// Check PHI instructions at the beginning of MBB. It is assumed that // calcRegsPassed has been run so BBInfo::isLiveOut is valid. void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end(); BBI != BBE && BBI->isPHI(); ++BBI) { DenseSet<const MachineBasicBlock*> seen; for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { unsigned Reg = BBI->getOperand(i).getReg(); const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB(); if (!Pre->isSuccessor(MBB)) continue; seen.insert(Pre); BBInfo &PrInfo = MBBInfoMap[Pre]; if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) report("PHI operand is not live-out from predecessor", &BBI->getOperand(i), i); } // Did we see all predecessors? for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), PrE = MBB->pred_end(); PrI != PrE; ++PrI) { if (!seen.count(*PrI)) { report("Missing PHI operand", BBI); *OS << "BB#" << (*PrI)->getNumber() << " is a predecessor according to the CFG.\n"; } } } }
bool PHIElimination::SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, LiveVariables &LV, MachineLoopInfo *MLI) { if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad()) return false; // Quick exit for basic blocks without PHIs. bool Changed = false; for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end(); BBI != BBE && BBI->isPHI(); ++BBI) { for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { unsigned Reg = BBI->getOperand(i).getReg(); MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); // We break edges when registers are live out from the predecessor block // (not considering PHI nodes). If the register is live in to this block // anyway, we would gain nothing from splitting. // Avoid splitting backedges of loops. It would introduce small // out-of-line blocks into the loop which is very bad for code placement. if (PreMBB != &MBB && !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) { if (!MLI || !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) && MLI->isLoopHeader(&MBB))) { if (PreMBB->SplitCriticalEdge(&MBB, this)) { Changed = true; ++NumCriticalEdgesSplit; } } } } } return Changed; }
/// analyzePHINodes - Gather information about the PHI nodes in here. In /// particular, we want to map the variable information of a virtual register /// which is used in a PHI node. We map that to the BB the vreg is coming from. /// void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] .push_back(BBI->getOperand(i).getReg()); }
/// analyzePHINodes - Gather information about the PHI nodes in here. In /// particular, we want to map the number of uses of a virtual register which is /// used in a PHI node. We map that to the BB the vreg is coming from. This is /// used later to determine when the vreg is killed in the BB. /// void llvm::PHIElimination::analyzePHINodes(const MachineFunction& Fn) { for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(), BBI->getOperand(i).getReg())]; }
/// analyzePHINodes - Gather information about the PHI nodes in here. In /// particular, we want to map the number of uses of a virtual register which is /// used in a PHI node. We map that to the BB the vreg is coming from. This is /// used later to determine when the vreg is killed in the BB. /// void PHIElimination::analyzePHINodes(const MachineFunction& MF) { for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); BBI != BBE && BBI->isPHI(); ++BBI) for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(), BBI->getOperand(i).getReg())]; }
bool MachineCSE::isPhysDefTriviallyDead(unsigned Reg, MachineBasicBlock::const_iterator I, MachineBasicBlock::const_iterator E) { unsigned LookAheadLeft = 5; while (LookAheadLeft--) { if (I == E) // Reached end of block, register is obviously dead. return true; if (I->isDebugValue()) continue; bool SeenDef = false; for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { const MachineOperand &MO = I->getOperand(i); if (!MO.isReg() || !MO.getReg()) continue; if (!TRI->regsOverlap(MO.getReg(), Reg)) continue; if (MO.isUse()) return false; SeenDef = true; } if (SeenDef) // See a def of Reg (or an alias) before encountering any use, it's // trivially dead. return true; ++I; } return false; }
bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, SmallSet<unsigned,8> &PhysRefs) const { // For now conservatively returns false if the common subexpression is // not in the same basic block as the given instruction. MachineBasicBlock *MBB = MI->getParent(); if (CSMI->getParent() != MBB) return false; MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I); MachineBasicBlock::const_iterator E = MI; unsigned LookAheadLeft = LookAheadLimit; while (LookAheadLeft) { // Skip over dbg_value's. while (I != E && I->isDebugValue()) ++I; if (I == E) return true; for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { const MachineOperand &MO = I->getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; unsigned MOReg = MO.getReg(); if (TargetRegisterInfo::isVirtualRegister(MOReg)) continue; if (PhysRefs.count(MOReg)) return false; } --LookAheadLeft; ++I; } return false; }
/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All /// variables that are live out of DomBB will be marked as passing live through /// BB. void LiveVariables::addNewBlock(MachineBasicBlock *BB, MachineBasicBlock *DomBB, MachineBasicBlock *SuccBB) { const unsigned NumNew = BB->getNumber(); // All registers used by PHI nodes in SuccBB must be live through BB. for (MachineBasicBlock::const_iterator BBI = SuccBB->begin(), BBE = SuccBB->end(); BBI != BBE && BBI->isPHI(); ++BBI) for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) if (BBI->getOperand(i+1).getMBB() == BB) getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew); // Update info for all live variables for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister, E = MRI->getLastVirtReg()+1; Reg != E; ++Reg) { VarInfo &VI = getVarInfo(Reg); if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI)) VI.AliveBlocks.set(NumNew); } }
bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, LiveVariables &LV) { if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad()) return false; // Quick exit for basic blocks without PHIs. for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end(); BBI != BBE && BBI->isPHI(); ++BBI) { for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { unsigned Reg = BBI->getOperand(i).getReg(); MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); // We break edges when registers are live out from the predecessor block // (not considering PHI nodes). If the register is live in to this block // anyway, we would gain nothing from splitting. if (!LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) SplitCriticalEdge(PreMBB, &MBB); } } return true; }
bool SIInsertSkips::shouldSkip(const MachineBasicBlock &From, const MachineBasicBlock &To) const { if (From.succ_empty()) return false; unsigned NumInstr = 0; const MachineFunction *MF = From.getParent(); for (MachineFunction::const_iterator MBBI(&From), ToI(&To), End = MF->end(); MBBI != End && MBBI != ToI; ++MBBI) { const MachineBasicBlock &MBB = *MBBI; for (MachineBasicBlock::const_iterator I = MBB.begin(), E = MBB.end(); NumInstr < SkipThreshold && I != E; ++I) { if (opcodeEmitsNoInsts(I->getOpcode())) continue; // FIXME: Since this is required for correctness, this should be inserted // during SILowerControlFlow. // When a uniform loop is inside non-uniform control flow, the branch // leaving the loop might be an S_CBRANCH_VCCNZ, which is never taken // when EXEC = 0. We should skip the loop lest it becomes infinite. if (I->getOpcode() == AMDGPU::S_CBRANCH_VCCNZ || I->getOpcode() == AMDGPU::S_CBRANCH_VCCZ) return true; if (I->isInlineAsm()) { const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); const char *AsmStr = I->getOperand(0).getSymbolName(); // inlineasm length estimate is number of bytes assuming the longest // instruction. uint64_t MaxAsmSize = TII->getInlineAsmLength(AsmStr, *MAI); NumInstr += MaxAsmSize / MAI->getMaxInstLength(); } else { ++NumInstr; } if (NumInstr >= SkipThreshold) return true; } } return false; }
bool MachineCSE::isPhysDefTriviallyDead(unsigned Reg, MachineBasicBlock::const_iterator I, MachineBasicBlock::const_iterator E) const { unsigned LookAheadLeft = LookAheadLimit; while (LookAheadLeft) { // Skip over dbg_value's. while (I != E && I->isDebugValue()) ++I; if (I == E) // Reached end of block, register is obviously dead. return true; bool SeenDef = false; for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { const MachineOperand &MO = I->getOperand(i); if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) SeenDef = true; if (!MO.isReg() || !MO.getReg()) continue; if (!TRI->regsOverlap(MO.getReg(), Reg)) continue; if (MO.isUse()) // Found a use! return false; SeenDef = true; } if (SeenDef) // See a def of Reg (or an alias) before encountering any use, it's // trivially dead. return true; --LookAheadLeft; ++I; } return false; }
bool AccessFrequency::runOnMachineFunction(MachineFunction &mf) { MF = &mf; MRI = &mf.getRegInfo(); TRI = MF->getTarget().getRegisterInfo(); m_nVars = 0; const llvm::Function *fn = mf.getFunction(); std::string szMain = "main"; if(fn->getName() != szMain && g_hFuncCall[szMain].find(fn->getName()) == g_hFuncCall[szMain].end() ) { errs() << "--------qali:--------Skip function " << fn->getName() << " in AccessFrequency !\n"; return true; } for (MachineFunction::const_iterator FI = MF->begin(), FE = MF->end(); FI != FE; ++FI) { double dFactor = 0.0; const BasicBlock *bb = FI->getBasicBlock(); if( bb != NULL ) { //const std::map<const Function *, std::map<const BasicBlock *, double> > &hF2B2Acc =(SP->BlockInformation); std::map<const Function *, std::map<const BasicBlock *, double> >::const_iterator f2b2acc_p, E = g_hF2B2Acc->end(); if( (f2b2acc_p = g_hF2B2Acc->find(fn) ) != E ) { std::map<const BasicBlock *, double>::const_iterator b2acc_p, EE = f2b2acc_p->second.end(); if( (b2acc_p = f2b2acc_p->second.find(bb) ) != EE ) dFactor = b2acc_p->second; } } if( dFactor == 0.0 ) dFactor = 1.0; for (MachineBasicBlock::const_iterator BBI = FI->begin(), BBE = FI->end(); BBI != BBE; ++BBI) { DEBUG(BBI->print(dbgs(), NULL )); //MachineInstr *MI = BBI; for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++ i) { const MachineOperand &MO = BBI->getOperand(i); // TODO (qali#1#): To hack other kinds of MachineOperands switch (MO.getType() ) { case MachineOperand::MO_Register: if( MO.getReg() != 0 && TargetRegisterInfo::isVirtualRegister(MO.getReg()) ) { unsigned MOReg = MO.getReg(); unsigned int nSize = getRegSize(MOReg); if( MO.isUse() ) { int nAcc = ROUND(dFactor); m_RegReadMap[MOReg] = m_RegReadMap[MOReg] + dFactor; //if( nAcc >= 1) m_SimTrace.push_back(llvm::TraceRecord(MOReg, nAcc)); } else if( MO.isDef()) { int nAcc = ROUND(dFactor); m_RegWriteMap[MOReg] = m_RegWriteMap[MOReg] + dFactor; //if( nAcc >= 1) m_SimTrace.push_back(llvm::TraceRecord(MOReg, nAcc, false)); } else assert("Unrecoganized operation in AccessFrequency::runOnMachineFunction!\n"); } break; default: break; } } // Analyze the memoperations if(!BBI->memoperands_empty() ) { for( MachineInstr::mmo_iterator i = BBI->memoperands_begin(), e = BBI->memoperands_end(); i != e; ++ i) { if( (*i)->isLoad() ) { const char *tmp = (**i).getValue()->getName().data(); m_StackReadMap[tmp] ++; } else if( (*i)->isStore()) { const char *tmp = (**i).getValue()->getName().data(); m_StackWriteMap[tmp] ++; } else { assert(false); dbgs() << __FILE__ << __LINE__; } } } } } m_nVars = m_RegReadMap.size(); //print(afout); //printInt(afout); //reset(); std::string szInfo; std::string szSrcFile = mf.getMMI().getModule()->getModuleIdentifier(); std::string szFile = szSrcFile + ".accInt"; raw_fd_ostream accIfout(szFile.c_str(), szInfo, raw_fd_ostream::F_Append ); printInt(accIfout); accIfout.close(); szFile = szSrcFile + ".acc"; raw_fd_ostream accfout(szFile.c_str(), szInfo, raw_fd_ostream::F_Append ); print(accfout); accfout.close(); szFile = szSrcFile + "." + "var"; raw_fd_ostream varfout(szFile.c_str(), szInfo, raw_fd_ostream::F_Append ); printVars(varfout); varfout.close(); szFile = szSrcFile + ".read"; raw_fd_ostream readfout(szFile.c_str(), szInfo, raw_fd_ostream::F_Append ); printRead(readfout); readfout.close(); szFile = szSrcFile + ".write"; raw_fd_ostream writefout(szFile.c_str(), szInfo, raw_fd_ostream::F_Append ); printWrite(writefout); writefout.close(); szFile = szSrcFile + ".size"; raw_fd_ostream sizefout(szFile.c_str(), szInfo, raw_fd_ostream::F_Append ); printSize(sizefout); sizefout.close(); return true; }
bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, SmallSet<unsigned,8> &PhysRefs, SmallVector<unsigned,2> &PhysDefs, bool &NonLocal) const { // For now conservatively returns false if the common subexpression is // not in the same basic block as the given instruction. The only exception // is if the common subexpression is in the sole predecessor block. const MachineBasicBlock *MBB = MI->getParent(); const MachineBasicBlock *CSMBB = CSMI->getParent(); bool CrossMBB = false; if (CSMBB != MBB) { if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) return false; for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i])) // Avoid extending live range of physical registers if they are //allocatable or reserved. return false; } CrossMBB = true; } MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I); MachineBasicBlock::const_iterator E = MI; MachineBasicBlock::const_iterator EE = CSMBB->end(); unsigned LookAheadLeft = LookAheadLimit; while (LookAheadLeft) { // Skip over dbg_value's. while (I != E && I != EE && I->isDebugValue()) ++I; if (I == EE) { assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); (void)CrossMBB; CrossMBB = false; NonLocal = true; I = MBB->begin(); EE = MBB->end(); continue; } if (I == E) return true; for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { const MachineOperand &MO = I->getOperand(i); // RegMasks go on instructions like calls that clobber lots of physregs. // Don't attempt to CSE across such an instruction. if (MO.isRegMask()) return false; if (!MO.isReg() || !MO.isDef()) continue; unsigned MOReg = MO.getReg(); if (TargetRegisterInfo::isVirtualRegister(MOReg)) continue; if (PhysRefs.count(MOReg)) return false; } --LookAheadLeft; ++I; } return false; }
unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF, unsigned char* StartFunction, unsigned char* EndFunction) const { assert(MMI && "MachineModuleInfo not registered!"); // Map all labels and get rid of any dead landing pads. MMI->TidyLandingPads(JCE->getLabelLocations()); const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); if (PadInfos.empty()) return 0; // Sort the landing pads in order of their type ids. This is used to fold // duplicate actions. SmallVector<const LandingPadInfo *, 64> LandingPads; LandingPads.reserve(PadInfos.size()); for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) LandingPads.push_back(&PadInfos[i]); std::sort(LandingPads.begin(), LandingPads.end(), PadLT); // Negative type ids index into FilterIds, positive type ids index into // TypeInfos. The value written for a positive type id is just the type // id itself. For a negative type id, however, the value written is the // (negative) byte offset of the corresponding FilterIds entry. The byte // offset is usually equal to the type id, because the FilterIds entries // are written using a variable width encoding which outputs one byte per // entry as long as the value written is not too large, but can differ. // This kind of complication does not occur for positive type ids because // type infos are output using a fixed width encoding. // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i]. SmallVector<int, 16> FilterOffsets; FilterOffsets.reserve(FilterIds.size()); int Offset = -1; for(std::vector<unsigned>::const_iterator I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { FilterOffsets.push_back(Offset); Offset -= MCAsmInfo::getULEB128Size(*I); } // Compute the actions table and gather the first action index for each // landing pad site. SmallVector<ActionEntry, 32> Actions; SmallVector<unsigned, 64> FirstActions; FirstActions.reserve(LandingPads.size()); int FirstAction = 0; unsigned SizeActions = 0; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LP = LandingPads[i]; const std::vector<int> &TypeIds = LP->TypeIds; const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0; unsigned SizeSiteActions = 0; if (NumShared < TypeIds.size()) { unsigned SizeAction = 0; ActionEntry *PrevAction = 0; if (NumShared) { const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size(); assert(Actions.size()); PrevAction = &Actions.back(); SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) + MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); for (unsigned j = NumShared; j != SizePrevIds; ++j) { SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); SizeAction += -PrevAction->NextAction; PrevAction = PrevAction->Previous; } } // Compute the actions. for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) { int TypeID = TypeIds[I]; assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID); int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction); SizeSiteActions += SizeAction; ActionEntry Action = {ValueForTypeID, NextAction, PrevAction}; Actions.push_back(Action); PrevAction = &Actions.back(); } // Record the first action of the landing pad site. FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; } // else identical - re-use previous FirstAction FirstActions.push_back(FirstAction); // Compute this sites contribution to size. SizeActions += SizeSiteActions; } // Compute the call-site table. Entries must be ordered by address. SmallVector<CallSiteEntry, 64> CallSites; RangeMapType PadMap; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LandingPad = LandingPads[i]; for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) { MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); PadRange P = { i, j }; PadMap[BeginLabel] = P; } } bool MayThrow = false; MCSymbol *LastLabel = 0; for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) { for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); MI != E; ++MI) { if (!MI->isLabel()) { MayThrow |= MI->getDesc().isCall(); continue; } MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol(); assert(BeginLabel && "Invalid label!"); if (BeginLabel == LastLabel) MayThrow = false; RangeMapType::iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) continue; PadRange P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // If some instruction between the previous try-range and this one may // throw, create a call-site entry with no landing pad for the region // between the try-ranges. if (MayThrow) { CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0}; CallSites.push_back(Site); } LastLabel = LandingPad->EndLabels[P.RangeIndex]; CallSiteEntry Site = {BeginLabel, LastLabel, LandingPad->LandingPadLabel, FirstActions[P.PadIndex]}; assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel && "Invalid landing pad!"); // Try to merge with the previous call-site. if (CallSites.size()) { CallSiteEntry &Prev = CallSites.back(); if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } // Otherwise, create a new call-site. CallSites.push_back(Site); } } // If some instruction between the previous try-range and the end of the // function may throw, create a call-site entry with no landing pad for the // region following the try-range. if (MayThrow) { CallSiteEntry Site = {LastLabel, 0, 0, 0}; CallSites.push_back(Site); } // Final tallies. unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start. sizeof(int32_t) + // Site length. sizeof(int32_t)); // Landing pad. for (unsigned i = 0, e = CallSites.size(); i < e; ++i) SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action); unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize(); unsigned TypeOffset = sizeof(int8_t) + // Call site format // Call-site table length MCAsmInfo::getULEB128Size(SizeSites) + SizeSites + SizeActions + SizeTypes; // Begin the exception table. JCE->emitAlignmentWithFill(4, 0); // Asm->EOL("Padding"); unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue(); // Emit the header. JCE->emitByte(dwarf::DW_EH_PE_omit); // Asm->EOL("LPStart format (DW_EH_PE_omit)"); JCE->emitByte(dwarf::DW_EH_PE_absptr); // Asm->EOL("TType format (DW_EH_PE_absptr)"); JCE->emitULEB128Bytes(TypeOffset); // Asm->EOL("TType base offset"); JCE->emitByte(dwarf::DW_EH_PE_udata4); // Asm->EOL("Call site format (DW_EH_PE_udata4)"); JCE->emitULEB128Bytes(SizeSites); // Asm->EOL("Call-site table length"); // Emit the landing pad site information. for (unsigned i = 0; i < CallSites.size(); ++i) { CallSiteEntry &S = CallSites[i]; intptr_t BeginLabelPtr = 0; intptr_t EndLabelPtr = 0; if (!S.BeginLabel) { BeginLabelPtr = (intptr_t)StartFunction; JCE->emitInt32(0); } else { BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel); JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction); } // Asm->EOL("Region start"); if (!S.EndLabel) EndLabelPtr = (intptr_t)EndFunction; else EndLabelPtr = JCE->getLabelAddress(S.EndLabel); JCE->emitInt32(EndLabelPtr - BeginLabelPtr); //Asm->EOL("Region length"); if (!S.PadLabel) { JCE->emitInt32(0); } else { unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel); JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction); } // Asm->EOL("Landing pad"); JCE->emitULEB128Bytes(S.Action); // Asm->EOL("Action"); } // Emit the actions. for (unsigned I = 0, N = Actions.size(); I != N; ++I) { ActionEntry &Action = Actions[I]; JCE->emitSLEB128Bytes(Action.ValueForTypeID); //Asm->EOL("TypeInfo index"); JCE->emitSLEB128Bytes(Action.NextAction); //Asm->EOL("Next action"); } // Emit the type ids. for (unsigned M = TypeInfos.size(); M; --M) { const GlobalVariable *GV = TypeInfos[M - 1]; if (GV) { if (TD->getPointerSize() == sizeof(int32_t)) JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV)); else JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV)); } else { if (TD->getPointerSize() == sizeof(int32_t)) JCE->emitInt32(0); else JCE->emitInt64(0); } // Asm->EOL("TypeInfo"); } // Emit the filter typeids. for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) { unsigned TypeID = FilterIds[j]; JCE->emitULEB128Bytes(TypeID); //Asm->EOL("Filter TypeInfo index"); } JCE->emitAlignmentWithFill(4, 0); return DwarfExceptionTable; }
bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { raw_ostream *OutFile = 0; if (OutFileName) { std::string ErrorInfo; OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, raw_fd_ostream::F_Append); if (!ErrorInfo.empty()) { errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n'; exit(1); } OS = OutFile; } else { OS = &errs(); } foundErrors = 0; this->MF = &MF; TM = &MF.getTarget(); TII = TM->getInstrInfo(); TRI = TM->getRegisterInfo(); MRI = &MF.getRegInfo(); LiveVars = NULL; LiveInts = NULL; LiveStks = NULL; Indexes = NULL; if (PASS) { LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); // We don't want to verify LiveVariables if LiveIntervals is available. if (!LiveInts) LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); } visitMachineFunctionBefore(); for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); MFI!=MFE; ++MFI) { visitMachineBasicBlockBefore(MFI); for (MachineBasicBlock::const_iterator MBBI = MFI->begin(), MBBE = MFI->end(); MBBI != MBBE; ++MBBI) { if (MBBI->getParent() != MFI) { report("Bad instruction parent pointer", MFI); *OS << "Instruction: " << *MBBI; continue; } visitMachineInstrBefore(MBBI); for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) visitMachineOperand(&MBBI->getOperand(I), I); visitMachineInstrAfter(MBBI); } visitMachineBasicBlockAfter(MFI); } visitMachineFunctionAfter(); if (OutFile) delete OutFile; else if (foundErrors) report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); // Clean up. regsLive.clear(); regsDefined.clear(); regsDead.clear(); regsKilled.clear(); regsLiveInButUnused.clear(); MBBInfoMap.clear(); return false; // no changes }
DenseMap<const MachineBasicBlock *, int> llvm::getFuncletMembership(const MachineFunction &MF) { DenseMap<const MachineBasicBlock *, int> FuncletMembership; // We don't have anything to do if there aren't any EH pads. if (!MF.getMMI().hasEHFunclets()) return FuncletMembership; int EntryBBNumber = MF.front().getNumber(); bool IsSEH = isAsynchronousEHPersonality( classifyEHPersonality(MF.getFunction()->getPersonalityFn())); const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); SmallVector<const MachineBasicBlock *, 16> FuncletBlocks; SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; for (const MachineBasicBlock &MBB : MF) { if (MBB.isEHFuncletEntry()) { FuncletBlocks.push_back(&MBB); } else if (IsSEH && MBB.isEHPad()) { SEHCatchPads.push_back(&MBB); } else if (MBB.pred_empty()) { UnreachableBlocks.push_back(&MBB); } MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); // CatchPads are not funclets for SEH so do not consider CatchRet to // transfer control to another funclet. if (MBBI->getOpcode() != TII->getCatchReturnOpcode()) continue; // FIXME: SEH CatchPads are not necessarily in the parent function: // they could be inside a finally block. const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); CatchRetSuccessors.push_back( {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); } // We don't have anything to do if there aren't any EH pads. if (FuncletBlocks.empty()) return FuncletMembership; // Identify all the basic blocks reachable from the function entry. collectFuncletMembers(FuncletMembership, EntryBBNumber, &MF.front()); // All blocks not part of a funclet are in the parent function. for (const MachineBasicBlock *MBB : UnreachableBlocks) collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB); // Next, identify all the blocks inside the funclets. for (const MachineBasicBlock *MBB : FuncletBlocks) collectFuncletMembers(FuncletMembership, MBB->getNumber(), MBB); // SEH CatchPads aren't really funclets, handle them separately. for (const MachineBasicBlock *MBB : SEHCatchPads) collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB); // Finally, identify all the targets of a catchret. for (std::pair<const MachineBasicBlock *, int> CatchRetPair : CatchRetSuccessors) collectFuncletMembers(FuncletMembership, CatchRetPair.second, CatchRetPair.first); return FuncletMembership; }
/// ComputeCallSiteTable - Compute the call-site table. The entry for an invoke /// has a try-range containing the call, a non-zero landing pad, and an /// appropriate action. The entry for an ordinary call has a try-range /// containing the call and zero for the landing pad and the action. Calls /// marked 'nounwind' have no entry and must not be contained in the try-range /// of any entry - they form gaps in the table. Entries must be ordered by /// try-range address. void DwarfException:: ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites, const RangeMapType &PadMap, const SmallVectorImpl<const LandingPadInfo *> &LandingPads, const SmallVectorImpl<unsigned> &FirstActions) { // The end label of the previous invoke or nounwind try-range. MCSymbol *LastLabel = 0; // Whether there is a potentially throwing instruction (currently this means // an ordinary call) between the end of the previous try-range and now. bool SawPotentiallyThrowing = false; // Whether the last CallSite entry was for an invoke. bool PreviousIsInvoke = false; // Visit all instructions in order of address. for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end(); I != E; ++I) { for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); MI != E; ++MI) { if (!MI->isLabel()) { if (MI->isCall()) SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI); continue; } // End of the previous try-range? MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol(); if (BeginLabel == LastLabel) SawPotentiallyThrowing = false; // Beginning of a new try-range? RangeMapType::const_iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) // Nope, it was just some random label. continue; const PadRange &P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // For Dwarf exception handling (SjLj handling doesn't use this). If some // instruction between the previous try-range and this one may throw, // create a call-site entry with no landing pad for the region between the // try-ranges. if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) { CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 }; CallSites.push_back(Site); PreviousIsInvoke = false; } LastLabel = LandingPad->EndLabels[P.RangeIndex]; assert(BeginLabel && LastLabel && "Invalid landing pad!"); if (!LandingPad->LandingPadLabel) { // Create a gap. PreviousIsInvoke = false; } else { // This try-range is for an invoke. CallSiteEntry Site = { BeginLabel, LastLabel, LandingPad->LandingPadLabel, FirstActions[P.PadIndex] }; // Try to merge with the previous call-site. SJLJ doesn't do this if (PreviousIsInvoke && Asm->MAI->isExceptionHandlingDwarf()) { CallSiteEntry &Prev = CallSites.back(); if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } // Otherwise, create a new call-site. if (Asm->MAI->isExceptionHandlingDwarf()) CallSites.push_back(Site); else { // SjLj EH must maintain the call sites in the order assigned // to them by the SjLjPrepare pass. unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel); if (CallSites.size() < SiteNo) CallSites.resize(SiteNo); CallSites[SiteNo - 1] = Site; } PreviousIsInvoke = true; } } } // If some instruction between the previous try-range and the end of the // function may throw, create a call-site entry with no landing pad for the // region following the try-range. if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) { CallSiteEntry Site = { LastLabel, 0, 0, 0 }; CallSites.push_back(Site); } }
/// PrepareMonoLSDA - Collect information needed by EmitMonoLSDA /// /// This function collects information available only during EndFunction which is needed /// by EmitMonoLSDA and stores it into EHFrameInfo. It is the same as the /// beginning of EmitExceptionTable. /// void DwarfMonoException::PrepareMonoLSDA(FunctionEHFrameInfo *EHFrameInfo) { const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); const MachineFunction *MF = Asm->MF; // Sort the landing pads in order of their type ids. This is used to fold // duplicate actions. SmallVector<const LandingPadInfo *, 64> LandingPads; LandingPads.reserve(PadInfos.size()); for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) LandingPads.push_back(&PadInfos[i]); std::sort(LandingPads.begin(), LandingPads.end(), [](const LandingPadInfo *L, const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; }); // Invokes and nounwind calls have entries in PadMap (due to being bracketed // by try-range labels when lowered). Ordinary calls do not, so appropriate // try-ranges for them need be deduced when using DWARF exception handling. RangeMapType PadMap; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LandingPad = LandingPads[i]; for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); PadRange P = { i, j }; PadMap[BeginLabel] = P; } } // Compute the call-site table. SmallVector<MonoCallSiteEntry, 64> CallSites; MCSymbol *LastLabel = 0; for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) { for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); MI != E; ++MI) { if (!MI->isLabel()) { continue; } MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol(); assert(BeginLabel && "Invalid label!"); RangeMapType::iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) continue; PadRange P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // Mono emits one landing pad for each CLR exception clause, // and the type info contains the clause index assert (LandingPad->TypeIds.size() == 1); assert (LandingPad->LandingPadLabel); LastLabel = LandingPad->EndLabels[P.RangeIndex]; MonoCallSiteEntry Site = {BeginLabel, LastLabel, LandingPad->LandingPadLabel, LandingPad->TypeIds [0]}; assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel && "Invalid landing pad!"); // FIXME: This doesn't work because it includes ranges outside clauses #if 0 // Try to merge with the previous call-site. if (CallSites.size()) { MonoCallSiteEntry &Prev = CallSites.back(); if (Site.PadLabel == Prev.PadLabel && Site.TypeID == Prev.TypeID) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } #endif // Otherwise, create a new call-site. CallSites.push_back(Site); } } // // Compute a mapping from method names to their AOT method index // if (FuncIndexes.size () == 0) { const Module *m = MMI->getModule (); NamedMDNode *indexes = m->getNamedMetadata ("mono.function_indexes"); if (indexes) { for (unsigned int i = 0; i < indexes->getNumOperands (); ++i) { MDNode *n = indexes->getOperand (i); MDString *s = (MDString*)n->getOperand (0); ConstantInt *idx = (ConstantInt*)n->getOperand (1); FuncIndexes.GetOrCreateValue (s->getString (), (int)idx->getLimitedValue () + 1); } } } MonoEHFrameInfo *MonoEH = &EHFrameInfo->MonoEH; // Save information for EmitMonoLSDA MonoEH->MF = Asm->MF; MonoEH->FunctionNumber = Asm->getFunctionNumber(); MonoEH->CallSites.insert(MonoEH->CallSites.begin(), CallSites.begin(), CallSites.end()); MonoEH->TypeInfos = TypeInfos; MonoEH->PadInfos = PadInfos; MonoEH->MonoMethodIdx = FuncIndexes.lookup (Asm->MF->getFunction ()->getName ()) - 1; //outs()<<"A:"<<Asm->MF->getFunction()->getName() << " " << MonoEH->MonoMethodIdx << "\n"; int ThisSlot = Asm->MF->getMonoInfo()->getThisStackSlot(); if (ThisSlot != -1) { unsigned FrameReg; MonoEH->ThisOffset = Asm->MF->getTarget ().getSubtargetImpl ()->getFrameLowering ()->getFrameIndexReference (*Asm->MF, ThisSlot, FrameReg); MonoEH->FrameReg = Asm->MF->getTarget ().getSubtargetImpl ()->getRegisterInfo ()->getDwarfRegNum (FrameReg, true); } else { MonoEH->FrameReg = -1; } }