void Thread::Stop() { // Release all the mutexes that this thread holds ReleaseThreadMutexes(this); // Cancel any outstanding wakeup events for this thread CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle); wakeup_callback_handle_table.Close(callback_handle); callback_handle = 0; // Clean up thread from ready queue // This is only needed when the thread is termintated forcefully (SVC TerminateProcess) if (status == THREADSTATUS_READY){ ready_queue.remove(current_priority, this); } status = THREADSTATUS_DEAD; WakeupAllWaitingThreads(); // Clean up any dangling references in objects that this thread was waiting for for (auto& wait_object : wait_objects) { wait_object->RemoveWaitingThread(this); } wait_objects.clear(); // Mark the TLS slot in the thread's page as free. u32 tls_page = (tls_address - Memory::TLS_AREA_VADDR) / Memory::PAGE_SIZE; u32 tls_slot = ((tls_address - Memory::TLS_AREA_VADDR) % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE; Kernel::g_current_process->tls_slots[tls_page].reset(tls_slot); HLE::Reschedule(__func__); }
SharedPtr<Timer> Timer::Create(ResetType reset_type, std::string name) { SharedPtr<Timer> timer(new Timer); timer->reset_type = reset_type; timer->signaled = false; timer->name = std::move(name); timer->initial_delay = 0; timer->interval_delay = 0; timer->callback_handle = timer_callback_handle_table.Create(timer).Unwrap(); return timer; }
SharedPtr<Timer> Timer::Create(ResetType reset_type, std::string name) { SharedPtr<Timer> timer(new Timer); timer->reset_type = reset_type; timer->signaled = false; timer->name = std::move(name); timer->initial_delay = 0; timer->interval_delay = 0; timer->callback_handle = timer_callback_handle_table.Create(timer).MoveFrom(); if (reset_type == ResetType::Pulse) { LOG_ERROR(Kernel, "Unimplemented timer reset type Pulse"); UNIMPLEMENTED(); } return timer; }
ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point, s32 priority, u32 arg, s32 processor_id, VAddr stack_top) { if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) { s32 new_priority = MathUtil::Clamp<s32>(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST); LOG_WARNING(Kernel_SVC, "(name=%s): invalid priority=%d, clamping to %d", name.c_str(), priority, new_priority); // TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm // validity of this priority = new_priority; } if (!Memory::GetPointer(entry_point)) { LOG_ERROR(Kernel_SVC, "(name=%s): invalid entry %08x", name.c_str(), entry_point); // TODO: Verify error return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::Kernel, ErrorSummary::InvalidArgument, ErrorLevel::Permanent); } SharedPtr<Thread> thread(new Thread); thread_list.push_back(thread); ready_queue.prepare(priority); thread->thread_id = NewThreadId(); thread->status = THREADSTATUS_DORMANT; thread->entry_point = entry_point; thread->stack_top = stack_top; thread->initial_priority = thread->current_priority = priority; thread->processor_id = processor_id; thread->wait_set_output = false; thread->wait_all = false; thread->wait_objects.clear(); thread->wait_address = 0; thread->name = std::move(name); thread->callback_handle = wakeup_callback_handle_table.Create(thread).MoveFrom(); // TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used // to initialize the context Core::g_app_core->ResetContext(thread->context, stack_top, entry_point, arg); ready_queue.push_back(thread->current_priority, thread.get()); thread->status = THREADSTATUS_READY; return MakeResult<SharedPtr<Thread>>(std::move(thread)); }
namespace Kernel { /// Event type for the thread wake up event static int ThreadWakeupEventType = -1; bool Thread::ShouldWait() { return status != THREADSTATUS_DEAD; } void Thread::Acquire() { ASSERT_MSG(!ShouldWait(), "object unavailable!"); } // Lists all thread ids that aren't deleted/etc. static std::vector<SharedPtr<Thread>> thread_list; // Lists only ready thread ids. static Common::ThreadQueueList<Thread*, THREADPRIO_LOWEST+1> ready_queue; static Thread* current_thread; // The first available thread id at startup static u32 next_thread_id = 1; /** * Creates a new thread ID * @return The new thread ID */ inline static u32 const NewThreadId() { return next_thread_id++; } Thread::Thread() {} Thread::~Thread() {} Thread* GetCurrentThread() { return current_thread; } /** * Check if a thread is waiting on the specified wait object * @param thread The thread to test * @param wait_object The object to test against * @return True if the thread is waiting, false otherwise */ static bool CheckWait_WaitObject(const Thread* thread, WaitObject* wait_object) { if (thread->status != THREADSTATUS_WAIT_SYNCH) return false; auto itr = std::find(thread->wait_objects.begin(), thread->wait_objects.end(), wait_object); return itr != thread->wait_objects.end(); } /** * Check if the specified thread is waiting on the specified address to be arbitrated * @param thread The thread to test * @param wait_address The address to test against * @return True if the thread is waiting, false otherwise */ static bool CheckWait_AddressArbiter(const Thread* thread, VAddr wait_address) { return thread->status == THREADSTATUS_WAIT_ARB && wait_address == thread->wait_address; } void Thread::Stop() { // Release all the mutexes that this thread holds ReleaseThreadMutexes(this); // Cancel any outstanding wakeup events for this thread CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle); // Clean up thread from ready queue // This is only needed when the thread is termintated forcefully (SVC TerminateProcess) if (status == THREADSTATUS_READY){ ready_queue.remove(current_priority, this); } status = THREADSTATUS_DEAD; WakeupAllWaitingThreads(); // Clean up any dangling references in objects that this thread was waiting for for (auto& wait_object : wait_objects) { wait_object->RemoveWaitingThread(this); } } Thread* ArbitrateHighestPriorityThread(u32 address) { Thread* highest_priority_thread = nullptr; s32 priority = THREADPRIO_LOWEST; // Iterate through threads, find highest priority thread that is waiting to be arbitrated... for (auto& thread : thread_list) { if (!CheckWait_AddressArbiter(thread.get(), address)) continue; if (thread == nullptr) continue; if(thread->current_priority <= priority) { highest_priority_thread = thread.get(); priority = thread->current_priority; } } // If a thread was arbitrated, resume it if (nullptr != highest_priority_thread) { highest_priority_thread->ResumeFromWait(); } return highest_priority_thread; } void ArbitrateAllThreads(u32 address) { // Resume all threads found to be waiting on the address for (auto& thread : thread_list) { if (CheckWait_AddressArbiter(thread.get(), address)) thread->ResumeFromWait(); } } /** * Switches the CPU's active thread context to that of the specified thread * @param new_thread The thread to switch to */ static void SwitchContext(Thread* new_thread) { DEBUG_ASSERT_MSG(new_thread->status == THREADSTATUS_READY, "Thread must be ready to become running."); Thread* previous_thread = GetCurrentThread(); // Save context for previous thread if (previous_thread) { Core::g_app_core->SaveContext(previous_thread->context); if (previous_thread->status == THREADSTATUS_RUNNING) { // This is only the case when a reschedule is triggered without the current thread // yielding execution (i.e. an event triggered, system core time-sliced, etc) ready_queue.push_front(previous_thread->current_priority, previous_thread); previous_thread->status = THREADSTATUS_READY; } } // Load context of new thread if (new_thread) { current_thread = new_thread; ready_queue.remove(new_thread->current_priority, new_thread); new_thread->status = THREADSTATUS_RUNNING; Core::g_app_core->LoadContext(new_thread->context); } else { current_thread = nullptr; } } /** * Pops and returns the next thread from the thread queue * @return A pointer to the next ready thread */ static Thread* PopNextReadyThread() { Thread* next; Thread* thread = GetCurrentThread(); if (thread && thread->status == THREADSTATUS_RUNNING) { // We have to do better than the current thread. // This call returns null when that's not possible. next = ready_queue.pop_first_better(thread->current_priority); } else { next = ready_queue.pop_first(); } return next; } void WaitCurrentThread_Sleep() { Thread* thread = GetCurrentThread(); thread->status = THREADSTATUS_WAIT_SLEEP; } void WaitCurrentThread_WaitSynchronization(std::vector<SharedPtr<WaitObject>> wait_objects, bool wait_set_output, bool wait_all) { Thread* thread = GetCurrentThread(); thread->wait_set_output = wait_set_output; thread->wait_all = wait_all; thread->wait_objects = std::move(wait_objects); thread->status = THREADSTATUS_WAIT_SYNCH; } void WaitCurrentThread_ArbitrateAddress(VAddr wait_address) { Thread* thread = GetCurrentThread(); thread->wait_address = wait_address; thread->status = THREADSTATUS_WAIT_ARB; } // TODO(yuriks): This can be removed if Thread objects are explicitly pooled in the future, allowing // us to simply use a pool index or similar. static Kernel::HandleTable wakeup_callback_handle_table; /** * Callback that will wake up the thread it was scheduled for * @param thread_handle The handle of the thread that's been awoken * @param cycles_late The number of CPU cycles that have passed since the desired wakeup time */ static void ThreadWakeupCallback(u64 thread_handle, int cycles_late) { SharedPtr<Thread> thread = wakeup_callback_handle_table.Get<Thread>((Handle)thread_handle); if (thread == nullptr) { LOG_CRITICAL(Kernel, "Callback fired for invalid thread %08X", (Handle)thread_handle); return; } if (thread->status == THREADSTATUS_WAIT_SYNCH) { thread->SetWaitSynchronizationResult(ResultCode(ErrorDescription::Timeout, ErrorModule::OS, ErrorSummary::StatusChanged, ErrorLevel::Info)); if (thread->wait_set_output) thread->SetWaitSynchronizationOutput(-1); } thread->ResumeFromWait(); } void Thread::WakeAfterDelay(s64 nanoseconds) { // Don't schedule a wakeup if the thread wants to wait forever if (nanoseconds == -1) return; u64 microseconds = nanoseconds / 1000; CoreTiming::ScheduleEvent(usToCycles(microseconds), ThreadWakeupEventType, callback_handle); } void Thread::ReleaseWaitObject(WaitObject* wait_object) { if (status != THREADSTATUS_WAIT_SYNCH || wait_objects.empty()) { LOG_CRITICAL(Kernel, "thread is not waiting on any objects!"); return; } // Remove this thread from the waiting object's thread list wait_object->RemoveWaitingThread(this); unsigned index = 0; bool wait_all_failed = false; // Will be set to true if any object is unavailable // Iterate through all waiting objects to check availability... for (auto itr = wait_objects.begin(); itr != wait_objects.end(); ++itr) { if ((*itr)->ShouldWait()) wait_all_failed = true; // The output should be the last index of wait_object if (*itr == wait_object) index = itr - wait_objects.begin(); } // If we are waiting on all objects... if (wait_all) { // Resume the thread only if all are available... if (!wait_all_failed) { SetWaitSynchronizationResult(RESULT_SUCCESS); SetWaitSynchronizationOutput(-1); ResumeFromWait(); } } else { // Otherwise, resume SetWaitSynchronizationResult(RESULT_SUCCESS); if (wait_set_output) SetWaitSynchronizationOutput(index); ResumeFromWait(); } } void Thread::ResumeFromWait() { // Cancel any outstanding wakeup events for this thread CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle); switch (status) { case THREADSTATUS_WAIT_SYNCH: // Remove this thread from all other WaitObjects for (auto wait_object : wait_objects) wait_object->RemoveWaitingThread(this); break; case THREADSTATUS_WAIT_ARB: case THREADSTATUS_WAIT_SLEEP: break; case THREADSTATUS_RUNNING: case THREADSTATUS_READY: DEBUG_ASSERT_MSG(false, "Thread with object id %u has already resumed.", GetObjectId()); return; case THREADSTATUS_DEAD: // This should never happen, as threads must complete before being stopped. DEBUG_ASSERT_MSG(false, "Thread with object id %u cannot be resumed because it's DEAD.", GetObjectId()); return; } ready_queue.push_back(current_priority, this); status = THREADSTATUS_READY; } /** * Prints the thread queue for debugging purposes */ static void DebugThreadQueue() { Thread* thread = GetCurrentThread(); if (!thread) { LOG_DEBUG(Kernel, "Current: NO CURRENT THREAD"); } else { LOG_DEBUG(Kernel, "0x%02X %u (current)", thread->current_priority, GetCurrentThread()->GetObjectId()); } for (auto& t : thread_list) { s32 priority = ready_queue.contains(t.get()); if (priority != -1) { LOG_DEBUG(Kernel, "0x%02X %u", priority, t->GetObjectId()); } } } ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point, s32 priority, u32 arg, s32 processor_id, VAddr stack_top) { if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) { s32 new_priority = MathUtil::Clamp<s32>(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST); LOG_WARNING(Kernel_SVC, "(name=%s): invalid priority=%d, clamping to %d", name.c_str(), priority, new_priority); // TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm // validity of this priority = new_priority; } if (!Memory::GetPointer(entry_point)) { LOG_ERROR(Kernel_SVC, "(name=%s): invalid entry %08x", name.c_str(), entry_point); // TODO: Verify error return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::Kernel, ErrorSummary::InvalidArgument, ErrorLevel::Permanent); } SharedPtr<Thread> thread(new Thread); thread_list.push_back(thread); ready_queue.prepare(priority); thread->thread_id = NewThreadId(); thread->status = THREADSTATUS_DORMANT; thread->entry_point = entry_point; thread->stack_top = stack_top; thread->initial_priority = thread->current_priority = priority; thread->processor_id = processor_id; thread->wait_set_output = false; thread->wait_all = false; thread->wait_objects.clear(); thread->wait_address = 0; thread->name = std::move(name); thread->callback_handle = wakeup_callback_handle_table.Create(thread).MoveFrom(); // TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used // to initialize the context Core::g_app_core->ResetContext(thread->context, stack_top, entry_point, arg); ready_queue.push_back(thread->current_priority, thread.get()); thread->status = THREADSTATUS_READY; return MakeResult<SharedPtr<Thread>>(std::move(thread)); } // TODO(peachum): Remove this. Range checking should be done, and an appropriate error should be returned. static void ClampPriority(const Thread* thread, s32* priority) { if (*priority < THREADPRIO_HIGHEST || *priority > THREADPRIO_LOWEST) { DEBUG_ASSERT_MSG(false, "Application passed an out of range priority. An error should be returned."); s32 new_priority = MathUtil::Clamp<s32>(*priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST); LOG_WARNING(Kernel_SVC, "(name=%s): invalid priority=%d, clamping to %d", thread->name.c_str(), *priority, new_priority); // TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm // validity of this *priority = new_priority; } } void Thread::SetPriority(s32 priority) { ClampPriority(this, &priority); if (current_priority == priority) { return; } if (status == THREADSTATUS_READY) { // If thread was ready, adjust queues ready_queue.remove(current_priority, this); ready_queue.prepare(priority); ready_queue.push_back(priority, this); } current_priority = priority; } SharedPtr<Thread> SetupIdleThread() { // We need to pass a few valid values to get around parameter checking in Thread::Create. auto thread = Thread::Create("idle", Memory::KERNEL_MEMORY_VADDR, THREADPRIO_LOWEST, 0, THREADPROCESSORID_0, 0).MoveFrom(); thread->idle = true; return thread; } SharedPtr<Thread> SetupMainThread(u32 stack_size, u32 entry_point, s32 priority) { DEBUG_ASSERT(!GetCurrentThread()); // Initialize new "main" thread auto thread_res = Thread::Create("main", entry_point, priority, 0, THREADPROCESSORID_0, Memory::SCRATCHPAD_VADDR_END); SharedPtr<Thread> thread = thread_res.MoveFrom(); // Run new "main" thread SwitchContext(thread.get()); return thread; } void Reschedule() { Thread* prev = GetCurrentThread(); Thread* next = PopNextReadyThread(); HLE::g_reschedule = false; if (next != nullptr) { LOG_TRACE(Kernel, "context switch %u -> %u", prev->GetObjectId(), next->GetObjectId()); SwitchContext(next); } else { LOG_TRACE(Kernel, "cannot context switch from %u, no higher priority thread!", prev->GetObjectId()); for (auto& thread : thread_list) { LOG_TRACE(Kernel, "\tid=%u prio=0x%02X, status=0x%08X", thread->GetObjectId(), thread->current_priority, thread->status); } } } void Thread::SetWaitSynchronizationResult(ResultCode result) { context.cpu_registers[0] = result.raw; } void Thread::SetWaitSynchronizationOutput(s32 output) { context.cpu_registers[1] = output; } //////////////////////////////////////////////////////////////////////////////////////////////////// void ThreadingInit() { ThreadWakeupEventType = CoreTiming::RegisterEvent("ThreadWakeupCallback", ThreadWakeupCallback); // Setup the idle thread SetupIdleThread(); } void ThreadingShutdown() { } } // namespace
void TimersInit() { timer_callback_handle_table.Clear(); timer_callback_event_type = CoreTiming::RegisterEvent("TimerCallback", TimerCallback); }
namespace Kernel { /// The event type of the generic timer callback event static int timer_callback_event_type; // TODO(yuriks): This can be removed if Timer objects are explicitly pooled in the future, allowing // us to simply use a pool index or similar. static Kernel::HandleTable timer_callback_handle_table; Timer::Timer() {} Timer::~Timer() {} SharedPtr<Timer> Timer::Create(ResetType reset_type, std::string name) { SharedPtr<Timer> timer(new Timer); timer->reset_type = reset_type; timer->signaled = false; timer->name = std::move(name); timer->initial_delay = 0; timer->interval_delay = 0; timer->callback_handle = timer_callback_handle_table.Create(timer).MoveFrom(); if (reset_type == ResetType::Pulse) { LOG_ERROR(Kernel, "Unimplemented timer reset type Pulse"); UNIMPLEMENTED(); } return timer; } bool Timer::ShouldWait() { return !signaled; } void Timer::Acquire() { ASSERT_MSG(!ShouldWait(), "object unavailable!"); if (reset_type == ResetType::OneShot) signaled = false; } void Timer::Set(s64 initial, s64 interval) { // Ensure we get rid of any previous scheduled event Cancel(); initial_delay = initial; interval_delay = interval; u64 initial_microseconds = initial / 1000; CoreTiming::ScheduleEvent(usToCycles(initial_microseconds), timer_callback_event_type, callback_handle); } void Timer::Cancel() { CoreTiming::UnscheduleEvent(timer_callback_event_type, callback_handle); } void Timer::Clear() { signaled = false; } /// The timer callback event, called when a timer is fired static void TimerCallback(u64 timer_handle, int cycles_late) { SharedPtr<Timer> timer = timer_callback_handle_table.Get<Timer>(static_cast<Handle>(timer_handle)); if (timer == nullptr) { LOG_CRITICAL(Kernel, "Callback fired for invalid timer %08" PRIx64, timer_handle); return; } LOG_TRACE(Kernel, "Timer %08" PRIx64 " fired", timer_handle); timer->signaled = true; // Resume all waiting threads timer->WakeupAllWaitingThreads(); if (timer->interval_delay != 0) { // Reschedule the timer with the interval delay u64 interval_microseconds = timer->interval_delay / 1000; CoreTiming::ScheduleEvent(usToCycles(interval_microseconds) - cycles_late, timer_callback_event_type, timer_handle); } } void TimersInit() { timer_callback_handle_table.Clear(); timer_callback_event_type = CoreTiming::RegisterEvent("TimerCallback", TimerCallback); } void TimersShutdown() {} } // namespace