コード例 #1
0
/** Constructor
 *
 * @param workspace :: IMDWorkspace to plot
 * @param logScale :: true to plot Y in log scale
 * @param start :: start point in N-dimensions of the line
 * @param end :: end point in N-dimensions of the line
 * @param normalize :: method for normalizing the line
 * @param isDistribution :: is this a distribution (divide by bin width?)
 * @return
 */
MantidQwtIMDWorkspaceData::MantidQwtIMDWorkspaceData(Mantid::API::IMDWorkspace_const_sptr workspace, const bool logScale,
    Mantid::Kernel::VMD start, Mantid::Kernel::VMD end,
    Mantid::API::MDNormalization normalize,
    bool isDistribution)
 : m_workspace(workspace),
   m_logScale(logScale), m_minPositive(0),
   m_preview(false),
   m_start(start),
   m_end(end),
   m_normalization(normalize),
   m_isDistribution(isDistribution),
   m_transform(NULL),
   m_plotAxis(PlotDistance), m_currentPlotAxis(PlotDistance)
{
  if (start.getNumDims() == 1 && end.getNumDims() == 1)
  {
    if (start[0] == 0.0 && end[0] == 0.0)
    {
      // Default start and end. Find the limits
      Mantid::Geometry::VecIMDDimension_const_sptr nonIntegDims = m_workspace->getNonIntegratedDimensions();
      std::string alongDim = "";
      if (!nonIntegDims.empty())
        alongDim = nonIntegDims[0]->getName();
      else
        alongDim = m_workspace->getDimension(0)->getName();

      size_t nd = m_workspace->getNumDims();
      m_start = VMD(nd);
      m_end = VMD(nd);
      for (size_t d=0; d<nd; d++)
      {
        IMDDimension_const_sptr dim = m_workspace->getDimension(d);
        if (dim->getDimensionId() == alongDim)
        {
          // All the way through in the single dimension
          m_start[d] = dim->getMinimum();
          m_end[d] = dim->getMaximum();
        }
        else
        {
          // Mid point along each dimension
          m_start[d] = (dim->getMaximum() + dim->getMinimum()) / 2.0f;
          m_end[d] = m_start[d];
        }
      }
    }
  }
  // Unit direction of the line
  m_dir = m_end - m_start;
  m_dir.normalize();
  // And cache the X/Y values
  this->cacheLinePlot();
}
コード例 #2
0
/**
  * Make 1D MatrixWorkspace
  */
void ConvertMDHistoToMatrixWorkspace::make1DWorkspace() {
  IMDHistoWorkspace_sptr inputWorkspace = getProperty("InputWorkspace");

  // This code is copied from MantidQwtIMDWorkspaceData
  Mantid::Geometry::VecIMDDimension_const_sptr nonIntegDims =
      inputWorkspace->getNonIntegratedDimensions();

  std::string alongDim = "";
  if (!nonIntegDims.empty())
    alongDim = nonIntegDims[0]->getDimensionId();
  else
    alongDim = inputWorkspace->getDimension(0)->getDimensionId();

  size_t nd = inputWorkspace->getNumDims();
  Mantid::Kernel::VMD start = VMD(nd);
  Mantid::Kernel::VMD end = VMD(nd);

  size_t id = 0;
  for (size_t d = 0; d < nd; d++) {
    Mantid::Geometry::IMDDimension_const_sptr dim =
        inputWorkspace->getDimension(d);
    if (dim->getDimensionId() == alongDim) {
      // All the way through in the single dimension
      start[d] = dim->getMinimum();
      end[d] = dim->getMaximum();
      id = d; // We take the first non integrated dimension to be the diemnsion
              // of interest.
    } else {
      // Mid point along each dimension
      start[d] = (dim->getMaximum() + dim->getMinimum()) / 2.0f;
      end[d] = start[d];
    }
  }

  // Unit direction of the line
  Mantid::Kernel::VMD dir = end - start;
  dir.normalize();

  std::string normProp = getPropertyValue("Normalization");

  Mantid::API::MDNormalization normalization;
  if (normProp == "NoNormalization") {
    normalization = NoNormalization;
  } else if (normProp == "VolumeNormalization") {
    normalization = VolumeNormalization;
  } else if (normProp == "NumEventsNormalization") {
    normalization = NumEventsNormalization;
  } else {
    normalization = NoNormalization;
  }

  auto line = inputWorkspace->getLineData(start, end, normalization);

  MatrixWorkspace_sptr outputWorkspace = WorkspaceFactory::Instance().create(
      "Workspace2D", 1, line.x.size(), line.y.size());
  outputWorkspace->dataY(0).assign(line.y.begin(), line.y.end());
  outputWorkspace->dataE(0).assign(line.e.begin(), line.e.end());

  const size_t numberTransformsToOriginal =
      inputWorkspace->getNumberTransformsToOriginal();

  CoordTransform_const_sptr transform =
      boost::make_shared<NullCoordTransform>(inputWorkspace->getNumDims());
  if (numberTransformsToOriginal > 0) {
    const size_t indexToLastTransform = numberTransformsToOriginal - 1;
    transform = CoordTransform_const_sptr(
        inputWorkspace->getTransformToOriginal(indexToLastTransform),
        NullDeleter());
  }

  assert(line.x.size() == outputWorkspace->dataX(0).size());

  std::string xAxisLabel = inputWorkspace->getDimension(id)->getName();
  const bool autoFind = this->getProperty("FindXAxis");
  if (autoFind) {
    // We look to the original workspace if possbible to find the dimension of
    // interest to plot against.
    id = findXAxis(start, end, transform.get(), inputWorkspace.get(), g_log, id,
                   xAxisLabel);
  }

  for (size_t i = 0; i < line.x.size(); ++i) {
    // Coordinates in the workspace being plotted
    VMD wsCoord = start + dir * line.x[i];

    VMD inTargetCoord = transform->applyVMD(wsCoord);
    outputWorkspace->dataX(0)[i] = inTargetCoord[id];
  }

  boost::shared_ptr<Kernel::Units::Label> labelX =
      boost::dynamic_pointer_cast<Kernel::Units::Label>(
          Kernel::UnitFactory::Instance().create("Label"));
  labelX->setLabel(xAxisLabel);
  outputWorkspace->getAxis(0)->unit() = labelX;

  outputWorkspace->setYUnitLabel("Signal");

  setProperty("OutputWorkspace", outputWorkspace);
}