void GenericEpetraProblem::outputResults(const NOX::Solver::Generic& solver, Teuchos::ParameterList& printParams) { // Output the parameter list NOX::Utils utils(printParams); if (utils.isPrintType(NOX::Utils::Parameters)) { cout << endl << "Final Parameters" << endl << "****************" << endl; solver.getList().print(cout); cout << endl; } // Get the Epetra_Vector with the final solution from the solver const NOX::Epetra::Group& finalGroup = dynamic_cast<const NOX::Epetra::Group&>(solver.getSolutionGroup()); const Epetra_Vector& finalSolution = (dynamic_cast<const NOX::Epetra::Vector&> (finalGroup.getX())).getEpetraVector(); // Print solution char file_name[25]; FILE *ifp; int NumMyElements = finalSolution.Map().NumMyElements(); (void) sprintf(file_name, "output.%d",finalSolution.Map().Comm().MyPID()); ifp = fopen(file_name, "w"); for (int i=0; i<NumMyElements; i++) fprintf(ifp,"%d %E\n",finalSolution.Map().MinMyGID()+i,finalSolution[i]); fclose(ifp); }
StatusType NormWRMS:: checkStatus(const NOX::Solver::Generic& problem, NOX::StatusTest::CheckType checkType) { if (checkType == NOX::StatusTest::None) { status = Unevaluated; value = 1.0e+12; return status; } status = Unconverged; const Abstract::Group& soln = problem.getSolutionGroup(); const Abstract::Group& oldsoln = problem.getPreviousSolutionGroup(); const Abstract::Vector& x = soln.getScaledX(); // On the first iteration, the old and current solution are the same so // we should return the test as unconverged until there is a valid // old solution (i.e. the number of iterations is greater than zero). int niters = problem.getNumIterations(); if (niters == 0) { status = Unconverged; value = 1.0e+12; return status; } // **** Begin check for convergence criteria #1 **** // Create the working vectors if this is the first time this // operator is called. if (Teuchos::is_null(u)) u = x.clone(NOX::ShapeCopy); if (Teuchos::is_null(v)) v = x.clone(NOX::ShapeCopy); // Create the weighting vector u = RTOL |x| + ATOL // |x| is evaluated at the old time step v->abs(oldsoln.getScaledX()); if (atolIsScalar) { u->init(1.0); u->update(rtol, *v, atol); } else { u->update(rtol, *v, 1.0, *atolVec, 0.0); } // v = 1/u (elementwise) v->reciprocal(*u); // u = x - oldx (i.e., the update) u->update(1.0, x, -1.0, oldsoln.getScaledX(), 0.0); // u = Cp * u @ v (where @ represents an elementwise multiply) u->scale(*v); // Turn off implicit scaling of norm if the vector supports it Teuchos::RCP<NOX::Abstract::ImplicitWeighting> iw_u; iw_u = Teuchos::rcp_dynamic_cast<NOX::Abstract::ImplicitWeighting>(u,false); bool saved_status = false; if (nonnull(iw_u) && m_disable_implicit_weighting) { saved_status = iw_u->getImplicitWeighting(); iw_u->setImplicitWeighting(false); } // tmp = factor * sqrt (u * u / N) value = u->norm() * factor / sqrt(static_cast<double>(u->length())); // Set the implicit scaling back to original value if (nonnull(iw_u) && m_disable_implicit_weighting) iw_u->setImplicitWeighting(saved_status); StatusType status1 = Unconverged; if (value < tolerance) status1 = Converged; // **** Begin check for convergence criteria #2 **** StatusType status2 = Unconverged; // Determine if the Generic solver is a LineSearchBased solver // If it is not then return a "Converged" status const Solver::Generic* test = 0; test = dynamic_cast<const Solver::LineSearchBased*>(&problem); if (test == 0) { status2 = Converged; } else { printCriteria2Info = true; computedStepSize = (dynamic_cast<const Solver::LineSearchBased*>(&problem))->getStepSize(); if (computedStepSize >= alpha) status2 = Converged; } // **** Begin check for convergence criteria #3 **** // First time through, make sure the output parameter list exists. // Since the list is const, a sublist call to a non-existent sublist // throws an error. Therefore we have to check the existence of each // sublist before we call it. const Teuchos::ParameterList& p = problem.getList(); if (niters == 1) { if (p.isSublist("Direction")) { if (p.sublist("Direction").isSublist("Newton")) { if (p.sublist("Direction").sublist("Newton").isSublist("Linear Solver")) { if (p.sublist("Direction").sublist("Newton").sublist("Linear Solver").isSublist("Output")) { const Teuchos::ParameterList& list = p.sublist("Direction").sublist("Newton").sublist("Linear Solver").sublist("Output"); if (Teuchos::isParameterType<double>(list, "Achieved Tolerance")) { printCriteria3Info = true; } } } } } } StatusType status3 = Converged; if (printCriteria3Info) { achievedTol = const_cast<Teuchos::ParameterList&>(problem.getList()). sublist("Direction").sublist("Newton").sublist("Linear Solver"). sublist("Output").get("Achieved Tolerance", -1.0); status3 = (achievedTol <= beta) ? Converged : Unconverged; } // Determine status of test if ((status1 == Converged) && (status2 == Converged) && (status3 == Converged)) status = Converged; return status; }