void QmitkTensorReconstructionView::TensorsToQbi() { for (int i=0; i<m_TensorImages->size(); i++) { mitk::DataNode::Pointer tensorImageNode = m_TensorImages->at(i); MITK_INFO << "starting Q-Ball estimation"; typedef float TTensorPixelType; typedef itk::DiffusionTensor3D< TTensorPixelType > TensorPixelType; typedef itk::Image< TensorPixelType, 3 > TensorImageType; TensorImageType::Pointer itkvol = TensorImageType::New(); mitk::CastToItkImage<TensorImageType>(dynamic_cast<mitk::TensorImage*>(tensorImageNode->GetData()), itkvol); typedef itk::TensorImageToQBallImageFilter< TTensorPixelType, TTensorPixelType > FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetInput( itkvol ); filter->Update(); typedef itk::Vector<TTensorPixelType,QBALL_ODFSIZE> OutputPixelType; typedef itk::Image<OutputPixelType,3> OutputImageType; mitk::QBallImage::Pointer image = mitk::QBallImage::New(); OutputImageType::Pointer outimg = filter->GetOutput(); image->InitializeByItk( outimg.GetPointer() ); image->SetVolume( outimg->GetBufferPointer() ); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); QString newname; newname = newname.append(tensorImageNode->GetName().c_str()); newname = newname.append("_qbi"); node->SetName(newname.toAscii()); GetDefaultDataStorage()->Add(node); } }
mitk::TensorImageSource::TensorImageSource() { // Create the output. We use static_cast<> here because we know the default // output must be of type TOutputImage OutputImageType::Pointer output = static_cast<OutputImageType*>(this->MakeOutput(0).GetPointer()); Superclass::SetNumberOfRequiredOutputs(1); Superclass::SetNthOutput(0, output.GetPointer()); }
// ------------------------------------------------------------------------ void OpenCVValve::ConvertImage(const ImageType::Pointer &input, MatPtr &mat) { // cast the image to uchar typedef itk::Image<unsigned char, 2> OutputImageType; typedef itk::RescaleIntensityImageFilter<ImageType, OutputImageType> CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetOutputMaximum(255); caster->SetOutputMinimum(0); caster->SetInput(input); caster->Update(); OutputImageType::Pointer output = caster->GetOutput(); typedef itk::ImageFileWriter<OutputImageType> WriterType; WriterType::Pointer writer = WriterType::New(); writer->SetImageIO(itk::PNGImageIO::New()); writer->SetInput(output); writer->SetFileName("test.png"); writer->Update(); ImageType::SizeType size = input->GetLargestPossibleRegion().GetSize(); unsigned int rows = size[1]; unsigned int cols = size[0]; mat = new MatType(rows,cols, CV_8UC1); itk::ImageRegionConstIterator<OutputImageType> it(output, output->GetLargestPossibleRegion()); it.GoToBegin(); while(!it.IsAtEnd()) { OutputImageType::IndexType index = it.GetIndex(); unsigned char val = it.Get(); mat->at<unsigned char>(cv::Point(index[0], index[1])) = val; ++it; } }
void itk::ConnectomicsNetworkToConnectivityMatrixImageFilter::GenerateData() { this->AllocateOutputs(); OutputImageType::Pointer output = this->GetOutput(); if(m_InputNetwork.IsNull()) { MITK_ERROR << "Failed to generate data, no valid network was set."; return; } typedef mitk::ConnectomicsNetwork::NetworkType NetworkType; typedef boost::graph_traits< NetworkType >::vertex_descriptor DescriptorType; typedef boost::graph_traits< NetworkType >::vertex_iterator IteratorType; // prepare connectivity matrix for data std::vector< std::vector< int > > connectivityMatrix; int numberOfVertices = m_InputNetwork->GetNumberOfVertices(); connectivityMatrix.resize( numberOfVertices ); for( int index(0); index < numberOfVertices; index++ ) { connectivityMatrix[ index ].resize( numberOfVertices ); } // Create LabelToIndex translation std::map< std::string, DescriptorType > labelToIndexMap; NetworkType boostGraph = *(m_InputNetwork->GetBoostGraph()); // translate index to label IteratorType iterator, end; boost::tie(iterator, end) = boost::vertices( boostGraph ); for ( ; iterator != end; ++iterator) { labelToIndexMap.insert( std::pair< std::string, DescriptorType >( boostGraph[ *iterator ].label, *iterator ) ); } std::vector< std::string > indexToLabel; // translate index to label indexToLabel.resize( numberOfVertices ); boost::tie(iterator, end) = boost::vertices( boostGraph ); for ( ; iterator != end; ++iterator) { indexToLabel[ *iterator ] = boostGraph[ *iterator ].label; } //translate label to position std::vector< std::string > positionToLabelVector; positionToLabelVector = indexToLabel; std::sort ( positionToLabelVector.begin(), positionToLabelVector.end() ); for( int outerLoop( 0 ); outerLoop < numberOfVertices; outerLoop++ ) { DescriptorType fromVertexDescriptor = labelToIndexMap.find( positionToLabelVector[ outerLoop ] )->second; for( int innerLoop( outerLoop + 1 ); innerLoop < numberOfVertices; innerLoop++ ) { DescriptorType toVertexDescriptor = labelToIndexMap.find( positionToLabelVector[ innerLoop ] )->second; int weight( 0 ); if( boost::edge(toVertexDescriptor, fromVertexDescriptor, boostGraph ).second ) { weight = m_InputNetwork->GetEdge( fromVertexDescriptor , toVertexDescriptor ).weight;; } connectivityMatrix[outerLoop][innerLoop] = weight; connectivityMatrix[innerLoop][outerLoop] = weight; } } OutputImageType::SpacingType spacing; spacing[0] = 1.0; spacing[1] = 1.0; OutputImageType::PointType origin; origin[0] = 0.0; origin[1] = 0.0; OutputImageType::IndexType index; index[0] = 0.0; index[1] = 0.0; OutputImageType::SizeType size; size[0] = numberOfVertices; size[1] = numberOfVertices; OutputImageType::RegionType region; region.SetIndex( index ); region.SetSize( size ); output->SetSpacing( spacing ); // Set the image spacing output->SetOrigin( origin ); // Set the image origin output->SetRegions( region ); output->Allocate(); output->FillBuffer(0); itk::ImageRegionIterator< OutputImageType > it_connect(output, output->GetLargestPossibleRegion()); int counter( 0 ); double rescaleFactor( 1.0 ); double rescaleMax( 255.0 ); if( m_RescaleConnectivity ) { rescaleFactor = rescaleMax / m_InputNetwork->GetMaximumWeight(); } // Colour pixels according to connectivity if( m_BinaryConnectivity ) { // binary connectivity while( !it_connect.IsAtEnd() ) { if( connectivityMatrix[ ( counter - counter % numberOfVertices ) / numberOfVertices][ counter % numberOfVertices ] ) { it_connect.Set( 1 ); } else { it_connect.Set( 0 ); } ++it_connect; counter++; } } else { // if desired rescale to the 0-255 range while( !it_connect.IsAtEnd() ) { it_connect.Set( ( unsigned short ) rescaleFactor * connectivityMatrix[ ( counter - counter % numberOfVertices ) / numberOfVertices][ counter % numberOfVertices ] ); ++it_connect; counter++; } } }
int runGrAnisDiff(unsigned char* imgIn, int r, int c, int z, int iter, int timeStep, int comductance) { //pixel types typedef unsigned char InputPixelType; typedef float OutputPixelType; typedef itk::Image< InputPixelType, 3 > InputImageType; typedef itk::Image< OutputPixelType, 3 > OutputImageType; //create an ITK image from the input image OutputImageType::Pointer im; im = OutputImageType::New(); OutputImageType::PointType origin; origin[0] = 0.; origin[1] = 0.; origin[2] = 0.; im->SetOrigin( origin ); OutputImageType::IndexType start; start[0] = 0; // first index on X start[1] = 0; // first index on Y start[2] = 0; // first index on Z OutputImageType::SizeType size; size[0] = c; // size along X size[1] = r; // size along Y size[2] = z; // size along Z OutputImageType::RegionType region; region.SetSize( size ); region.SetIndex( start ); // double spacing[3]; //spacing[0] = 1; //spacing along x //spacing[1] = 1; //spacing along y //spacing[2] = sampl_ratio; //spacing along z im->SetRegions( region ); //im->SetSpacing(spacing); im->Allocate(); im->FillBuffer(0); im->Update(); //copy the input image into the ITK image typedef itk::ImageRegionIteratorWithIndex< OutputImageType > IteratorType; IteratorType iterator1(im,im->GetRequestedRegion()); for(int i=0; i<r*c*z; i++) { iterator1.Set((float)imgIn[i]); ++iterator1; } //apply gradient anisotropic diffusion typedef itk::GradientAnisotropicDiffusionImageFilter< OutputImageType, OutputImageType > FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetInput( im ); filter->SetNumberOfIterations( iter ); filter->SetTimeStep( timeStep ); filter->SetConductanceParameter( comductance ); try { filter->Update(); } catch( itk::ExceptionObject & err ) { std::cerr << err << std::endl; return 0; } typedef itk::RescaleIntensityImageFilter< OutputImageType, InputImageType > RescaleFilterType; RescaleFilterType::Pointer rescaler = RescaleFilterType::New(); rescaler->SetOutputMinimum( 0 ); rescaler->SetOutputMaximum( 255 ); rescaler->SetInput( filter->GetOutput() ); rescaler->Update(); //overwrite the input image for now in order to save space typedef itk::ImageRegionIteratorWithIndex< InputImageType > IteratorType2; IteratorType2 iterator2(rescaler->GetOutput(),rescaler->GetOutput()->GetRequestedRegion()); for(int i=0; i<r*c*z; i++) { imgIn[i] = iterator2.Get(); ++iterator2; } return 1; }
int main(int argc, char** argv) { if (argc < 5) { std::cerr << "From the 3 images representing fiber orientation estimate angles and calculate angle homogeneity in the neighborhoods." << std::endl; std::cerr << "Usage: CalculateEntropyFiberAngles coordx_image coordy_image coordz_image out_image neigborhood_radius" << std::endl; return EXIT_FAILURE; } //parsing parameters int c = 1; const char* imagex_filename = argv[c++]; const char* imagey_filename = argv[c++]; const char* imagez_filename = argv[c++]; const char* output_filename = argv[c++]; int neighborhood_radius = atoi(argv[c++]); const unsigned int Dimension = 3; std::cout << "Input x: " << imagex_filename << std::endl; std::cout << "Input y: " << imagey_filename << std::endl; std::cout << "Input z: " << imagez_filename << std::endl; std::cout << "Output: " << output_filename << std::endl; std::cout << "Neighborhood radius: " << neighborhood_radius << std::endl; //main program typedef float InputPixelType; typedef float OutputPixelType; typedef itk::Image< InputPixelType, Dimension > InputImageType; typedef itk::Image< OutputPixelType, Dimension > OutputImageType; typedef itk::ImageFileReader< InputImageType > ReaderType; typedef itk::ImageFileWriter< OutputImageType > WriterType; ReaderType::Pointer readerx = ReaderType::New(); ReaderType::Pointer readery = ReaderType::New(); ReaderType::Pointer readerz = ReaderType::New(); WriterType::Pointer writer = WriterType::New(); readerx->SetFileName(imagex_filename); readery->SetFileName(imagex_filename); readerz->SetFileName(imagex_filename); writer->SetFileName(output_filename); std::cout<<"Reading X"<<std::endl; readerx->Update(); std::cout<<"Reading Y"<<std::endl; readery->Update(); std::cout<<"Reading Z"<<std::endl; readerz->Update(); const InputImageType * inputx = readerx->GetOutput(); const InputImageType * inputy = readery->GetOutput(); const InputImageType * inputz = readerz->GetOutput(); //create the output image OutputImageType::Pointer image = OutputImageType::New(); image->SetRegions(inputx->GetLargestPossibleRegion()); image->SetSpacing(inputx->GetSpacing()); image->SetOrigin(inputx->GetOrigin()); image->Allocate(); image->FillBuffer(0); InputImageType::SizeType radius; radius[0] = neighborhood_radius; radius[1] = neighborhood_radius; radius[2] = neighborhood_radius; itk::ConstNeighborhoodIterator<InputImageType> iteratorx(radius, inputx, image->GetRequestedRegion()); itk::ConstNeighborhoodIterator<InputImageType> iteratory(radius, inputy, image->GetRequestedRegion()); itk::ConstNeighborhoodIterator<InputImageType> iteratorz(radius, inputz, image->GetRequestedRegion()); itk::ImageRegionIterator<OutputImageType> it( image, image->GetRequestedRegion() ); iteratorx.GoToBegin(); iteratory.GoToBegin(); iteratorz.GoToBegin(); it.GoToBegin(); const unsigned int nneighbors = (neighborhood_radius*2+1)*(neighborhood_radius*2+1)*(neighborhood_radius*2+1); Eigen::MatrixXf neighbors( nneighbors-1, 3 ); //to store the vectors Eigen::Vector3f central_vector; int c_id = (int) (nneighbors / 2); // get offset of center pixel //check image size for the progress indicator OutputImageType::RegionType region = image->GetLargestPossibleRegion(); OutputImageType::SizeType size = region.GetSize(); const unsigned long int npixels = size[0]*size[1]*size[2]; unsigned long int k = 0; while ( ! iteratorx.IsAtEnd() ) { if(k%10000 == 0) { std::cout<<"Processed "<<k<<"/"<<npixels<<"\r"<<std::flush; } k++; unsigned int j = 0; for (unsigned int i = 0; i < nneighbors; ++i) { if(i!=c_id) //exclude the center { neighbors(j, 0) = iteratorx.GetPixel(i); neighbors(j, 1) = iteratory.GetPixel(i); neighbors(j, 2) = iteratorz.GetPixel(i); j++; } else { central_vector(0) = iteratorx.GetPixel(i); central_vector(1) = iteratory.GetPixel(i); central_vector(2) = iteratorz.GetPixel(i); } } // calculate the angles Eigen::VectorXf dp = neighbors*central_vector; const float variance = ((dp.array()-dp.mean()).pow(2)).mean(); it.Set(variance); ++iteratorx; ++iteratory; ++iteratorz; ++it; } std::cout<<std::endl; // The output of the resampling filter is connected to a writer and the // execution of the pipeline is triggered by a writer update. try { writer->SetInput(image); writer->Update(); } catch (itk::ExceptionObject & excep) { std::cerr << "Exception caught !" << std::endl; std::cerr << excep << std::endl; } return EXIT_SUCCESS; }
void segmentation::on_abnormalRegionSegButton_clicked() { fstream fin11, fin12; char* s11Txt = ("../data/ped/txt/15715_11.txt");//s11.txt char* s12Txt = ("../data/ped/txt/15715_12.txt"); int (*s11)[512] = new int[64][512]; int (*s12)[512] = new int[64][512]; int (*p)[512] = new int[64][512]; //read TXT fin11.open(s11Txt, ios::in); fin12.open(s12Txt, ios::in); //get the p matrix for(int z = 0; z < 64; z++) { for(int x = 0; x < 512; x++) { fin11>>s11[z][x]; fin12>>s12[z][x]; if(s12[z][x] - s11[z][x] > 5) //5 threshold p[z][x] = 1; else p[z][x] = 0; } } fin11.close(); fin12.close(); //read filtered MHD data typedef itk::Image<unsigned short, 3>InputImageType; typedef itk::Image<unsigned short, 3>OutputImageType; typedef itk::Image<unsigned char, 3>InitOutputImageType; InputImageType::Pointer inputImage = InputImageType::New(); OutputImageType::Pointer outputImage = OutputImageType::New(); InitOutputImageType::Pointer initOutputImage = InitOutputImageType::New(); typedef itk::ImageFileReader<InputImageType>ReaderType; ReaderType::Pointer reader = ReaderType::New(); reader->SetFileName(inputFileName);//读入原图像 reader->Update(); inputImage = reader->GetOutput(); InputImageType::IndexType voxelIndex; InitOutputImageType::IndexType initvoxelIndex; OutputImageType::IndexType newvoxelIndex; InputImageType::SizeType imgSize = inputImage->GetLargestPossibleRegion().GetSize(); OutputImageType::IndexType index; index[0] = 0; index[1] = 0; index[2] = 0; OutputImageType::SizeType size; size[0] = imgSize[0]; size[1] = imgSize[1]; size[2] = imgSize[2]; //create a region for initial result InitOutputImageType::RegionType initRegion; initRegion.SetIndex(index); initRegion.SetSize(size); initOutputImage->SetRegions( initRegion); initOutputImage->Allocate(); //create a region for enhance result OutputImageType::RegionType region; region.SetIndex(index); region.SetSize(size); outputImage->SetRegions(region); outputImage->Allocate(); //Initial result for PED segmentation (a binary image) for(int z = 0; z < imgSize[2]; z++) for(int x = 0; x < imgSize[0]; x++) { initvoxelIndex[0] = x; initvoxelIndex[2] = z; for(int y = 0; y < imgSize[1]; y++) { //set all background a black region initvoxelIndex[1] = y; initOutputImage->SetPixel(initvoxelIndex, 0); } //set the same intensity for all PED region (empirical value) if(p[z][x] == 1) { for(int y = s11[z][x]; y <= s12[z][x]; y++) { initvoxelIndex[1] = y; initOutputImage->SetPixel(initvoxelIndex, 255);//亮区域 } } } //输出中间分割结果 //文件前缀名 filePrefix = inputFileName;//char* to string filePrefix = filePrefix.substr(0, filePrefix.length() - 4); string strInitFileName; strInitFileName = filePrefix + "_initBinaryImg.mhd"; strcpy(initFileName, strInitFileName.c_str());//string to char* typedef itk::ImageFileWriter<InitOutputImageType>InitWriterType; InitWriterType::Pointer initWriter = InitWriterType::New(); initWriter->SetFileName(initFileName);//生成二值图 initWriter->SetInput(initOutputImage); initWriter->Update(); //Enhance PED region and overlay it on the original image for(int z = 0; z < imgSize[2]; z++) for(int x = 0; x < imgSize[0]; x++) { voxelIndex[0] = x; voxelIndex[2] = z; newvoxelIndex[0] = x; newvoxelIndex[2] = z; for(int y = 0; y < imgSize[1]; y++) { voxelIndex[1] = y; newvoxelIndex[1] = y; outputImage->SetPixel(newvoxelIndex, inputImage->GetPixel(voxelIndex)); } //set the same intensity for all PED region (empirical value) if(p[z][x] == 1) { for(int y = s11[z][x]; y <= s12[z][x]; y++) { newvoxelIndex[1] = y; outputImage->SetPixel(newvoxelIndex, 65535);//亮区域 } } } //释放内存不能缺省 delete[]s11; delete[]s12; delete[]p; typedef itk::ImageFileWriter<OutputImageType>WriterType; WriterType::Pointer writer = WriterType::New(); filePrefix = filePrefix + "_initResult.mhd"; strcpy(outputFileName, filePrefix.c_str());//string to char* initResultFileName = outputFileName;//输出初始分割结果,二值图重叠在原图像上面 writer->SetFileName(outputFileName); writer->SetInput(outputImage); writer->Update(); emit returnOutputFileName(outputFileName);//发出信号 }
void IntrinsicFeatureCalculator::GetDistanceToSurfaceMeasures(vtkSmartPointer<vtkTable> table, std::vector< ftk::Object::Point > surfacePoints) { typedef itk::Image< IPixelT, 3 > InputImageType; typedef itk::Image< LPixelT, 3 > OutputImageType; typedef itk::DanielssonDistanceMapImageFilter< OutputImageType, OutputImageType > DanielssonFilterType; typedef itk::RescaleIntensityImageFilter< OutputImageType, OutputImageType > RescalerType; typedef itk::ImageFileReader< InputImageType > ReaderType; typedef itk::ImageFileWriter< InputImageType > InputWriterType; typedef itk::ImageFileWriter< OutputImageType > WriterType; typedef itk::LineIterator< OutputImageType > LineIteratorType; vtkSmartPointer<vtkDoubleArray> column = vtkSmartPointer<vtkDoubleArray>::New(); column->SetName( "Dist_To_Surface" ); column->SetNumberOfValues( table->GetNumberOfRows() ); table->AddColumn(column); OutputImageType::Pointer im; im = OutputImageType::New(); OutputImageType::PointType origin; origin[0] = 0; origin[1] = 0; origin[2] = 0; im->SetOrigin( origin ); OutputImageType::IndexType start; start[0] = 0; // first index on X start[1] = 0; // first index on Y start[2] = 0; // first index on Z OutputImageType::Pointer temp_image = labelImage->GetItkPtr< LPixelT >(0,0); itk::Size<3> im_size = temp_image->GetBufferedRegion().GetSize(); im_size[2] = 1; InputImageType::RegionType region; region.SetSize( im_size ); region.SetIndex( start ); im->SetRegions( region ); im->Allocate(); im->FillBuffer(0); im->Update(); //copy the input image into the ITK image for(int p = 1; p < (int)surfacePoints.size(); ++p) { itk::Index<3> indx,indy; indx[0] = surfacePoints[p-1].x; indx[1] = surfacePoints[p-1].y; indx[2] = 0; indy[0] = surfacePoints[p].x; indy[1] = surfacePoints[p].y; indy[2] = 0; LineIteratorType it( im, indx, indy ); //it.GoToBegin(); //while(!it.IsAtEnd()) for(it.GoToBegin(); !it.IsAtEnd(); ++it) { it.Set(255); } } DanielssonFilterType::Pointer danielssonFilter = DanielssonFilterType::New(); WriterType::Pointer writer = WriterType::New(); danielssonFilter->SetInput( im ); writer->SetFileName( "DistanceMap.tif" ); danielssonFilter->InputIsBinaryOn(); danielssonFilter->Update(); OutputImageType::Pointer distMap = danielssonFilter->GetOutput(); writer->SetInput( distMap ); writer->Update(); for(int row=0; row<(int)table->GetNumberOfRows(); ++row) { OutputImageType::IndexType indx; indx[0] = table->GetValue(row, 1).ToInt(); indx[1] = table->GetValue(row, 2).ToInt(); indx[2] = 0; int dist = distMap->GetPixel(indx); table->SetValueByName(row, "Dist_To_Surface", vtkVariant(dist)); } }