// ----------------------------------------------------------------------------- // // ----------------------------------------------------------------------------- void ChangeResolution::execute() { setErrorCondition(0); dataCheck(); if(getErrorCondition() < 0) { return; } DataContainer::Pointer m; if(m_SaveAsNewDataContainer == false) { m = getDataContainerArray()->getDataContainer(getCellAttributeMatrixPath().getDataContainerName()); } else { m = getDataContainerArray()->getDataContainer(getNewDataContainerName()); } if(m->getGeometryAs<ImageGeom>()->getXRes() == m_Resolution.x && m->getGeometryAs<ImageGeom>()->getYRes() == m_Resolution.y && m->getGeometryAs<ImageGeom>()->getZRes() == m_Resolution.z) { return; } AttributeMatrix::Pointer cellAttrMat = m->getAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName()); size_t dims[3] = { 0, 0, 0 }; m->getGeometryAs<ImageGeom>()->getDimensions(dims); float sizex = (dims[0]) * m->getGeometryAs<ImageGeom>()->getXRes(); float sizey = (dims[1]) * m->getGeometryAs<ImageGeom>()->getYRes(); float sizez = (dims[2]) * m->getGeometryAs<ImageGeom>()->getZRes(); size_t m_XP = size_t(sizex / m_Resolution.x); size_t m_YP = size_t(sizey / m_Resolution.y); size_t m_ZP = size_t(sizez / m_Resolution.z); if (m_XP == 0) { m_XP = 1; } if (m_YP == 0) { m_YP = 1; } if (m_ZP == 0) { m_ZP = 1; } size_t totalPoints = m_XP * m_YP * m_ZP; float x = 0.0f, y = 0.0f, z = 0.0f; size_t col = 0, row = 0, plane = 0; size_t index; size_t index_old; std::vector<size_t> newindicies(totalPoints); for (size_t i = 0; i < m_ZP; i++) { QString ss = QObject::tr("Changing Resolution - %1 Percent Complete").arg(((float)i / m->getGeometryAs<ImageGeom>()->getZPoints()) * 100); notifyStatusMessage(getMessagePrefix(), getHumanLabel(), ss); for (size_t j = 0; j < m_YP; j++) { for (size_t k = 0; k < m_XP; k++) { x = (k * m_Resolution.x); y = (j * m_Resolution.y); z = (i * m_Resolution.z); col = size_t(x / m->getGeometryAs<ImageGeom>()->getXRes()); row = size_t(y / m->getGeometryAs<ImageGeom>()->getYRes()); plane = size_t(z / m->getGeometryAs<ImageGeom>()->getZRes()); index_old = (plane * m->getGeometryAs<ImageGeom>()->getXPoints() * m->getGeometryAs<ImageGeom>()->getYPoints()) + (row * m->getGeometryAs<ImageGeom>()->getXPoints()) + col; index = (i * m_XP * m_YP) + (j * m_XP) + k; newindicies[index] = index_old; } } } QVector<size_t> tDims(3, 0); tDims[0] = m_XP; tDims[1] = m_YP; tDims[2] = m_ZP; AttributeMatrix::Pointer newCellAttrMat = AttributeMatrix::New(tDims, cellAttrMat->getName(), cellAttrMat->getType()); QList<QString> voxelArrayNames = cellAttrMat->getAttributeArrayNames(); for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter) { IDataArray::Pointer p = cellAttrMat->getAttributeArray(*iter); // Make a copy of the 'p' array that has the same name. When placed into // the data container this will over write the current array with // the same name. At least in theory. IDataArray::Pointer data = p->createNewArray(p->getNumberOfTuples(), p->getComponentDimensions(), p->getName()); data->resize(totalPoints); void* source = NULL; void* destination = NULL; size_t newIndicies_I = 0; int nComp = data->getNumberOfComponents(); for (size_t i = 0; i < static_cast<size_t>(totalPoints); i++) { newIndicies_I = newindicies[i]; source = p->getVoidPointer((nComp * newIndicies_I)); destination = data->getVoidPointer((data->getNumberOfComponents() * i)); ::memcpy(destination, source, p->getTypeSize() * data->getNumberOfComponents()); } cellAttrMat->removeAttributeArray(*iter); newCellAttrMat->addAttributeArray(*iter, data); } m->getGeometryAs<ImageGeom>()->setResolution(m_Resolution.x, m_Resolution.y, m_Resolution.z); m->getGeometryAs<ImageGeom>()->setDimensions(m_XP, m_YP, m_ZP); m->removeAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName()); m->addAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName(), newCellAttrMat); // Feature Ids MUST already be renumbered. if (m_RenumberFeatures == true) { totalPoints = m->getGeometryAs<ImageGeom>()->getNumberOfElements(); AttributeMatrix::Pointer cellFeatureAttrMat = m->getAttributeMatrix(getCellFeatureAttributeMatrixPath().getAttributeMatrixName()); size_t totalFeatures = cellFeatureAttrMat->getNumTuples(); QVector<bool> activeObjects(totalFeatures, false); if (0 == totalFeatures) { notifyErrorMessage(getHumanLabel(), "The number of Features is 0 and should be greater than 0", -600); return; } updateCellInstancePointers(); // Find the unique set of feature ids for (size_t i = 0; i < totalPoints; ++i) { activeObjects[m_FeatureIds[i]] = true; } cellFeatureAttrMat->removeInactiveObjects(activeObjects, m_FeatureIdsPtr.lock()); } notifyStatusMessage(getHumanLabel(), "Complete"); }
// ----------------------------------------------------------------------------- // // ----------------------------------------------------------------------------- void WarpRegularGrid::execute() { setErrorCondition(0); dataCheck(); if(getErrorCondition() < 0) { return; } DataContainer::Pointer m; if (m_SaveAsNewDataContainer == false) { m = getDataContainerArray()->getDataContainer(getCellAttributeMatrixPath().getDataContainerName()); } else { m = getDataContainerArray()->getDataContainer(getNewDataContainerName()); } AttributeMatrix::Pointer cellAttrMat = m->getAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName()); AttributeMatrix::Pointer newCellAttrMat = cellAttrMat->deepCopy(); size_t dims[3] = { 0, 0, 0 }; m->getGeometryAs<ImageGeom>()->getDimensions(dims); float res[3] = { 0.0f, 0.0f, 0.0f }; m->getGeometryAs<ImageGeom>()->getResolution(res); size_t totalPoints = m->getGeometryAs<ImageGeom>()->getNumberOfElements(); float x = 0.0f, y = 0.0f, z = 0.0f; float newX = 0.0f, newY = 0.0f; int col = 0.0f, row = 0.0f, plane = 0.0f; size_t index; size_t index_old; std::vector<size_t> newindicies(totalPoints); std::vector<bool> goodPoint(totalPoints, true); for (size_t i = 0; i < dims[2]; i++) { QString ss = QObject::tr("Warping Data - %1 Percent Complete").arg(((float)i / dims[2]) * 100); notifyStatusMessage(getMessagePrefix(), getHumanLabel(), ss); for (size_t j = 0; j < dims[1]; j++) { for (size_t k = 0; k < dims[0]; k++) { x = static_cast<float>((k * res[0])); y = static_cast<float>((j * res[1])); z = static_cast<float>((i * res[2])); index = (i * dims[0] * dims[1]) + (j * dims[0]) + k; determine_warped_coordinates(x, y, newX, newY); col = newX / res[0]; row = newY / res[1]; plane = i; index_old = (plane * dims[0] * dims[1]) + (row * dims[0]) + col; newindicies[index] = index_old; if (col > 0 && col < dims[0] && row > 0 && row < dims[1]) { goodPoint[index] = true; } else { goodPoint[index] = false; } } } } QList<QString> voxelArrayNames = cellAttrMat->getAttributeArrayNames(); for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter) { IDataArray::Pointer p = cellAttrMat->getAttributeArray(*iter); // Make a copy of the 'p' array that has the same name. When placed into // the data container this will over write the current array with // the same name. At least in theory IDataArray::Pointer data = p->createNewArray(p->getNumberOfTuples(), p->getComponentDimensions(), p->getName()); data->resize(totalPoints); void* source = NULL; void* destination = NULL; size_t newIndicies_I = 0; int nComp = data->getNumberOfComponents(); for (size_t i = 0; i < static_cast<size_t>(totalPoints); i++) { newIndicies_I = newindicies[i]; if(goodPoint[i] == true) { source = p->getVoidPointer((nComp * newIndicies_I)); destination = data->getVoidPointer((data->getNumberOfComponents() * i)); ::memcpy(destination, source, p->getTypeSize() * data->getNumberOfComponents()); } else { int var = 0; data->initializeTuple(i, &var); } } cellAttrMat->removeAttributeArray(*iter); newCellAttrMat->addAttributeArray(*iter, data); } m->removeAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName()); m->addAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName(), newCellAttrMat); notifyStatusMessage(getHumanLabel(), "Complete"); }
// ----------------------------------------------------------------------------- // // ----------------------------------------------------------------------------- void NearestPointFuseRegularGrids::execute() { setErrorCondition(0); dataCheck(); if(getErrorCondition() < 0) { return; } DataContainer::Pointer refDC = getDataContainerArray()->getDataContainer(m_ReferenceCellAttributeMatrixPath.getDataContainerName()); DataContainer::Pointer sampleDC = getDataContainerArray()->getDataContainer(m_SamplingCellAttributeMatrixPath.getDataContainerName()); AttributeMatrix::Pointer refAttrMat = refDC->getAttributeMatrix(m_ReferenceCellAttributeMatrixPath.getAttributeMatrixName()); AttributeMatrix::Pointer sampleAttrMat = sampleDC->getAttributeMatrix(m_SamplingCellAttributeMatrixPath.getAttributeMatrixName()); // Get dimensions and resolutions of two grids size_t _refDims[3] = { 0, 0, 0 }; size_t _sampleDims[3] = { 0, 0, 0 }; float refRes[3] = { 0.0f, 0.0f, 0.0f }; float sampleRes[3] = { 0.0f, 0.0f, 0.0f }; float refOrigin[3] = { 0.0f, 0.0f, 0.0f }; float sampleOrigin[3] = { 0.0f, 0.0f, 0.0f }; refDC->getGeometryAs<ImageGeom>()->getDimensions(_refDims); sampleDC->getGeometryAs<ImageGeom>()->getDimensions(_sampleDims); refDC->getGeometryAs<ImageGeom>()->getResolution(refRes); sampleDC->getGeometryAs<ImageGeom>()->getResolution(sampleRes); refDC->getGeometryAs<ImageGeom>()->getOrigin(refOrigin); sampleDC->getGeometryAs<ImageGeom>()->getOrigin(sampleOrigin); // Further down we divide by sampleRes, so here check to make sure that no components of the resolution are 0 // This would be incredible unusual behavior if it were to occur, hence why we don't spend the time // doing the validation up in the dataCheck bool zeroRes = false; for (size_t i = 0; i < 3; i++) { if (sampleRes[i] == 0.0f) { zeroRes = true; break; } } if (zeroRes == true) { QString ss = QObject::tr("A component of the resolution for the Image Geometry associated with DataContainer '%1' is 0. This would result in a division by 0 operation").arg(m_SamplingCellAttributeMatrixPath.getDataContainerName()); setErrorCondition(-5555); notifyErrorMessage(getHumanLabel(), ss, getErrorCondition()); return; } int64_t refDims[3] = { 0, 0, 0 }; int64_t sampleDims[3] = { 0, 0, 0 }; for (size_t i = 0; i < 3; i++) { refDims[i] = static_cast<int64_t>(_refDims[i]); sampleDims[i] = static_cast<int64_t>(_sampleDims[i]); } int64_t numRefTuples = refDims[0] * refDims[1] * refDims[2]; float x = 0.0f, y = 0.0f, z = 0.0f; int64_t col = 0, row = 0, plane = 0; int64_t refIndex = 0; int64_t sampleIndex = 0; int64_t planeComp = 0, rowComp = 0; // Create arrays on the reference grid to hold data present on the sampling grid QList<QString> voxelArrayNames = sampleAttrMat->getAttributeArrayNames(); for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter) { IDataArray::Pointer p = sampleAttrMat->getAttributeArray(*iter); // Make a copy of the 'p' array that has the same name. When placed into // the data container this will over write the current array with // the same name. At least in theory IDataArray::Pointer data = p->createNewArray(numRefTuples, p->getComponentDimensions(), p->getName()); refAttrMat->addAttributeArray(p->getName(), data); } bool outside = false; for (int64_t i = 0; i < refDims[2]; i++) { planeComp = i * refDims[0] * refDims[1]; for (int64_t j = 0; j < refDims[1]; j++) { rowComp = j * refDims[0]; for (int64_t k = 0; k < refDims[0]; k++) { outside = false; x = (k * refRes[0] + refOrigin[0]); y = (j * refRes[1] + refOrigin[1]); z = (i * refRes[2] + refOrigin[2]); if ((x - sampleOrigin[0]) < 0) { outside = true; } else { col = int64_t((x - sampleOrigin[0]) / sampleRes[0]); } if ((y - sampleOrigin[1]) < 0) { outside = true; } else { row = int64_t((y - sampleOrigin[1]) / sampleRes[1]); } if ((z - sampleOrigin[2]) < 0) { outside = true; } else { plane = int64_t((z - sampleOrigin[2]) / sampleRes[2]); } if (col > sampleDims[0] || row > sampleDims[1] || plane > sampleDims[2]) { outside = true; } if (outside == false) { sampleIndex = (plane * sampleDims[0] * sampleDims[1]) + (row * sampleDims[0]) + col; refIndex = planeComp + rowComp + k; for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter) { IDataArray::Pointer p = sampleAttrMat->getAttributeArray(*iter); // Make a copy of the 'p' array that has the same name. When placed into // the data container this will over write the current array with // the same name. At least in theory IDataArray::Pointer data = refAttrMat->getAttributeArray(*iter); void* source = NULL; void* destination = NULL; int nComp = data->getNumberOfComponents(); source = p->getVoidPointer((nComp * sampleIndex)); destination = data->getVoidPointer((nComp * refIndex)); ::memcpy(destination, source, p->getTypeSize() * nComp); } } } } } notifyStatusMessage(getHumanLabel(), "Complete"); }
// ----------------------------------------------------------------------------- // // ----------------------------------------------------------------------------- void RotateSampleRefFrame::execute() { setErrorCondition(0); dataCheck(); if(getErrorCondition() < 0) { return; } DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getCellAttributeMatrixPath().getDataContainerName()); float rotAngle = m_RotationAngle * SIMPLib::Constants::k_Pi / 180.0; int64_t xp = 0, yp = 0, zp = 0; float xRes = 0.0f, yRes = 0.0f, zRes = 0.0f; int64_t xpNew = 0, ypNew = 0, zpNew = 0; float xResNew = 0.0f, yResNew = 0.0f, zResNew = 0.0f; RotateSampleRefFrameImplArg_t params; xp = static_cast<int64_t>(m->getGeometryAs<ImageGeom>()->getXPoints()); xRes = m->getGeometryAs<ImageGeom>()->getXRes(); yp = static_cast<int64_t>(m->getGeometryAs<ImageGeom>()->getYPoints()); yRes = m->getGeometryAs<ImageGeom>()->getYRes(); zp = static_cast<int64_t>(m->getGeometryAs<ImageGeom>()->getZPoints()); zRes = m->getGeometryAs<ImageGeom>()->getZRes(); params.xp = xp; params.xRes = xRes; params.yp = yp; params.yRes = yRes; params.zp = zp; params.zRes = zRes; size_t col = 0, row = 0, plane = 0; float rotMat[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } }; float coords[3] = { 0.0f, 0.0f, 0.0f }; float newcoords[3] = { 0.0f, 0.0f, 0.0f }; float xMin = std::numeric_limits<float>::max(); float xMax = std::numeric_limits<float>::min(); float yMin = std::numeric_limits<float>::max(); float yMax = std::numeric_limits<float>::min(); float zMin = std::numeric_limits<float>::max(); float zMax = std::numeric_limits<float>::min(); FOrientArrayType om(9); FOrientTransformsType::ax2om(FOrientArrayType(m_RotationAxis.x, m_RotationAxis.y, m_RotationAxis.z, rotAngle), om); om.toGMatrix(rotMat); for (int32_t i = 0; i < 8; i++) { if (i == 0) { col = 0, row = 0, plane = 0; } if (i == 1) { col = xp - 1, row = 0, plane = 0; } if (i == 2) { col = 0, row = yp - 1, plane = 0; } if (i == 3) { col = xp - 1, row = yp - 1, plane = 0; } if (i == 4) { col = 0, row = 0, plane = zp - 1; } if (i == 5) { col = xp - 1, row = 0, plane = zp - 1; } if (i == 6) { col = 0, row = yp - 1, plane = zp - 1; } if (i == 7) { col = xp - 1, row = yp - 1, plane = zp - 1; } coords[0] = static_cast<float>(col * xRes); coords[1] = static_cast<float>(row * yRes); coords[2] = static_cast<float>(plane * zRes); MatrixMath::Multiply3x3with3x1(rotMat, coords, newcoords); if (newcoords[0] < xMin) { xMin = newcoords[0]; } if (newcoords[0] > xMax) { xMax = newcoords[0]; } if (newcoords[1] < yMin) { yMin = newcoords[1]; } if (newcoords[1] > yMax) { yMax = newcoords[1]; } if (newcoords[2] < zMin) { zMin = newcoords[2]; } if (newcoords[2] > zMax) { zMax = newcoords[2]; } } float xAxis[3] = {1, 0, 0}; float yAxis[3] = {0, 1, 0}; float zAxis[3] = {0, 0, 1}; float xAxisNew[3] = { 0.0f, 0.0f, 0.0f }; float yAxisNew[3] = { 0.0f, 0.0f, 0.0f }; float zAxisNew[3] = { 0.0f, 0.0f, 0.0f }; MatrixMath::Multiply3x3with3x1(rotMat, xAxis, xAxisNew); MatrixMath::Multiply3x3with3x1(rotMat, yAxis, yAxisNew); MatrixMath::Multiply3x3with3x1(rotMat, zAxis, zAxisNew); float closestAxis = 0.0f; xResNew = xRes; closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(xAxis, xAxisNew)); if (fabs(GeometryMath::CosThetaBetweenVectors(yAxis, xAxisNew)) > closestAxis) { xResNew = yRes, closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(yAxis, xAxisNew)); } if (fabs(GeometryMath::CosThetaBetweenVectors(zAxis, xAxisNew)) > closestAxis) { xResNew = zRes, closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(zAxis, xAxisNew)); } yResNew = yRes; closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(yAxis, yAxisNew)); if (fabs(GeometryMath::CosThetaBetweenVectors(xAxis, yAxisNew)) > closestAxis) { yResNew = xRes, closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(xAxis, yAxisNew)); } if (fabs(GeometryMath::CosThetaBetweenVectors(zAxis, yAxisNew)) > closestAxis) { yResNew = zRes, closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(zAxis, yAxisNew)); } zResNew = zRes; closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(zAxis, zAxisNew)); if (fabs(GeometryMath::CosThetaBetweenVectors(xAxis, zAxisNew)) > closestAxis) { zResNew = xRes, closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(xAxis, zAxisNew)); } if (fabs(GeometryMath::CosThetaBetweenVectors(yAxis, zAxisNew)) > closestAxis) { zResNew = yRes, closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(yAxis, zAxisNew)); } xpNew = static_cast<int64_t>(nearbyint((xMax - xMin) / xResNew) + 1); ypNew = static_cast<int64_t>(nearbyint((yMax - yMin) / yResNew) + 1); zpNew = static_cast<int64_t>(nearbyint((zMax - zMin) / zResNew) + 1); params.xpNew = xpNew; params.xResNew = xResNew; params.xMinNew = xMin; params.ypNew = ypNew; params.yResNew = yResNew; params.yMinNew = yMin; params.zpNew = zpNew; params.zResNew = zResNew; params.zMinNew = zMin; int64_t newNumCellTuples = params.xpNew * params.ypNew * params.zpNew; DataArray<int64_t>::Pointer newIndiciesPtr = DataArray<int64_t>::CreateArray(newNumCellTuples, "_INTERNAL_USE_ONLY_RotateSampleRef_NewIndicies"); newIndiciesPtr->initializeWithValue(-1); int64_t* newindicies = newIndiciesPtr->getPointer(0); #ifdef SIMPLib_USE_PARALLEL_ALGORITHMS tbb::task_scheduler_init init; bool doParallel = true; #endif #ifdef SIMPLib_USE_PARALLEL_ALGORITHMS if (doParallel == true) { tbb::parallel_for(tbb::blocked_range3d<int64_t, int64_t, int64_t>(0, params.zpNew, 0, params.ypNew, 0, params.xpNew), RotateSampleRefFrameImpl(newIndiciesPtr, ¶ms, rotMat, m_SliceBySlice), tbb::auto_partitioner()); } else #endif { RotateSampleRefFrameImpl serial(newIndiciesPtr, ¶ms, rotMat, m_SliceBySlice); serial.convert(0, params.zpNew, 0, params.ypNew, 0, params.xpNew); } // This could technically be parallelized also where each thread takes an array to adjust. Except // that the DataContainer is NOT thread safe or re-entrant so that would actually be a BAD idea. QString attrMatName = getCellAttributeMatrixPath().getAttributeMatrixName(); QList<QString> voxelArrayNames = m->getAttributeMatrix(attrMatName)->getAttributeArrayNames(); // resize attribute matrix QVector<size_t> tDims(3); tDims[0] = params.xpNew; tDims[1] = params.ypNew; tDims[2] = params.zpNew; m->getAttributeMatrix(attrMatName)->resizeAttributeArrays(tDims); for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter) { IDataArray::Pointer p = m->getAttributeMatrix(attrMatName)->getAttributeArray(*iter); // Make a copy of the 'p' array that has the same name. When placed into // the data container this will over write the current array with // the same name. IDataArray::Pointer data = p->createNewArray(newNumCellTuples, p->getComponentDimensions(), p->getName()); void* source = NULL; void* destination = NULL; int64_t newIndicies_I = 0; int32_t nComp = data->getNumberOfComponents(); for (size_t i = 0; i < static_cast<size_t>(newNumCellTuples); i++) { newIndicies_I = newindicies[i]; if(newIndicies_I >= 0) { source = p->getVoidPointer((nComp * newIndicies_I)); if (NULL == source) { QString ss = QObject::tr("The index is outside the bounds of the source array"); setErrorCondition(-11004); notifyErrorMessage(getHumanLabel(), ss, getErrorCondition()); return; } destination = data->getVoidPointer((data->getNumberOfComponents() * i)); ::memcpy(destination, source, p->getTypeSize() * data->getNumberOfComponents()); } else { data->initializeTuple(i, 0); } } m->getAttributeMatrix(attrMatName)->addAttributeArray(*iter, data); } m->getGeometryAs<ImageGeom>()->setResolution(params.xResNew, params.yResNew, params.zResNew); m->getGeometryAs<ImageGeom>()->setDimensions(params.xpNew, params.ypNew, params.zpNew); m->getGeometryAs<ImageGeom>()->setOrigin(xMin, yMin, zMin); notifyStatusMessage(getHumanLabel(), "Complete"); }
// ----------------------------------------------------------------------------- // // ----------------------------------------------------------------------------- void RegularizeZSpacing::execute() { setErrorCondition(0); dataCheck(); if(getErrorCondition() < 0) { return; } DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getCellAttributeMatrixPath().getDataContainerName()); size_t dims[3]; m->getGeometryAs<ImageGeom>()->getDimensions(dims); std::ifstream inFile; inFile.open(m_InputFile.toLatin1().data()); float zval = 0.0f; std::vector<float> zboundvalues(dims[2] + 1, 0.0); for (size_t iter = 0; iter < dims[2] + 1; iter++) { inFile >> zval; zboundvalues[iter] = zval; } inFile.close(); float xRes = m->getGeometryAs<ImageGeom>()->getXRes(); float yRes = m->getGeometryAs<ImageGeom>()->getYRes(); float sizez = zboundvalues[dims[2]]; size_t m_XP = dims[0]; size_t m_YP = dims[1]; size_t m_ZP = static_cast<size_t>(sizez / m_NewZRes); if (m_ZP == 0) { m_ZP = 1; } size_t totalPoints = m_XP * m_YP * m_ZP; size_t index = 0, oldindex = 0; size_t plane = 0; std::vector<size_t> newindicies(totalPoints, 0); for (size_t i = 0; i < m_ZP; i++) { plane = 0; for (size_t iter = 1; iter < dims[2]; iter++) { if ((i * m_NewZRes) > zboundvalues[iter]) { plane = iter; } } for (size_t j = 0; j < m_YP; j++) { for (size_t k = 0; k < m_XP; k++) { oldindex = (plane * dims[0] * dims[1]) + (j * dims[0]) + k; index = (i * dims[0] * dims[1]) + (j * dims[0]) + k; newindicies[index] = oldindex; } } } AttributeMatrix::Pointer cellAttrMat = m->getAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName()); QVector<size_t> tDims(3, 0); tDims[0] = m_XP; tDims[1] = m_YP; tDims[2] = m_ZP; AttributeMatrix::Pointer newCellAttrMat = AttributeMatrix::New(tDims, cellAttrMat->getName(), cellAttrMat->getType()); QList<QString> voxelArrayNames = cellAttrMat->getAttributeArrayNames(); for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter) { IDataArray::Pointer p = cellAttrMat->getAttributeArray(*iter); // Make a copy of the 'p' array that has the same name. When placed into // the data container this will over write the current array with // the same name. At least in theory IDataArray::Pointer data = p->createNewArray(p->getNumberOfTuples(), p->getComponentDimensions(), p->getName()); data->resize(totalPoints); void* source = NULL; void* destination = NULL; size_t newIndicies_I = 0; int nComp = data->getNumberOfComponents(); for (size_t i = 0; i < static_cast<size_t>(totalPoints); i++) { newIndicies_I = newindicies[i]; source = p->getVoidPointer((nComp * newIndicies_I)); destination = data->getVoidPointer((data->getNumberOfComponents() * i)); ::memcpy(destination, source, p->getTypeSize() * data->getNumberOfComponents()); } cellAttrMat->removeAttributeArray(*iter); newCellAttrMat->addAttributeArray(*iter, data); } m->getGeometryAs<ImageGeom>()->setResolution(xRes, yRes, m_NewZRes); m->getGeometryAs<ImageGeom>()->setDimensions(m_XP, m_YP, m_ZP); m->removeAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName()); m->addAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName(), newCellAttrMat); notifyStatusMessage(getHumanLabel(), "Complete"); }