コード例 #1
0
ファイル: Output_Delphes.C プロジェクト: alisw/SHERPA
void Output_Delphes::AnalyseParticles(ExRootTreeBranch *branch, const HepMC::GenEvent& evt)
{
  TRootC::GenParticle *element;
  TLorentzVector momentum;
  Double_t signPz;
  ReadStats();
  for(int n=1; n<=evt.particles_size(); n++) {
    int mo1, mo2, da1, da2, status, pid;
    getStatsFromTuple(mo1,mo2,da1,da2,status,pid,n);
    element = static_cast<TRootC::GenParticle*>(branch->NewEntry());
    element->PID = pid;
    element->Status = status;
    element->M1 = mo1 - 1; // added -1 as the numbering in the tree starts from 0
    element->M2 = mo2 - 1;
    element->D1 = da1 - 1;
    element->D2 = da2 - 1;
    element->E = index_to_particle[n]->momentum().e();
    element->Px = index_to_particle[n]->momentum().px();
    element->Py = index_to_particle[n]->momentum().py();
    element->Pz = index_to_particle[n]->momentum().pz();
    element->PT = sqrt(pow(element->Px,2)+pow(element->Py,2));
    momentum.SetPxPyPzE(element->Px, element->Py, element->Pz, element->E);
    signPz = (element->Pz >= 0.0) ? 1.0 : -1.0;
    element->Eta = element->PT < 1e-6 ? signPz*999.9 : momentum.Eta();
    element->Phi = index_to_particle[n]->momentum().phi();
    HepMC::GenVertex* vrtI = (index_to_particle[n])->production_vertex();
    HepMC::GenVertex::particles_in_const_iterator partI;
    if(vrtI) {
      element->T = vrtI->position().t();
      element->X = vrtI->position().x();
      element->Y = vrtI->position().y();
      element->Z = vrtI->position().z();
    }
    else {
      element->T = 0.;
      element->X = 0.;
      element->Y = 0.;
      element->Z = 0.;
    }  
  }
}
コード例 #2
0
ファイル: EDMToHepMCConverter.cpp プロジェクト: HEP-FCC/FCCSW
StatusCode EDMToHepMCConverter::execute() {

  const fcc::MCParticleCollection* particles = m_genphandle.get();
  // ownership of event given to data service at the end of execute
  HepMC::GenEvent* event = new HepMC::GenEvent;

  // conversion of units to EDM standard units:
  // First cover the case that hepMC file is not in expected units and then convert to EDM default
  double hepmc2EdmLength = conversion_factor(event->length_unit(), gen::hepmcdefault::length) * gen::hepmc2edm::length;
  double hepmc2EdmEnergy =
      conversion_factor(event->momentum_unit(), gen::hepmcdefault::energy) * gen::hepmc2edm::energy;

  for (auto p : *(particles)) {
    if (p.status() == 1) {  // only final state particles
      GenParticle* pHepMC =
          new GenParticle(HepMC::FourVector(p.p4().px, p.p4().py, p.p4().pz, p.p4().mass / hepmc2EdmEnergy),
                          p.pdgId(),
                          p.status());  // hepmc status code for final state particle

      fcc::ConstGenVertex vStart = p.startVertex();
      if (p.startVertex().isAvailable()) {
        HepMC::GenVertex* v =
            new HepMC::GenVertex(HepMC::FourVector(vStart.position().x / hepmc2EdmLength,
                                                   vStart.position().y / hepmc2EdmLength,
                                                   vStart.position().z / hepmc2EdmLength,
                                                   vStart.ctau() / Gaudi::Units::c_light / hepmc2EdmLength));

        v->add_particle_out(pHepMC);
        event->add_vertex(v);
      }
    }
  }

  m_hepmchandle.put(event);
  return StatusCode::SUCCESS;
}
コード例 #3
0
ファイル: ConstPtParticleGun.cpp プロジェクト: HEP-FCC/FCCSW
StatusCode ConstPtParticleGun::getNextEvent(HepMC::GenEvent& theEvent) {
  Gaudi::LorentzVector theFourMomentum;
  Gaudi::LorentzVector origin;
  // note: pgdid is set in function generateParticle
  int thePdgId;
  generateParticle(theFourMomentum, origin, thePdgId);

  // create HepMC Vertex --
  // by calling add_vertex(), the hepmc event is given ownership of the vertex
  HepMC::GenVertex* v = new HepMC::GenVertex(HepMC::FourVector(origin.X(), origin.Y(), origin.Z(), origin.T()));
  // create HepMC particle --
  // by calling add_particle_out(), the hepmc vertex is given ownership of the particle
  HepMC::GenParticle* p = new HepMC::GenParticle(
      HepMC::FourVector(theFourMomentum.Px(), theFourMomentum.Py(), theFourMomentum.Pz(), theFourMomentum.E()),
      thePdgId,
      1);  // hepmc status code for final state particle

  v->add_particle_out(p);

  theEvent.add_vertex(v);
  theEvent.set_signal_process_vertex(v);

  return StatusCode::SUCCESS;
}
コード例 #4
0
ファイル: HepMCToEDMConverter.cpp プロジェクト: HEP-FCC/FCCSW
StatusCode HepMCToEDMConverter::execute() {
  const HepMC::GenEvent* event = m_hepmchandle.get();
  fcc::MCParticleCollection* particles = new fcc::MCParticleCollection();
  fcc::GenVertexCollection* vertices = new fcc::GenVertexCollection();

  // conversion of units to EDM standard units:
  // First cover the case that hepMC file is not in expected units and then convert to EDM default
  double hepmc2EdmLength =
      HepMC::Units::conversion_factor(event->length_unit(), gen::hepmcdefault::length) * gen::hepmc2edm::length;
  double hepmc2EdmEnergy =
      HepMC::Units::conversion_factor(event->momentum_unit(), gen::hepmcdefault::energy) * gen::hepmc2edm::energy;
  
  // bookkeeping of particle / vertex relations
  std::unordered_map<const HepMC::GenVertex*, fcc::GenVertex> hepmcToEdmVertexMap;
  HepMC::FourVector tmp; /// temp variable for the transfer of position / momentom
  // iterate over particles in event
  for (auto particle_i = event->particles_begin(); particle_i != event->particles_end(); ++particle_i) {

    // if there is a list of statuses to filter: filter by status
    if(std::find(m_hepmcStatusList.begin(), m_hepmcStatusList.end(), (*particle_i)->status()) == m_hepmcStatusList.end() && m_hepmcStatusList.size() > 0) continue;
    // create edm 
    fcc::MCParticle particle = particles->create();
    // set mcparticle data members
    particle.pdgId((*particle_i)->pdg_id());
    particle.status((*particle_i)->status());
    /// lookup charge in particle properties
    HepPDT::ParticleID particleID((*particle_i)->pdg_id());
    particle.charge(particleID.charge());

    auto& p4 = particle.p4();
    tmp = (*particle_i)->momentum();
    p4.px = tmp.px() * hepmc2EdmEnergy;
    p4.py = tmp.py() * hepmc2EdmEnergy;
    p4.pz = tmp.pz() * hepmc2EdmEnergy;
    p4.mass = (*particle_i)->generated_mass() * hepmc2EdmEnergy;

    /// create production vertex, if it has not already been created and logged in the map
    HepMC::GenVertex* productionVertex = (*particle_i)->production_vertex();
    if (nullptr != productionVertex) {
      if (hepmcToEdmVertexMap.find(productionVertex) != hepmcToEdmVertexMap.end()) {
        // vertex already in map, no need to create a new one
        particle.startVertex(hepmcToEdmVertexMap[productionVertex]);
      } else {
        tmp = productionVertex->position();
        auto vertex = vertices->create();
        auto& position = vertex.position();
        position.x = tmp.x() * hepmc2EdmLength;
        position.y = tmp.y() * hepmc2EdmLength;
        position.z = tmp.z() * hepmc2EdmLength;
        vertex.ctau(tmp.t() * Gaudi::Units::c_light * hepmc2EdmLength);  // is ctau like this?
        // add vertex to map for further particles
        hepmcToEdmVertexMap.insert({productionVertex, vertex});
        particle.startVertex(vertex);
      }
    }

    /// create decay vertex, if it has not already been created and logged in the map
    HepMC::GenVertex* decayVertex = (*particle_i)->end_vertex();
    if (nullptr != decayVertex) {
      if (hepmcToEdmVertexMap.find(decayVertex) != hepmcToEdmVertexMap.end()) {
        // vertex already in map, no need to create a new one
        particle.endVertex(hepmcToEdmVertexMap[decayVertex]);
      } else {
        tmp = decayVertex->position();
        auto vertex = vertices->create();
        auto& position = vertex.position();
        position.x = tmp.x() * hepmc2EdmLength;
        position.y = tmp.y() * hepmc2EdmLength;
        position.z = tmp.z() * hepmc2EdmLength;
        vertex.ctau(tmp.t() * Gaudi::Units::c_light * hepmc2EdmLength);  // is ctau like this?
        // add vertex to map for further particles
        hepmcToEdmVertexMap.insert({decayVertex, vertex});
        particle.endVertex(vertex);
      }
    }

  } // particle loop

  m_genphandle.put(particles);
  m_genvhandle.put(vertices);
  return StatusCode::SUCCESS;
}
コード例 #5
0
ファイル: PHSartre.C プロジェクト: belmonrj/coresoftware
int PHSartre::process_event(PHCompositeNode *topNode) {

  if (verbosity > 1) cout << "PHSartre::process_event - event: " << _eventcount << endl;
  
  bool passedTrigger = false;
  Event *event = NULL;

  TLorentzVector *eIn     = NULL;
  TLorentzVector *pIn     = NULL;
  TLorentzVector *eOut    = NULL;
  TLorentzVector *gamma   = NULL;
  TLorentzVector *vm      = NULL;
  TLorentzVector *PomOut  = NULL;
  TLorentzVector *pOut    = NULL;
  TLorentzVector *vmDecay1 = NULL; 
  TLorentzVector *vmDecay2 = NULL; 
  unsigned int preVMDecaySize = 0; 

  while (!passedTrigger) {
    ++_gencount;

    // Generate a Sartre event
    event = _sartre->generateEvent();
        
    //
    //  If Sartre is run in UPC mode, half of the events needs to be
    //  rotated around and axis perpendicular to z:
    //  (only for symmetric events)
    //
    if(settings->UPC() and settings->A()==settings->UPCA()){
      randomlyReverseBeams(event);
    }
	
    // for sPHENIX/RHIC p+Au
    // (see comments in ReverseBeams)
    // reverse when the proton emits the virtual photon
	
    if(settings->UPC() and settings->A()==197){
      ReverseBeams(event);
    }

    // Set pointers to the parts of the event we will need:

    eIn     = &event->particles[0].p;
    pIn     = &event->particles[1].p;
    eOut    = &event->particles[2].p;
    gamma   = &event->particles[3].p;
    vm      = &event->particles[4].p;
    PomOut  = &event->particles[5].p;
    pOut    = &event->particles[6].p;

    // To allow the triggering to work properly, we need to decay the vector meson here

    preVMDecaySize = event->particles.size(); 

    if(doPerformDecay) {

      if( decay->SetDecay(*vm, 2, daughterMasses) ){
	double weight = decay->Generate(); // weight is always 1 here
	if ( (weight-1) > FLT_EPSILON) {
	  cout << "PHSartre: Warning decay weight != 1, weight = " << weight << endl;
	}
	TLorentzVector *vmDaughter1 = decay->GetDecay(0);
	TLorentzVector *vmDaughter2 = decay->GetDecay(1);

	event->particles[4].status = 2; // set VM status

	Particle vmDC1; 
	vmDC1.index = event->particles.size(); 
	vmDC1.pdgId =  daughterID; 
	vmDC1.status = 1; // final state
	vmDC1.p = *vmDaughter1; 
	vmDC1.parents.push_back(4);	
	event->particles.push_back(vmDC1); 
	vmDecay1 = &event->particles[event->particles.size()-1].p;

	Particle vmDC2; 
	vmDC2.index = event->particles.size(); 
	vmDC2.pdgId =  -daughterID; 
	vmDC2.status = 1; // final state
	vmDC2.p = *vmDaughter2; 
	vmDC2.parents.push_back(4);	
	event->particles.push_back(vmDC2); 
	vmDecay2 = &event->particles[event->particles.size()-1].p;

      }
      else {
	cout << "PHSartre: WARNING: Kinematics of Vector Meson does not allow decay!" << endl;
      }

    }

    // test trigger logic
    
    bool andScoreKeeper = true;
    if (verbosity > 2) {
      cout << "PHSartre::process_event - triggersize: " << _registeredTriggers.size() << endl;
    }

    for (unsigned int tr = 0; tr < _registeredTriggers.size(); tr++) { 
      bool trigResult = _registeredTriggers[tr]->Apply(event);

      if (verbosity > 2) {
	cout << "PHSartre::process_event trigger: "
	     << _registeredTriggers[tr]->GetName() << "  " << trigResult << endl;
      }

      if (_triggersOR && trigResult) {
	passedTrigger = true;
	break;
      } else if (_triggersAND) {
	andScoreKeeper &= trigResult;
      }
      
      if (verbosity > 2 && !passedTrigger) {
	cout << "PHSartre::process_event - failed trigger: "
	     << _registeredTriggers[tr]->GetName() <<  endl;
      }
    }

    if ((andScoreKeeper && _triggersAND) || (_registeredTriggers.size() == 0)) {
      passedTrigger = true;
    }

  }

  // fill HepMC object with event
  
  HepMC::GenEvent *genevent = new HepMC::GenEvent(HepMC::Units::GEV, HepMC::Units::MM);

  // add some information to the event
  genevent->set_event_number(_eventcount);

  // Set the PDF information
  HepMC::PdfInfo pdfinfo;
  pdfinfo.set_scalePDF(event->Q2);
  genevent->set_pdf_info(pdfinfo); 

  // We would also like to save:
  //
  // event->t;
  // event->x;
  // event->y;
  // event->s;
  // event->W;
  // event->xpom;
  // (event->polarization == transverse ? 0 : 1);
  // (event->diffractiveMode == coherent ? 0 : 1);
  // 
  // but there doesn't seem to be a good place to do so 
  // within the HepMC event information?
  //
  // t, W and Q^2 form a minial set of good variables for diffractive events
  // Maybe what I do is record the input particles to the event at the HepMC
  // vertices and reconstruct the kinematics from there? 
  
  // Create HepMC vertices and add final state particles to them

  // First, the emitter(electron)-virtual photon vertex:

  HepMC::GenVertex* egammavtx = new HepMC::GenVertex(CLHEP::HepLorentzVector(0.0,0.0,0.0,0.0));
  genevent->add_vertex(egammavtx); 

  egammavtx->add_particle_in( 
			 new HepMC::GenParticle( CLHEP::HepLorentzVector(eIn->Px(),
									 eIn->Py(),
									 eIn->Pz(),
									 eIn->E()), 
						 event->particles[0].pdgId, 
						 3 ) 
			  );

  HepMC::GenParticle *hgamma =  new HepMC::GenParticle( CLHEP::HepLorentzVector(gamma->Px(),
									 gamma->Py(),
									 gamma->Pz(),
									 gamma->E()), 
						event->particles[3].pdgId, 
						3 ); 

  egammavtx->add_particle_out(hgamma);

  egammavtx->add_particle_out( 
			 new HepMC::GenParticle( CLHEP::HepLorentzVector(eOut->Px(),
									 eOut->Py(),
									 eOut->Pz(),
									 eOut->E()), 
						 event->particles[2].pdgId, 
						 1 ) 
			  );

  // Next, the hadron-pomeron vertex:

  HepMC::GenVertex* ppomvtx = new HepMC::GenVertex(CLHEP::HepLorentzVector(0.0,0.0,0.0,0.0));
  genevent->add_vertex(ppomvtx); 


  ppomvtx->add_particle_in( 
			 new HepMC::GenParticle( CLHEP::HepLorentzVector(pIn->Px(),
									 pIn->Py(),
									 pIn->Pz(),
									 pIn->E()), 
						 event->particles[1].pdgId, 
						 3 ) 
			     );

  HepMC::GenParticle *hPomOut = new HepMC::GenParticle( CLHEP::HepLorentzVector(PomOut->Px(),
									 PomOut->Py(),
									 PomOut->Pz(),
									 PomOut->E()), 
						 event->particles[5].pdgId, 
						 3 ); 

  ppomvtx->add_particle_out(hPomOut); 

  // If this is a nuclear breakup, add in the nuclear fragments
  // Otherwise, add in the outgoing hadron
        
  //If the event is incoherent, and nuclear breakup is enabled, fill the remnants to the tree
  if(settings->enableNuclearBreakup() and event->diffractiveMode == incoherent){
    for(unsigned int iParticle=7; iParticle < preVMDecaySize; iParticle++){
      if(event->particles[iParticle].status == 1) {  // Final-state particle
	const Particle& particle = event->particles[iParticle];	  
	ppomvtx->add_particle_out( 
			       new HepMC::GenParticle( CLHEP::HepLorentzVector(particle.p.Px(),
								 particle.p.Py(),
								 particle.p.Pz(),
								 particle.p.E()), 
						particle.pdgId, 
						1 ) 
				);
      }  
    }  
  }
  else{

    ppomvtx->add_particle_out( 
			      new HepMC::GenParticle( CLHEP::HepLorentzVector(pOut->Px(),
									      pOut->Py(),
									      pOut->Pz(),
									      pOut->E()), 
						      event->particles[6].pdgId, 
						      1 ) 
			       );
  }

  // The Pomeron-Photon vertex

  HepMC::GenVertex* gammapomvtx = new HepMC::GenVertex(CLHEP::HepLorentzVector(0.0,0.0,0.0,0.0));
  genevent->add_vertex(gammapomvtx); 
  
  gammapomvtx->add_particle_in(hgamma); 
  gammapomvtx->add_particle_in(hPomOut); 

  int isVMFinal = 1; 
  if(doPerformDecay) isVMFinal = 2; 

  HepMC::GenParticle *hvm = new HepMC::GenParticle( CLHEP::HepLorentzVector(vm->Px(),
									    vm->Py(),
									    vm->Pz(),
									    vm->E()), 
						   event->particles[4].pdgId, 
						   isVMFinal ) ; 

  gammapomvtx->add_particle_out( hvm );
 
  // Add the VM decay to the event

  if(doPerformDecay) {

    if(vmDecay1 && vmDecay2){

      HepMC::GenVertex* fvtx = new HepMC::GenVertex(CLHEP::HepLorentzVector(0.0,0.0,0.0,0.0));
      genevent->add_vertex(fvtx); 

      fvtx->add_particle_in( hvm ); 

      fvtx->add_particle_out( 
			 new HepMC::GenParticle( CLHEP::HepLorentzVector(vmDecay1->Px(),
							   vmDecay1->Py(),
							   vmDecay1->Pz(),
							   vmDecay1->E()), 
					  daughterID, 
					  1 ) 
			  );
      fvtx->add_particle_out( 
			 new HepMC::GenParticle( CLHEP::HepLorentzVector(vmDecay2->Px(),
							   vmDecay2->Py(),
							   vmDecay2->Pz(),
							   vmDecay2->E()), 
					  -daughterID, 
					  1 ) 
			  );

    }
    else {
      cout << "PHSartre: WARNING: Kinematics of Vector Meson does not allow decay!" << endl;
    }

  }

  // pass HepMC to PHNode
  
  PHHepMCGenEvent * success = hepmc_helper . insert_event(genevent);
  if (!success) {
    cout << "PHSartre::process_event - Failed to add event to HepMC record!" << endl;
    return Fun4AllReturnCodes::ABORTRUN;
  }


  // print outs
  
  if (verbosity > 2) cout << "PHSartre::process_event - FINISHED WHOLE EVENT" << endl;

  ++_eventcount;
  return Fun4AllReturnCodes::EVENT_OK;
}
コード例 #6
0
ファイル: HepMC2_Interface.C プロジェクト: ktf/sherpa
bool HepMC2_Interface::Sherpa2HepMC(ATOOLS::Blob_List *const blobs,
                                    HepMC::GenEvent& event, double weight)
{
#ifdef USING__HEPMC2__UNITS
  event.use_units(HepMC::Units::GEV,
                  HepMC::Units::MM);
#endif
  event.set_event_number(ATOOLS::rpa->gen.NumberOfGeneratedEvents());
  size_t decid(11);
  std::map<size_t,size_t> decids;
  Blob *sp(blobs->FindFirst(btp::Signal_Process));
  if (sp) {
    Blob_Data_Base *info((*sp)["Decay_Info"]);
    if (info) {
      DecayInfo_Vector decs(info->Get<DecayInfo_Vector>());
      for (size_t i(0);i<decs.size();++i) decids[decs[i]->m_id]=++decid;
    }
  }
  m_blob2genvertex.clear();
  m_particle2genparticle.clear();
  HepMC::GenVertex * vertex;
  std::vector<HepMC::GenParticle*> beamparticles;
  for (ATOOLS::Blob_List::iterator blit=blobs->begin();
       blit!=blobs->end();++blit) {
    if (Sherpa2HepMC(*(blit),vertex,decids)) {
      event.add_vertex(vertex);
      if ((*blit)->Type()==ATOOLS::btp::Signal_Process) {
        if ((**blit)["NLO_subeventlist"]) {
          THROW(fatal_error,"Events containing correlated subtraction events"
                +std::string(" cannot be translated into the full HepMC event")
                +std::string(" format.\n")
                +std::string("   Try 'EVENT_OUTPUT=HepMC_Short' instead."));
        }
        event.set_signal_process_vertex(vertex);
        if((*blit)->NInP()==2) {
          kf_code fl1=(*blit)->InParticle(0)->Flav().HepEvt();
          kf_code fl2=(*blit)->InParticle(1)->Flav().HepEvt();
          double x1=(*blit)->InParticle(0)->Momentum()[0]/rpa->gen.PBeam(0)[0];
          double x2=(*blit)->InParticle(1)->Momentum()[0]/rpa->gen.PBeam(1)[0];
          double q(0.0), p1(0.0), p2(0.0);
          Blob_Data_Base *facscale((**blit)["Factorisation_Scale"]);
	  if (facscale) q=sqrt(facscale->Get<double>());
	  Blob_Data_Base *xf1((**blit)["XF1"]);
          Blob_Data_Base *xf2((**blit)["XF2"]);
          if (xf1) p1=xf1->Get<double>();
          if (xf2) p2=xf2->Get<double>();
	  HepMC::PdfInfo pdfinfo(fl1, fl2, x1, x2, q, p1, p2);
          event.set_pdf_info(pdfinfo);
        }
      }
      else if ((*blit)->Type()==ATOOLS::btp::Beam || 
	       (*blit)->Type()==ATOOLS::btp::Bunch) {
        for (HepMC::GenVertex::particles_in_const_iterator 
	       pit=vertex->particles_in_const_begin();
             pit!=vertex->particles_in_const_end(); ++pit) {
          if ((*pit)->production_vertex()==NULL) {
            beamparticles.push_back(*pit);
          }
        }
      }
    }
  }
  if (beamparticles.size()==2) {
    event.set_beam_particles(beamparticles[0],beamparticles[1]);
  }
  std::vector<double> weights;
  weights.push_back(weight);
  if (sp) {
    Blob_Data_Base *info((*sp)["MEWeight"]);
    if (!info) THROW(fatal_error,"Missing weight info.");
    double meweight(info->Get<double>());
    weights.push_back(meweight);
    Blob_Data_Base *ofni((*sp)["Weight_Norm"]);
    if (!ofni) THROW(fatal_error,"Missing weight normalisation.");
    double weightnorm(ofni->Get<double>());
    weights.push_back(weightnorm);
    ofni=(*sp)["Trials"];
    if (!ofni) THROW(fatal_error,"Missing nof trials.");
    double trials(ofni->Get<double>());
    weights.push_back(trials);
  }
  event.weights()=weights;
  return true;
}