it1 points to end or closing segment */
            Geom::Point p = curve_it1->finalPoint();
            path[ip].x = p[X];
            path[ip].y = p[Y];

            // Determine type of spiro node this is, determined by the tangents (angles) of the curves
            // TODO: see if this can be simplified by using /helpers/geom-nodetype.cpp:get_nodetype
            bool this_is_line = is_straight_curve(*curve_it1);
            bool next_is_line = is_straight_curve(*curve_it2);

            Geom::NodeType nodetype = Geom::get_nodetype(*curve_it1, *curve_it2);

            if ( nodetype == Geom::NODE_SMOOTH || nodetype == Geom::NODE_SYMM )
            {
                if (this_is_line && !next_is_line) {
                    path[ip].ty = ']';
                } else if (next_is_line && !this_is_line) {
                    path[ip].ty = '[';
                } else {
                    path[ip].ty = 'c';
                }
            } else {
                path[ip].ty = 'v';
            }

            ++curve_it1;
            ++curve_it2;
            ip++;
        }

        // add last point to the spiropath
        Geom::Point p = curve_it1->finalPoint();
        path[ip].x = p[X];
        path[ip].y = p[Y];
        if (path_it->closed()) {
            // curve_it1 points to the (visually) closing segment. determine the match between first and this last segment (the closing node)
            Geom::NodeType nodetype = Geom::get_nodetype(*curve_it1, path_it->front());
            switch (nodetype) {
                case Geom::NODE_NONE: // can't happen! but if it does, it means the path isn't closed :-)
                    path[ip].ty = '}';
                    ip++;
                    break;
                case Geom::NODE_CUSP:
                    path[0].ty = path[ip].ty = 'v';
                    break;
                case Geom::NODE_SMOOTH:
                case Geom::NODE_SYMM:
                    path[0].ty = path[ip].ty = 'c';
                    break;
            }
        } else {
            // set type to path closer
            path[ip].ty = '}';
            ip++;
        }

        // run subpath through spiro
        int sp_len = ip;
        Spiro::spiro_run(path, sp_len, *curve);
        ip = 0;
    }

    g_free (path);
}
コード例 #11
0
ファイル: FontInstance.cpp プロジェクト: Spin0za/inkscape
void font_instance::LoadGlyph(int glyph_id)
{
    if ( pFont == NULL ) {
        return;
    }
    InitTheFace();
#ifndef USE_PANGO_WIN32
    if ( !FT_IS_SCALABLE(theFace) ) {
        return; // bitmap font
    }
#endif

    if ( id_to_no.find(glyph_id) == id_to_no.end() ) {
        Geom::PathBuilder path_builder;

        if ( nbGlyph >= maxGlyph ) {
            maxGlyph=2*nbGlyph+1;
            glyphs=(font_glyph*)realloc(glyphs,maxGlyph*sizeof(font_glyph));
        }
        font_glyph  n_g;
        n_g.pathvector=NULL;
        n_g.bbox[0]=n_g.bbox[1]=n_g.bbox[2]=n_g.bbox[3]=0;
        n_g.h_advance = 0;
        n_g.v_advance = 0;
        n_g.h_width = 0;
        n_g.v_width = 0;
        bool   doAdd=false;

#ifdef USE_PANGO_WIN32

#ifndef GGO_UNHINTED         // For compatibility with old SDKs.
#define GGO_UNHINTED 0x0100
#endif

        MAT2 identity = {{0,1},{0,0},{0,0},{0,1}};
        OUTLINETEXTMETRIC otm;
        GetOutlineTextMetrics(daddy->hScreenDC, sizeof(otm), &otm);
        GLYPHMETRICS metrics;
        DWORD bufferSize=GetGlyphOutline (daddy->hScreenDC, glyph_id, GGO_GLYPH_INDEX | GGO_NATIVE | GGO_UNHINTED, &metrics, 0, NULL, &identity);
        double scale=1.0/daddy->fontSize;
        n_g.h_advance=metrics.gmCellIncX*scale;
        n_g.v_advance=otm.otmTextMetrics.tmHeight*scale;
        n_g.h_width=metrics.gmBlackBoxX*scale;
        n_g.v_width=metrics.gmBlackBoxY*scale;
        if ( bufferSize == GDI_ERROR) {
            // shit happened
        } else if ( bufferSize == 0) {
            // character has no visual representation, but is valid (eg whitespace)
            doAdd=true;
        } else {
            char *buffer = new char[bufferSize];
            if ( GetGlyphOutline (daddy->hScreenDC, glyph_id, GGO_GLYPH_INDEX | GGO_NATIVE | GGO_UNHINTED, &metrics, bufferSize, buffer, &identity) <= 0 ) {
                // shit happened
            } else {
                // Platform SDK is rubbish, read KB87115 instead
                DWORD polyOffset=0;
                while ( polyOffset < bufferSize ) {
                    TTPOLYGONHEADER const *polyHeader=(TTPOLYGONHEADER const *)(buffer+polyOffset);
                    if (polyOffset+polyHeader->cb > bufferSize) break;

                    if (polyHeader->dwType == TT_POLYGON_TYPE) {
                        path_builder.moveTo(pointfx_to_nrpoint(polyHeader->pfxStart, scale));
                        DWORD curveOffset=polyOffset+sizeof(TTPOLYGONHEADER);

                        while ( curveOffset < polyOffset+polyHeader->cb ) {
                            TTPOLYCURVE const *polyCurve=(TTPOLYCURVE const *)(buffer+curveOffset);
                            POINTFX const *p=polyCurve->apfx;
                            POINTFX const *endp=p+polyCurve->cpfx;

                            switch (polyCurve->wType) {
                            case TT_PRIM_LINE:
                                while ( p != endp )
                                    path_builder.lineTo(pointfx_to_nrpoint(*p++, scale));
                                break;

                            case TT_PRIM_QSPLINE:
                                {
                                    g_assert(polyCurve->cpfx >= 2);

                                    // The list of points specifies one or more control points and ends with the end point.
                                    // The intermediate points (on the curve) are the points between the control points.
                                    Geom::Point this_control = pointfx_to_nrpoint(*p++, scale);
                                    while ( p+1 != endp ) { // Process all "midpoints" (all points except the last)
                                        Geom::Point new_control = pointfx_to_nrpoint(*p++, scale);
                                        path_builder.quadTo(this_control, (new_control+this_control)/2);
                                        this_control = new_control;
                                    }
                                    Geom::Point end = pointfx_to_nrpoint(*p++, scale);
                                    path_builder.quadTo(this_control, end);
                                }
                                break;

                            case 3:  // TT_PRIM_CSPLINE
                                g_assert(polyCurve->cpfx % 3 == 0);
                                while ( p != endp ) {
                                    path_builder.curveTo(pointfx_to_nrpoint(p[0], scale),
                                                         pointfx_to_nrpoint(p[1], scale),
                                                         pointfx_to_nrpoint(p[2], scale));
                                    p += 3;
                                }
                                break;
                            }
                            curveOffset += sizeof(TTPOLYCURVE)+sizeof(POINTFX)*(polyCurve->cpfx-1);
                        }
                    }
                    polyOffset += polyHeader->cb;
                }
                doAdd=true;
            }
            delete [] buffer;
        }
#else
        if (FT_Load_Glyph (theFace, glyph_id, FT_LOAD_NO_SCALE | FT_LOAD_NO_HINTING | FT_LOAD_NO_BITMAP)) {
            // shit happened
        } else {
            if ( FT_HAS_HORIZONTAL(theFace) ) {
                n_g.h_advance=((double)theFace->glyph->metrics.horiAdvance)/((double)theFace->units_per_EM);
                n_g.h_width=((double)theFace->glyph->metrics.width)/((double)theFace->units_per_EM);
            } else {
                n_g.h_width=n_g.h_advance=((double)(theFace->bbox.xMax-theFace->bbox.xMin))/((double)theFace->units_per_EM);
            }
            if ( FT_HAS_VERTICAL(theFace) ) {
                n_g.v_advance=((double)theFace->glyph->metrics.vertAdvance)/((double)theFace->units_per_EM);
                n_g.v_width=((double)theFace->glyph->metrics.height)/((double)theFace->units_per_EM);
            } else {
                n_g.v_width=n_g.v_advance=((double)theFace->height)/((double)theFace->units_per_EM);
            }
            if ( theFace->glyph->format == ft_glyph_format_outline ) {
                FT_Outline_Funcs ft2_outline_funcs = {
                    ft2_move_to,
                    ft2_line_to,
                    ft2_conic_to,
                    ft2_cubic_to,
                    0, 0
                };
                FT2GeomData user(path_builder, 1.0/((double)theFace->units_per_EM));
                FT_Outline_Decompose (&theFace->glyph->outline, &ft2_outline_funcs, &user);
            }
            doAdd=true;
        }
#endif
        path_builder.finish();

        if ( doAdd ) {
            Geom::PathVector pv = path_builder.peek();
            // close all paths
            for (Geom::PathVector::iterator i = pv.begin(); i != pv.end(); ++i) {
                i->close();
            }
            if ( !pv.empty() ) {
                n_g.pathvector = new Geom::PathVector(pv);
                Geom::OptRect bounds = bounds_exact(*n_g.pathvector);
                if (bounds) {
                    n_g.bbox[0] = bounds->left();
                    n_g.bbox[1] = bounds->top();
                    n_g.bbox[2] = bounds->right();
                    n_g.bbox[3] = bounds->bottom();
                }
            }
            glyphs[nbGlyph]=n_g;
            id_to_no[glyph_id]=nbGlyph;
            nbGlyph++;
        }
    } else {
    }
}
コード例 #12
0
ファイル: lpe-simplify.cpp プロジェクト: AakashDabas/inkscape
void
LPESimplify::generateHelperPathAndSmooth(Geom::PathVector &result)
{
    if(steps < 1) {
        return;
    }
    Geom::PathVector tmp_path;
    Geom::CubicBezier const *cubic = NULL;
    for (Geom::PathVector::iterator path_it = result.begin(); path_it != result.end(); ++path_it) {
        if (path_it->empty()) {
            continue;
        }

        Geom::Path::iterator curve_it1 = path_it->begin(); // incoming curve
        Geom::Path::iterator curve_it2 = ++(path_it->begin());// outgoing curve
        Geom::Path::iterator curve_endit = path_it->end_default(); // this determines when the loop has to stop
        SPCurve *nCurve = new SPCurve();
        if (path_it->closed()) {
            // if the path is closed, maybe we have to stop a bit earlier because the
            // closing line segment has zerolength.
            const Geom::Curve &closingline =
                path_it->back_closed(); // the closing line segment is always of type
            // Geom::LineSegment.
            if (are_near(closingline.initialPoint(), closingline.finalPoint())) {
                // closingline.isDegenerate() did not work, because it only checks for
                // *exact* zero length, which goes wrong for relative coordinates and
                // rounding errors...
                // the closing line segment has zero-length. So stop before that one!
                curve_endit = path_it->end_open();
            }
        }
        if(helper_size > 0) {
            drawNode(curve_it1->initialPoint());
        }
        nCurve->moveto(curve_it1->initialPoint());
        Geom::Point start = Geom::Point(0,0);
        while (curve_it1 != curve_endit) {
            cubic = dynamic_cast<Geom::CubicBezier const *>(&*curve_it1);
            Geom::Point point_at1 = curve_it1->initialPoint();
            Geom::Point point_at2 = curve_it1->finalPoint();
            Geom::Point point_at3 = curve_it1->finalPoint();
            Geom::Point point_at4 = curve_it1->finalPoint();

            if(start == Geom::Point(0,0)) {
                start = point_at1;
            }

            if (cubic) {
                point_at1 = (*cubic)[1];
                point_at2 = (*cubic)[2];
            }

            if(path_it->closed() && curve_it2 == curve_endit) {
                point_at4 = start;
            }
            if(curve_it2 != curve_endit) {
                cubic = dynamic_cast<Geom::CubicBezier const *>(&*curve_it2);
                if (cubic) {
                    point_at4 = (*cubic)[1];
                }
            }
            Geom::Ray ray1(point_at2, point_at3);
            Geom::Ray ray2(point_at3, point_at4);
            double angle1 = Geom::deg_from_rad(ray1.angle());
            double angle2 = Geom::deg_from_rad(ray2.angle());
            if((smooth_angles  >= std::abs(angle2 - angle1)) && !are_near(point_at4,point_at3) && !are_near(point_at2,point_at3)) {
                double dist = Geom::distance(point_at2,point_at3);
                Geom::Angle angleFixed = ray2.angle();
                angleFixed -= Geom::Angle::from_degrees(180.0);
                point_at2 =  Geom::Point::polar(angleFixed, dist) + point_at3;
            }
            nCurve->curveto(point_at1, point_at2, curve_it1->finalPoint());
            cubic = dynamic_cast<Geom::CubicBezier const *>(nCurve->last_segment());
            if (cubic) {
                point_at1 = (*cubic)[1];
                point_at2 = (*cubic)[2];
                if(helper_size > 0) {
                    if(!are_near((*cubic)[0],(*cubic)[1])) {
                        drawHandle((*cubic)[1]);
                        drawHandleLine((*cubic)[0],(*cubic)[1]);
                    }
                    if(!are_near((*cubic)[3],(*cubic)[2])) {
                        drawHandle((*cubic)[2]);
                        drawHandleLine((*cubic)[3],(*cubic)[2]);
                    }
                }
            }
            if(helper_size > 0) {
                drawNode(curve_it1->finalPoint());
            }
            ++curve_it1;
            ++curve_it2;
        }
        if (path_it->closed()) {
            nCurve->closepath_current();
        }
        tmp_path.push_back(nCurve->get_pathvector()[0]);
        nCurve->reset();
        delete nCurve;
    }
    result = tmp_path;
}