void MDHistoToWorkspace2D::copyMetaData( Mantid::API::IMDHistoWorkspace_sptr inWS, Mantid::DataObjects::Workspace2D_sptr outWS) { if (inWS->getNumExperimentInfo() > 0) { ExperimentInfo_sptr info = inWS->getExperimentInfo(0); outWS->copyExperimentInfoFrom(info.get()); } outWS->setTitle(inWS->getTitle()); }
/** Executes the algorithm * * @throw runtime_error Thrown if algorithm cannot execute */ void Fit1D::exec() { // Custom initialization prepare(); // check if derivative defined in derived class bool isDerivDefined = true; gsl_matrix *M = NULL; try { const std::vector<double> inTest(m_parameterNames.size(), 1.0); std::vector<double> outTest(m_parameterNames.size()); const double xValuesTest = 0; JacobianImpl J; M = gsl_matrix_alloc(m_parameterNames.size(), 1); J.setJ(M); // note nData set to zero (last argument) hence this should avoid further // memory problems functionDeriv(&(inTest.front()), &J, &xValuesTest, 0); } catch (Exception::NotImplementedError &) { isDerivDefined = false; } gsl_matrix_free(M); // Try to retrieve optional properties int histNumber = getProperty("WorkspaceIndex"); const int maxInterations = getProperty("MaxIterations"); // Get the input workspace MatrixWorkspace_const_sptr localworkspace = getProperty("InputWorkspace"); // number of histogram is equal to the number of spectra const size_t numberOfSpectra = localworkspace->getNumberHistograms(); // Check that the index given is valid if (histNumber >= static_cast<int>(numberOfSpectra)) { g_log.warning("Invalid Workspace index given, using first Workspace"); histNumber = 0; } // Retrieve the spectrum into a vector const MantidVec &XValues = localworkspace->readX(histNumber); const MantidVec &YValues = localworkspace->readY(histNumber); const MantidVec &YErrors = localworkspace->readE(histNumber); // Read in the fitting range data that we were sent double startX = getProperty("StartX"); double endX = getProperty("EndX"); // check if the values had been set, otherwise use defaults if (isEmpty(startX)) { startX = XValues.front(); modifyStartOfRange(startX); // does nothing by default but derived class may // provide a more intelligent value } if (isEmpty(endX)) { endX = XValues.back(); modifyEndOfRange(endX); // does nothing by default but derived class may // previde a more intelligent value } int m_minX; int m_maxX; // Check the validity of startX if (startX < XValues.front()) { g_log.warning("StartX out of range! Set to start of frame."); startX = XValues.front(); } // Get the corresponding bin boundary that comes before (or coincides with) // this value for (m_minX = 0; XValues[m_minX + 1] < startX; ++m_minX) { } // Check the validity of endX and get the bin boundary that come after (or // coincides with) it if (endX >= XValues.back() || endX < startX) { g_log.warning("EndX out of range! Set to end of frame"); endX = XValues.back(); m_maxX = static_cast<int>(YValues.size()); } else { for (m_maxX = m_minX; XValues[m_maxX] < endX; ++m_maxX) { } } afterDataRangedDetermined(m_minX, m_maxX); // create and populate GSL data container warn user if l_data.n < l_data.p // since as a rule of thumb this is required as a minimum to obtained // 'accurate' // fitting parameter values. FitData l_data(this, getProperty("Fix")); l_data.n = m_maxX - m_minX; // m_minX and m_maxX are array index markers. I.e. e.g. 0 & 19. if (l_data.n == 0) { g_log.error("The data set is empty."); throw std::runtime_error("The data set is empty."); } if (l_data.n < l_data.p) { g_log.error( "Number of data points less than number of parameters to be fitted."); throw std::runtime_error( "Number of data points less than number of parameters to be fitted."); } l_data.X = new double[l_data.n]; l_data.sigmaData = new double[l_data.n]; l_data.forSimplexLSwrap = new double[l_data.n]; l_data.parameters = new double[nParams()]; // check if histogram data in which case use mid points of histogram bins const bool isHistogram = localworkspace->isHistogramData(); for (unsigned int i = 0; i < l_data.n; ++i) { if (isHistogram) l_data.X[i] = 0.5 * (XValues[m_minX + i] + XValues[m_minX + i + 1]); // take mid-point if histogram bin else l_data.X[i] = XValues[m_minX + i]; } l_data.Y = &YValues[m_minX]; // check that no error is negative or zero for (unsigned int i = 0; i < l_data.n; ++i) { if (YErrors[m_minX + i] <= 0.0) { l_data.sigmaData[i] = 1.0; } else l_data.sigmaData[i] = YErrors[m_minX + i]; } // create array of fitted parameter. Take these to those input by the user. // However, for doing the // underlying fitting it might be more efficient to actually perform the // fitting on some of other // form of the fitted parameters. For instance, take the Gaussian sigma // parameter. In practice it // in fact more efficient to perform the fitting not on sigma but 1/sigma^2. // The methods // modifyInitialFittedParameters() and modifyFinalFittedParameters() are used // to allow for this; // by default these function do nothing. m_fittedParameter.clear(); for (size_t i = 0; i < nParams(); i++) { m_fittedParameter.push_back(getProperty(m_parameterNames[i])); } modifyInitialFittedParameters( m_fittedParameter); // does nothing except if overwritten by derived class for (size_t i = 0; i < nParams(); i++) { l_data.parameters[i] = m_fittedParameter[i]; } // set-up initial guess for fit parameters gsl_vector *initFuncArg; initFuncArg = gsl_vector_alloc(l_data.p); for (size_t i = 0, j = 0; i < nParams(); i++) { if (l_data.active[i]) gsl_vector_set(initFuncArg, j++, m_fittedParameter[i]); } // set-up GSL container to be used with GSL simplex algorithm gsl_multimin_function gslSimplexContainer; gslSimplexContainer.n = l_data.p; // n here refers to number of parameters gslSimplexContainer.f = &gsl_costFunction; gslSimplexContainer.params = &l_data; // set-up GSL least squares container gsl_multifit_function_fdf f; f.f = &gsl_f; f.df = &gsl_df; f.fdf = &gsl_fdf; f.n = l_data.n; f.p = l_data.p; f.params = &l_data; // set-up remaining GSL machinery for least squared const gsl_multifit_fdfsolver_type *T = gsl_multifit_fdfsolver_lmsder; gsl_multifit_fdfsolver *s = NULL; if (isDerivDefined) { s = gsl_multifit_fdfsolver_alloc(T, l_data.n, l_data.p); gsl_multifit_fdfsolver_set(s, &f, initFuncArg); } // set-up remaining GSL machinery to use simplex algorithm const gsl_multimin_fminimizer_type *simplexType = gsl_multimin_fminimizer_nmsimplex; gsl_multimin_fminimizer *simplexMinimizer = NULL; gsl_vector *simplexStepSize = NULL; if (!isDerivDefined) { simplexMinimizer = gsl_multimin_fminimizer_alloc(simplexType, l_data.p); simplexStepSize = gsl_vector_alloc(l_data.p); gsl_vector_set_all(simplexStepSize, 1.0); // is this always a sensible starting step size? gsl_multimin_fminimizer_set(simplexMinimizer, &gslSimplexContainer, initFuncArg, simplexStepSize); } // finally do the fitting int iter = 0; int status; double finalCostFuncVal; double dof = static_cast<double>( l_data.n - l_data.p); // dof stands for degrees of freedom // Standard least-squares used if derivative function defined otherwise // simplex Progress prog(this, 0.0, 1.0, maxInterations); if (isDerivDefined) { do { iter++; status = gsl_multifit_fdfsolver_iterate(s); if (status) // break if error break; status = gsl_multifit_test_delta(s->dx, s->x, 1e-4, 1e-4); prog.report(); } while (status == GSL_CONTINUE && iter < maxInterations); double chi = gsl_blas_dnrm2(s->f); finalCostFuncVal = chi * chi / dof; // put final converged fitting values back into m_fittedParameter for (size_t i = 0, j = 0; i < nParams(); i++) if (l_data.active[i]) m_fittedParameter[i] = gsl_vector_get(s->x, j++); } else { do { iter++; status = gsl_multimin_fminimizer_iterate(simplexMinimizer); if (status) // break if error break; double size = gsl_multimin_fminimizer_size(simplexMinimizer); status = gsl_multimin_test_size(size, 1e-2); prog.report(); } while (status == GSL_CONTINUE && iter < maxInterations); finalCostFuncVal = simplexMinimizer->fval / dof; // put final converged fitting values back into m_fittedParameter for (unsigned int i = 0, j = 0; i < m_fittedParameter.size(); i++) if (l_data.active[i]) m_fittedParameter[i] = gsl_vector_get(simplexMinimizer->x, j++); } modifyFinalFittedParameters( m_fittedParameter); // do nothing except if overwritten by derived class // Output summary to log file std::string reportOfFit = gsl_strerror(status); g_log.information() << "Iteration = " << iter << "\n" << "Status = " << reportOfFit << "\n" << "Chi^2/DoF = " << finalCostFuncVal << "\n"; for (size_t i = 0; i < m_fittedParameter.size(); i++) g_log.information() << m_parameterNames[i] << " = " << m_fittedParameter[i] << " \n"; // also output summary to properties setProperty("OutputStatus", reportOfFit); setProperty("OutputChi2overDoF", finalCostFuncVal); for (size_t i = 0; i < m_fittedParameter.size(); i++) setProperty(m_parameterNames[i], m_fittedParameter[i]); std::string output = getProperty("Output"); if (!output.empty()) { // calculate covariance matrix if derivatives available gsl_matrix *covar(NULL); std::vector<double> standardDeviations; std::vector<double> sdExtended; if (isDerivDefined) { covar = gsl_matrix_alloc(l_data.p, l_data.p); gsl_multifit_covar(s->J, 0.0, covar); int iPNotFixed = 0; for (size_t i = 0; i < nParams(); i++) { sdExtended.push_back(1.0); if (l_data.active[i]) { sdExtended[i] = sqrt(gsl_matrix_get(covar, iPNotFixed, iPNotFixed)); iPNotFixed++; } } modifyFinalFittedParameters(sdExtended); for (size_t i = 0; i < nParams(); i++) if (l_data.active[i]) standardDeviations.push_back(sdExtended[i]); declareProperty( new WorkspaceProperty<API::ITableWorkspace>( "OutputNormalisedCovarianceMatrix", "", Direction::Output), "The name of the TableWorkspace in which to store the final " "covariance matrix"); setPropertyValue("OutputNormalisedCovarianceMatrix", output + "_NormalisedCovarianceMatrix"); Mantid::API::ITableWorkspace_sptr m_covariance = Mantid::API::WorkspaceFactory::Instance().createTable( "TableWorkspace"); m_covariance->addColumn("str", "Name"); std::vector<std::string> paramThatAreFitted; // used for populating 1st "name" column for (size_t i = 0; i < nParams(); i++) { if (l_data.active[i]) { m_covariance->addColumn("double", m_parameterNames[i]); paramThatAreFitted.push_back(m_parameterNames[i]); } } for (size_t i = 0; i < l_data.p; i++) { Mantid::API::TableRow row = m_covariance->appendRow(); row << paramThatAreFitted[i]; for (size_t j = 0; j < l_data.p; j++) { if (j == i) row << 1.0; else { row << 100.0 * gsl_matrix_get(covar, i, j) / sqrt(gsl_matrix_get(covar, i, i) * gsl_matrix_get(covar, j, j)); } } } setProperty("OutputNormalisedCovarianceMatrix", m_covariance); } declareProperty(new WorkspaceProperty<API::ITableWorkspace>( "OutputParameters", "", Direction::Output), "The name of the TableWorkspace in which to store the " "final fit parameters"); declareProperty( new WorkspaceProperty<MatrixWorkspace>("OutputWorkspace", "", Direction::Output), "Name of the output Workspace holding resulting simlated spectrum"); setPropertyValue("OutputParameters", output + "_Parameters"); setPropertyValue("OutputWorkspace", output + "_Workspace"); // Save the final fit parameters in the output table workspace Mantid::API::ITableWorkspace_sptr m_result = Mantid::API::WorkspaceFactory::Instance().createTable("TableWorkspace"); m_result->addColumn("str", "Name"); m_result->addColumn("double", "Value"); if (isDerivDefined) m_result->addColumn("double", "Error"); Mantid::API::TableRow row = m_result->appendRow(); row << "Chi^2/DoF" << finalCostFuncVal; for (size_t i = 0; i < nParams(); i++) { Mantid::API::TableRow row = m_result->appendRow(); row << m_parameterNames[i] << m_fittedParameter[i]; if (isDerivDefined && l_data.active[i]) { // perhaps want to scale standard deviations with sqrt(finalCostFuncVal) row << sdExtended[i]; } } setProperty("OutputParameters", m_result); // Save the fitted and simulated spectra in the output workspace MatrixWorkspace_const_sptr inputWorkspace = getProperty("InputWorkspace"); int iSpec = getProperty("WorkspaceIndex"); const MantidVec &inputX = inputWorkspace->readX(iSpec); const MantidVec &inputY = inputWorkspace->readY(iSpec); int histN = isHistogram ? 1 : 0; Mantid::DataObjects::Workspace2D_sptr ws = boost::dynamic_pointer_cast<Mantid::DataObjects::Workspace2D>( Mantid::API::WorkspaceFactory::Instance().create( "Workspace2D", 3, l_data.n + histN, l_data.n)); ws->setTitle(""); ws->getAxis(0)->unit() = inputWorkspace->getAxis(0) ->unit(); // UnitFactory::Instance().create("TOF"); for (int i = 0; i < 3; i++) ws->dataX(i) .assign(inputX.begin() + m_minX, inputX.begin() + m_maxX + histN); ws->dataY(0).assign(inputY.begin() + m_minX, inputY.begin() + m_maxX); MantidVec &Y = ws->dataY(1); MantidVec &E = ws->dataY(2); double *lOut = new double[l_data.n]; // to capture output from call to function() modifyInitialFittedParameters(m_fittedParameter); // does nothing except if // overwritten by derived // class function(&m_fittedParameter[0], lOut, l_data.X, l_data.n); modifyInitialFittedParameters(m_fittedParameter); // reverse the effect of // modifyInitialFittedParameters - if any for (unsigned int i = 0; i < l_data.n; i++) { Y[i] = lOut[i]; E[i] = l_data.Y[i] - Y[i]; } delete[] lOut; setProperty("OutputWorkspace", boost::dynamic_pointer_cast<MatrixWorkspace>(ws)); if (isDerivDefined) gsl_matrix_free(covar); } // clean up dynamically allocated gsl stuff if (isDerivDefined) gsl_multifit_fdfsolver_free(s); else { gsl_vector_free(simplexStepSize); gsl_multimin_fminimizer_free(simplexMinimizer); } delete[] l_data.X; delete[] l_data.sigmaData; delete[] l_data.forSimplexLSwrap; delete[] l_data.parameters; gsl_vector_free(initFuncArg); return; }