// TODO: Move credits array to HealthComponent. void HealthComponent::ScaleDamageAccounts(float healthRestored) { if (healthRestored <= 0.0f) return; // Get total damage account and remember relevant clients. float totalAccreditedDamage = 0.0f; std::vector<Entity*> relevantClients; ForEntities<ClientComponent>([&](Entity& other, ClientComponent& client) { float clientDamage = entity.oldEnt->credits[other.oldEnt->s.number].value; if (clientDamage > 0.0f) { totalAccreditedDamage += clientDamage; relevantClients.push_back(&other); } }); if (relevantClients.empty()) return; // Calculate account scale factor. float scale; if (healthRestored < totalAccreditedDamage) { scale = (totalAccreditedDamage - healthRestored) / totalAccreditedDamage; healthLogger.Debug("Scaling damage accounts of %i client(s) by %.2f.", relevantClients.size(), scale); } else { // Clear all accounts. scale = 0.0f; healthLogger.Debug("Clearing damage accounts of %i client(s).", relevantClients.size()); } // Scale down or clear damage accounts. for (Entity* other : relevantClients) { entity.oldEnt->credits[other->oldEnt->s.number].value *= scale; } }
float ArmorComponent::GetLocationalDamageMod(float angle, float height) { class_t pcl = (class_t)entity.oldEnt->client->ps.stats[STAT_CLASS]; bool crouching = (entity.oldEnt->client->ps.pm_flags & PMF_DUCKED); for (int regionNum = 0; regionNum < g_numDamageRegions[pcl]; regionNum++) { damageRegion_t *region = &g_damageRegions[pcl][regionNum]; // Ignore the non-locational pseudo region. if (region->nonlocational) continue; // Crouch state must match. if (region->crouch != crouching) continue; // Height must be within given range. if (height < region->minHeight || height > region->maxHeight) continue; // Angle must be within given range. if ((region->minAngle <= region->maxAngle && (angle < region->minAngle || angle > region->maxAngle)) || (region->minAngle > region->maxAngle && (angle > region->maxAngle && angle < region->minAngle))) { continue; } armorLogger.Debug("Locational damage modifier of %.2f found for angle %.2f and height %.2f (%s).", region->modifier, angle, height, region->name); return region->modifier; } armorLogger.Debug("Locational damage modifier for angle %.2f and height %.2f not found.", angle, height); return 1.0f; }
void IgnitableComponent::ConsiderStop(int timeDelta) { if (!onFire) return; // Don't stop freshly (re-)ignited fires. if (igniteTime + MIN_BURN_TIME > level.time) { fireLogger.Debug("(Re-)Ignited %i ms ago, skipping stop check.", level.time - igniteTime); return; } float burnStopChance = STOP_CHANCE; // Lower burn stop chance if there are other burning entities nearby. ForEntities<IgnitableComponent>([&](Entity &other, IgnitableComponent &ignitable){ if (&other == &entity) return; if (!ignitable.onFire) return; if (G_Distance(other.oldEnt, entity.oldEnt) > STOP_RADIUS) return; float frac = G_Distance(entity.oldEnt, other.oldEnt) / STOP_RADIUS; float mod = frac * 1.0f + (1.0f - frac) * STOP_CHANCE; burnStopChance *= mod; }); // Attempt to stop burning. if (random() < burnStopChance) { fireLogger.Debug("Stopped burning (chance was %.0f%%)", burnStopChance * 100.0f); entity.Extinguish(0); return; } else { fireLogger.Debug("Didn't stop burning (chance was %.0f%%)", burnStopChance * 100.0f); } }
void IgnitableComponent::ConsiderSpread(int timeDelta) { if (!onFire) return; if (level.time < spreadAt) return; fireLogger.Notice("Trying to spread."); ForEntities<IgnitableComponent>([&](Entity &other, IgnitableComponent &ignitable){ if (&other == &entity) return; // Don't re-ignite. if (ignitable.onFire) return; // TODO: Use LocationComponent. float distance = G_Distance(other.oldEnt, entity.oldEnt); if (distance > SPREAD_RADIUS) return; float distanceFrac = distance / SPREAD_RADIUS; float distanceMod = 1.0f - distanceFrac; float spreadChance = distanceMod; if (random() < spreadChance) { if (G_LineOfSight(entity.oldEnt, other.oldEnt) && other.Ignite(fireStarter)) { fireLogger.Notice("Ignited a neighbour, chance to do so was %.0f%%.", spreadChance*100.0f); } } }); // Don't spread again until re-ignited. spreadAt = INT_MAX; }
void IgnitableComponent::HandleIgnite(gentity_t* fireStarter) { if (!fireStarter) { // TODO: Find out why this happens. fireLogger.Notice("Received ignite message with no fire starter."); } if (level.time < immuneUntil) { fireLogger.Debug("Not ignited: Immune against fire."); return; } // Refresh ignite time even if already burning. igniteTime = level.time; if (!onFire) { onFire = true; this->fireStarter = fireStarter; fireLogger.Debug("Ignited."); } else { if (alwaysOnFire && !this->fireStarter) { // HACK: Igniting an alwaysOnFire entity will initialize the fire starter. this->fireStarter = fireStarter; fireLogger.Debug("Firestarter initialized."); } else { fireLogger.Debug("Re-Ignited."); } } }
bool TurretComponent::TargetValid(Entity& target, bool newTarget) { if (!target.Get<ClientComponent>() || target.Get<SpectatorComponent>() || Entities::IsDead(target) || (target.oldEnt->flags & FL_NOTARGET) || !Entities::OnOpposingTeams(entity, target) || G_Distance(entity.oldEnt, target.oldEnt) > range || !trap_InPVS(entity.oldEnt->s.origin, target.oldEnt->s.origin)) { if (!newTarget) { turretLogger.Verbose("Target lost: Out of range or eliminated."); } return false; } // New targets require a line of sight. if (G_LineOfFire(entity.oldEnt, target.oldEnt)) { lastLineOfSightToTarget = level.time; } else if (newTarget) { return false; } // Give up on an existing target if there was no line of sight for a while. if (lastLineOfSightToTarget + GIVEUP_TARGET_TIME <= level.time) { turretLogger.Verbose("Giving up on target: No line of sight for %d ms.", level.time - lastLineOfSightToTarget ); return false; } return true; }
void IgnitableComponent::ConsiderStop(int timeDelta) { if (!onFire) return; // Don't stop freshly (re-)ignited fires. if (igniteTime + MIN_BURN_TIME > level.time) { fireLogger.DoDebugCode([&]{ int elapsed = level.time - igniteTime; int remaining = MIN_BURN_TIME - elapsed; fireLogger.Debug("Burning for %.1fs, skipping stop check for another %.1fs.", (float)elapsed/1000.0f, (float)remaining/1000.0f); }); return; } float averagePostMinBurnTime = BASE_AVERAGE_BURN_TIME - MIN_BURN_TIME; // Increase average burn time dynamically for burning entities in range. ForEntities<IgnitableComponent>([&](Entity &other, IgnitableComponent &ignitable){ if (&other == &entity) return; if (!ignitable.onFire) return; // TODO: Use LocationComponent. float distance = G_Distance(other.oldEnt, entity.oldEnt); if (distance > EXTRA_BURN_TIME_RADIUS) return; float distanceFrac = distance / EXTRA_BURN_TIME_RADIUS; float distanceMod = 1.0f - distanceFrac; averagePostMinBurnTime += EXTRA_AVERAGE_BURN_TIME * distanceMod; }); // The burn stop chance follows an exponential distribution. float lambda = 1.0f / averagePostMinBurnTime; float burnStopChance = 1.0f - std::exp(-1.0f * lambda * (float)timeDelta); float averageTotalBurnTime = averagePostMinBurnTime + (float)MIN_BURN_TIME; // Attempt to stop burning. if (random() < burnStopChance) { fireLogger.Notice("Stopped burning after %.1fs, target average lifetime was %.1fs.", (float)(level.time - igniteTime) / 1000.0f, averageTotalBurnTime / 1000.0f); entity.Extinguish(0); return; } else { fireLogger.Debug("Burning for %.1fs, target average lifetime is %.1fs.", (float)(level.time - igniteTime) / 1000.0f, averageTotalBurnTime / 1000.0f); } }
void TurretComponent::ResetDirection() { directionToTarget = baseDirection; turretLogger.Verbose("Target direction reset. New direction: %s.", Utility::Print(directionToTarget) ); }
void AlienBuildableComponent::HandleDie(gentity_t* killer, meansOfDeath_t meansOfDeath) { entity.oldEnt->powered = false; // Warn if in main base and there's an overmind. gentity_t *om; if ((om = G_ActiveOvermind()) && om != entity.oldEnt && level.time > om->warnTimer && G_InsideBase(entity.oldEnt, true) && G_IsWarnableMOD(meansOfDeath)) { om->warnTimer = level.time + ATTACKWARN_NEARBY_PERIOD; G_BroadcastEvent(EV_WARN_ATTACK, 0, TEAM_ALIENS); Beacon::NewArea(BCT_DEFEND, entity.oldEnt->s.origin, entity.oldEnt->buildableTeam); } // Set blast timer. int blastDelay = 0; if (entity.oldEnt->spawned && GetBuildableComponent().GetHealthComponent().Health() / GetBuildableComponent().GetHealthComponent().MaxHealth() > -1.0f) { blastDelay += GetBlastDelay(); } alienBuildableLogger.Debug("Alien buildable dies, will blast in %i ms.", blastDelay); GetBuildableComponent().SetState(BuildableComponent::PRE_BLAST); GetBuildableComponent().REGISTER_THINKER(Blast, ThinkingComponent::SCHEDULER_BEFORE, blastDelay); }
void ResourceStorageComponent::HandleDie(gentity_t* killer, meansOfDeath_t meansOfDeath) { // TODO: Add TeamComponent and/or Utility::Team. team_t team = entity.oldEnt->buildableTeam; float storedFraction = GetStoredFraction(); // Removes some of the owner's team's build points, proportional to the amount this structure // acquired and the amount of health lost (before deconstruction). float loss = (1.0f - entity.oldEnt->deconHealthFrac) * storedFraction * level.team[team].buildPoints * g_buildPointLossFraction.value; resourceStorageLogger.Notice( "A resource storage died, removing %.0f BP from the team's pool " "(%.1f × %.0f%% stored × %.0f%% health lost × %.0f total).", loss, g_buildPointLossFraction.value, 100.0f * storedFraction, 100.0f * (1.0f - entity.oldEnt->deconHealthFrac), level.team[team].buildPoints ); G_ModifyBuildPoints(team, -loss); // Main structures keep their account of acquired build points across lifecycles, it's saved // in a per-team variable and copied over to the ResourceStorageComponent whenever it's modified. if (!entity.Get<MainBuildableComponent>()) { G_ModifyTotalBuildPointsAcquired(team, -acquiredBuildPoints); } acquiredBuildPoints = 0.0f; }
/** * @brief Predict the total efficiency gain for a team when a miner is constructed at a given point. * @return Predicted efficiency delta in percent points. * @todo Consider RGS set for deconstruction. */ float G_RGSPredictEfficiencyDelta(vec3_t origin, team_t team) { float delta = G_RGSPredictOwnEfficiency(origin); buildpointLogger.Debug("Predicted efficiency of new miner itself: %f.", delta); ForEntities<MiningComponent>([&] (Entity& miner, MiningComponent& miningComponent) { if (G_Team(miner.oldEnt) != team) return; delta += RGSPredictEfficiencyLoss(miner, origin); }); buildpointLogger.Debug("Predicted efficiency delta: %f. Build point delta: %f.", delta, delta * g_buildPointBudgetPerMiner.value); return delta; }
// TODO: Consider location as well as direction when both given. void KnockbackComponent::HandleDamage(float amount, gentity_t* source, Util::optional<Vec3> location, Util::optional<Vec3> direction, int flags, meansOfDeath_t meansOfDeath) { if (!(flags & DAMAGE_KNOCKBACK)) return; if (amount <= 0.0f) return; if (!direction) { knockbackLogger.Warn("Received damage message with knockback flag set but no direction."); return; } if (Math::Length(direction.value()) == 0.0f) { knockbackLogger.Warn("Attempt to do knockback with null vector direction."); return; } // TODO: Remove dependency on client. gclient_t *client = entity.oldEnt->client; assert(client); // Check for immunity. if (client->noclip) return; if (client->sess.spectatorState != SPECTATOR_NOT) return; float mass = (float)BG_Class(client->ps.stats[ STAT_CLASS ])->mass; if (mass <= 0.0f) { knockbackLogger.Warn("Attempt to do knockback against target with no mass, assuming normal mass."); mass = KNOCKBACK_NORMAL_MASS; } float massMod = Math::Clamp(KNOCKBACK_NORMAL_MASS / mass, KNOCKBACK_MIN_MASSMOD, KNOCKBACK_MAX_MASSMOD); float strength = amount * DAMAGE_TO_KNOCKBACK * massMod; // Change client velocity. Vec3 clientVelocity = Vec3::Load(client->ps.velocity); clientVelocity += Math::Normalize(direction.value()) * strength; clientVelocity.Store(client->ps.velocity); // Set pmove timer so that the client can't cancel out the movement immediately. if (!client->ps.pm_time) { client->ps.pm_time = KNOCKBACK_PMOVE_TIME; client->ps.pm_flags |= PMF_TIME_KNOCKBACK; } knockbackLogger.Debug("Knockback: client: %i, strength: %.1f (massMod: %.1f).", entity.oldEnt->s.number, strength, massMod); }
void HealthComponent::SetHealth(float health) { Math::Clamp(health, FLT_EPSILON, maxHealth); healthLogger.Debug("Changing health: %3.1f → %3.1f.", this->health, health); ScaleDamageAccounts(health - this->health); HealthComponent::health = health; }
float ArmorComponent::GetNonLocationalDamageMod() { class_t pcl = (class_t)entity.oldEnt->client->ps.stats[STAT_CLASS]; for (int regionNum = 0; regionNum < g_numDamageRegions[pcl]; regionNum++) { damageRegion_t *region = &g_damageRegions[pcl][regionNum]; if (!region->nonlocational) continue; armorLogger.Debug("Found non-locational damage modifier of %.2f.", region->modifier); return region->modifier; } armorLogger.Debug("No non-locational damage modifier found."); return 1.0f; }
void TurretComponent::ResetPitch() { Vec3 targetRelativeAngles = relativeAimAngles; targetRelativeAngles[PITCH] = 0.0f; directionToTarget = RelativeAnglesToDirection(targetRelativeAngles); turretLogger.Debug("Target pitch reset. New direction: %s.", directionToTarget); }
void HealthComponent::SetMaxHealth(float maxHealth, bool scaleHealth) { ASSERT_GT(maxHealth, 0.0f); healthLogger.Debug("Changing maximum health: %3.1f → %3.1f.", this->maxHealth, maxHealth); HealthComponent::maxHealth = maxHealth; if (scaleHealth) SetHealth(health * (this->maxHealth / maxHealth)); }
void TurretComponent::LowerPitch() { Vec3 targetRelativeAngles = relativeAimAngles; targetRelativeAngles[PITCH] = PITCH_CAP; directionToTarget = RelativeAnglesToDirection(targetRelativeAngles); turretLogger.Debug("Target pitch lowered. New direction: %s.", directionToTarget); }
void IgnitableComponent::DamageSelf(int timeDelta) { if (!onFire) return; float damage = SELF_DAMAGE * timeDelta * 0.001f; if (entity.Damage(damage, fireStarter, {}, {}, 0, MOD_BURN)) { fireLogger.Debug("Self burn damage of %.1f (%.1f/s) was dealt.", damage, SELF_DAMAGE); } }
void IgnitableComponent::DamageArea(int timeDelta) { if (!onFire) return; float damage = SPLASH_DAMAGE * timeDelta * 0.001f; if (G_SelectiveRadiusDamage(entity.oldEnt->s.origin, fireStarter, damage, SPLASH_DAMAGE_RADIUS, entity.oldEnt, MOD_BURN, TEAM_NONE)) { fireLogger.Debug("Area burn damage of %.1f (%.1f/s) was dealt.", damage, SPLASH_DAMAGE); } }
void TurretComponent::RemoveTarget() { if (target) { // TODO: Decrease tracked-by counter for the target. turretLogger.Verbose("Target removed."); } target = nullptr; lastLineOfSightToTarget = 0; }
/** * @brief Predict the efficiecy loss of an existing miner if another one is constructed closeby. * @return Efficiency loss as negative value. */ static float RGSPredictEfficiencyLoss(Entity& miner, vec3_t newMinerOrigin) { float distance = Distance(miner.oldEnt->s.origin, newMinerOrigin); float oldPredictedEfficiency = miner.Get<MiningComponent>()->Efficiency(true); float newPredictedEfficiency = oldPredictedEfficiency * MiningComponent::InterferenceMod(distance); float efficiencyLoss = newPredictedEfficiency - oldPredictedEfficiency; buildpointLogger.Debug("Predicted efficiency loss of existing miner: %f - %f = %f.", oldPredictedEfficiency, newPredictedEfficiency, efficiencyLoss); return efficiencyLoss; }
void IgnitableComponent::HandleExtinguish(int immunityTime) { if (!onFire) return; onFire = false; immuneUntil = level.time + immunityTime; if (alwaysOnFire) { entity.FreeAt(DeferredFreeingComponent::FREE_BEFORE_THINKING); } fireLogger.Debug("Extinguished."); }
void IgnitableComponent::HandleIgnite(gentity_t* fireStarter) { if (!fireStarter) { // TODO: Find out why this happens. fireLogger.Notice("Received ignite message with no fire starter."); } if (level.time < immuneUntil) { fireLogger.Debug("Not ignited: Immune against fire."); return; } // Start burning on initial ignition. if (!onFire) { onFire = true; this->fireStarter = fireStarter; fireLogger.Notice("Ignited."); } else { if (alwaysOnFire && !this->fireStarter) { // HACK: Igniting an alwaysOnFire entity will initialize the fire starter. this->fireStarter = fireStarter; fireLogger.Debug("Firestarter set."); } else { fireLogger.Debug("Re-ignited."); } } // Refresh ignite time even if already burning. igniteTime = level.time; // The spread delay follows a normal distribution: More likely to spread early than late. int spreadTarget = level.time + (int)std::abs(normalDistribution(randomGenerator)); // Allow re-ignition to update the spread delay to a lower value. if (spreadTarget < spreadAt) { fireLogger.DoNoticeCode([&]{ int newDelay = spreadTarget - level.time; if (spreadAt == INT_MAX) { fireLogger.Notice("Spread delay set to %.1fs.", newDelay * 0.001f); } else { int oldDelay = spreadAt - level.time; fireLogger.Notice("Spread delay updated from %.1fs to %.1fs.", oldDelay * 0.001f, newDelay * 0.001f); } }); spreadAt = spreadTarget; } }
void IgnitableComponent::ConsiderSpread(int timeDelta) { if (!onFire) return; ForEntities<IgnitableComponent>([&](Entity &other, IgnitableComponent &ignitable){ if (&other == &entity) return; // TODO: Use LocationComponent. float chance = 1.0f - G_Distance(entity.oldEnt, other.oldEnt) / SPREAD_RADIUS; if (chance <= 0.0f) return; // distance > spread radius if (random() < chance) { if (G_LineOfSight(entity.oldEnt, other.oldEnt) && other.Ignite(fireStarter)) { fireLogger.Debug("(Re-)Ignited a neighbour (chance was %.0f%%)", chance * 100.0f); } else { fireLogger.Debug("Tried to ignite a non-ignitable or non-LOS neighbour (chance was %.0f%%)", chance * 100.0f); } } else { fireLogger.Debug("Didn't try to ignite a neighbour (chance was %.0f%%)", chance * 100.0f); } }); }
void TurretComponent::TrackEntityTarget() { if (!target) return; Vec3 oldDirectionToTarget = directionToTarget; Vec3 targetOrigin = Vec3::Load(target->s.origin); Vec3 muzzle = Vec3::Load(entity.oldEnt->s.pos.trBase); directionToTarget = Math::Normalize(targetOrigin - muzzle); if (Math::DistanceSq(directionToTarget, oldDirectionToTarget) > 0.0f) { turretLogger.Debug("Following an entity target. New direction: %s.", directionToTarget); } }
void SpikerComponent::HandleDamage(float amount, gentity_t *source, Util::optional<Vec3> location, Util::optional<Vec3> direction, int flags, meansOfDeath_t meansOfDeath) { if (!GetAlienBuildableComponent().GetBuildableComponent().Active()) { return; } // Shoot if there is a viable target. if (lastExpectedDamage > 0.0f) { logger.Verbose("Spiker #%i was hurt while an enemy is close enough to also get hurt, so " "go eye for an eye.", entity.oldEnt->s.number); Fire(); } }
void HealthComponent::HandleHeal(float amount, gentity_t* source) { if (health <= 0.0f) return; if (health >= maxHealth) return; // Only heal up to maximum health. amount = std::min(amount, maxHealth - health); if (amount <= 0.0f) return; healthLogger.Debug("Healing: %3.1f (%3.1f → %3.1f)", amount, health, health + amount); health += amount; ScaleDamageAccounts(amount); }
float ResourceStorageComponent::GetStoredFraction() { // TODO: Add TeamComponent and/or Utility::Team. team_t team = entity.oldEnt->buildableTeam; if (!level.team[team].acquiredBuildPoints) return 1.0f; // The stored fraction is equal to the acquired fraction. float storedFraction = acquiredBuildPoints / level.team[team].acquiredBuildPoints; if (storedFraction < 0.0f || storedFraction > 1.0f + LINE_DISTANCE_EPSILON) { resourceStorageLogger.Warn( "A resource storage stores an invalid fraction of all build points: %.1f", storedFraction ); } return storedFraction; }
// TODO: Move this to the client side. void AlienBuildableComponent::CreepRecede(int timeDelta) { alienBuildableLogger.Debug("Starting creep recede."); G_AddEvent(entity.oldEnt, EV_BUILD_DESTROY, 0); if (entity.oldEnt->spawned) { entity.oldEnt->s.time = -level.time; } else { entity.oldEnt->s.time = -(level.time - (int)( (float)CREEP_SCALEDOWN_TIME * (1.0f - ((float)(level.time - entity.oldEnt->creationTime) / (float)BG_Buildable(entity.oldEnt->s.modelindex)->buildTime))) ); } // Remove buildable when done. GetBuildableComponent().REGISTER_THINKER(Remove, ThinkingComponent::SCHEDULER_AFTER, CREEP_SCALEDOWN_TIME); GetBuildableComponent().GetThinkingComponent().UnregisterActiveThinker(); }
Entity* TurretComponent::FindEntityTarget(std::function<bool(Entity&, Entity&)> CompareTargets) { // Delete old target. RemoveTarget(); // Search best target. // TODO: Iterate over all valid targets, do not assume they have to be clients. ForEntities<ClientComponent>([&](Entity& candidate, ClientComponent& clientComponent) { if (TargetValid(candidate, true)) { if (!target || CompareTargets(candidate, *target->entity)) { target = candidate.oldEnt; } } }); if (target) { // TODO: Increase tracked-by counter for a new target. turretLogger.Verbose("Target acquired."); } return target ? target->entity : nullptr; }