void display_score_image(const float* score_buffer) { int npixels = range_likelihood_->getWidth() * range_likelihood_->getHeight(); uint8_t* score_img = new uint8_t[npixels * 3]; float min_score = score_buffer[0]; float max_score = score_buffer[0]; for (int i=1; i<npixels; i++) { if (score_buffer[i] < min_score) min_score = score_buffer[i]; if (score_buffer[i] > max_score) max_score = score_buffer[i]; } for (int i=0; i<npixels; i++) { float d = (score_buffer[i]-min_score)/(max_score-min_score); score_img[3*i+0] = 0; score_img[3*i+1] = d*255; score_img[3*i+2] = 0; } glRasterPos2i(-1,-1); glDrawPixels(range_likelihood_->getWidth(), range_likelihood_->getHeight(), GL_RGB, GL_UNSIGNED_BYTE, score_img); delete [] score_img; }
void depthBufferToMM(const float* depth_buffer,unsigned short* depth_img) { int npixels = range_likelihood_->getWidth() * range_likelihood_->getHeight(); // unsigned short * depth_img = new unsigned short[npixels ]; for (int y = 0; y < 480; ++y) { for (int x = 0; x < 640; ++x) { int i= y*640 + x ; int i_in= (480-1 -y) *640 + x ; // flip up down float zn = 0.7; float zf = 20.0; float d = depth_buffer[i_in]; unsigned short z_new = (unsigned short) floor( 1000*( -zf*zn/((zf-zn)*(d - zf/(zf-zn))))); if (z_new < 0) z_new = 0; // else if (z_new>65535) z_new = 65535; else if (z_new>5000) z_new = 0; // if ( z_new < 18000){ // cout << z_new << " " << d << " " << x << "\n"; // } depth_img[i] = z_new; } } }
void write_rgb_image(const uint8_t* rgb_buffer) { int npixels = range_likelihood_->getWidth() * range_likelihood_->getHeight(); uint8_t* rgb_img = new uint8_t[npixels * 3]; for (int y = 0; y < 480; ++y) { for (int x = 0; x < 640; ++x) { int px= y*640 + x ; int px_in= (480-1 -y) *640 + x ; // flip up down rgb_img [3* (px) +0] = rgb_buffer[3*px_in+0]; rgb_img [3* (px) +1] = rgb_buffer[3*px_in+1]; rgb_img [3* (px) +2] = rgb_buffer[3*px_in+2]; } } // Write to file: IplImage *cv_ipl = cvCreateImage( cvSize(640 ,480), 8, 3); cv::Mat cv_mat(cv_ipl); cv_mat.data = rgb_img ; // cv::imwrite("rgb_image.png", cv_mat); std::stringstream ss; ss <<"rgb_image.png" ; cv::imwrite(ss.str() , cv_mat); delete [] rgb_img; }
void display_score_image (const float* score_buffer) { int npixels = range_likelihood_->getWidth () * range_likelihood_->getHeight (); uint8_t* score_img = new uint8_t[npixels * 3]; float min_score = score_buffer[0]; float max_score = score_buffer[0]; for (int i=1; i<npixels; i++) { if (score_buffer[i] < min_score) min_score = score_buffer[i]; if (score_buffer[i] > max_score) max_score = score_buffer[i]; } for (int i=0; i < npixels; i++) { float d = (score_buffer[i]-min_score)/(max_score-min_score); score_img[3*i+0] = 0; score_img[3*i+1] = static_cast<unsigned char> (d*255); score_img[3*i+2] = 0; } textured_quad_->setTexture (score_img); textured_quad_->render (); delete [] score_img; }
void capture (Eigen::Isometry3d pose_in) { // No reference image - but this is kept for compatibility with range_test_v2: float* reference = new float[range_likelihood_->getRowHeight() * range_likelihood_->getColWidth()]; const float* depth_buffer = range_likelihood_->getDepthBuffer(); // Copy one image from our last as a reference. for (int i=0, n=0; i<range_likelihood_->getRowHeight(); ++i) { for (int j=0; j<range_likelihood_->getColWidth(); ++j) { reference[n++] = depth_buffer[i*range_likelihood_->getWidth() + j]; } } std::vector<Eigen::Isometry3d, Eigen::aligned_allocator<Eigen::Isometry3d> > poses; std::vector<float> scores; poses.push_back (pose_in); range_likelihood_->computeLikelihoods (reference, poses, scores); std::cout << "score: "; for (size_t i = 0; i<scores.size (); ++i) { std::cout << " " << scores[i]; } std::cout << std::endl; std::cout << "camera: " << camera_->getX () << " " << camera_->getY () << " " << camera_->getZ () << " " << camera_->getRoll () << " " << camera_->getPitch () << " " << camera_->getYaw () << std::endl; delete [] reference; // Benchmark Values for // 27840 triangle faces // 13670 vertices // 45.00Hz: simuation only // 1.28Hz: simuation, addNoise? , getPointCloud, writeASCII // 33.33Hz: simuation, getPointCloud // 23.81Hz: simuation, getPointCloud, writeBinary // 14.28Hz: simuation, addNoise, getPointCloud, writeBinary // MODULE TIME FRACTION // simuation 0.02222 31% // addNoise 0.03 41% // getPointCloud 0.008 11% // writeBinary 0.012 16% // total 0.07222 pcl::PointCloud<pcl::PointXYZRGB>::Ptr pc_out (new pcl::PointCloud<pcl::PointXYZRGB>); }
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //SIMSTARTSIMSTARTSIMSTARTSIMSTARTSIMSTARTSIMSTARTSIMSTARTSIMSTARTSIMSTARTSIMSTARTSIMSTART void write_depth_image(const float* depth_buffer) { int npixels = range_likelihood_->getWidth() * range_likelihood_->getHeight(); uint8_t* depth_img = new uint8_t[npixels * 3]; float min_depth = depth_buffer[0]; float max_depth = depth_buffer[0]; for (int i=1; i<npixels; i++) { if (depth_buffer[i] < min_depth) min_depth = depth_buffer[i]; if (depth_buffer[i] > max_depth) max_depth = depth_buffer[i]; } for (int y = 0; y < 480; ++y) { for (int x = 0; x < 640; ++x) { int i= y*640 + x ; int i_in= (480-1 -y) *640 + x ; // flip up down float zn = 0.7; float zf = 20.0; float d = depth_buffer[i_in]; float z = -zf*zn/((zf-zn)*(d - zf/(zf-zn))); float b = 0.075; float f = 580.0; uint16_t kd = static_cast<uint16_t>(1090 - b*f/z*8); if (kd < 0) kd = 0; else if (kd>2047) kd = 2047; int pval = t_gamma[kd]; int lb = pval & 0xff; switch (pval>>8) { case 0: depth_img[3*i+2] = 255; depth_img[3*i+1] = 255-lb; depth_img[3*i+0] = 255-lb; break; case 1: depth_img[3*i+2] = 255; depth_img[3*i+1] = lb; depth_img[3*i+0] = 0; break; case 2: depth_img[3*i+2] = 255-lb; depth_img[3*i+1] = 255; depth_img[3*i+0] = 0; break; case 3: depth_img[3*i+2] = 0; depth_img[3*i+1] = 255; depth_img[3*i+0] = lb; break; case 4: depth_img[3*i+2] = 0; depth_img[3*i+1] = 255-lb; depth_img[3*i+0] = 255; break; case 5: depth_img[3*i+2] = 0; depth_img[3*i+1] = 0; depth_img[3*i+0] = 255-lb; break; default: depth_img[3*i+2] = 0; depth_img[3*i+1] = 0; depth_img[3*i+0] = 0; break; } } } // Write to file: IplImage *cv_ipl = cvCreateImage( cvSize(640 ,480), 8, 3); cv::Mat cv_mat(cv_ipl); cv_mat.data = depth_img; std::stringstream ss; ss <<"depth_image.png" ; cv::imwrite(ss.str() , cv_mat); delete [] depth_img; }
void capture (Eigen::Isometry3d pose_in, string point_cloud_fname) { // No reference image - but this is kept for compatability with range_test_v2: float* reference = new float[range_likelihood_->getRowHeight() * range_likelihood_->getColWidth()]; const float* depth_buffer = range_likelihood_->getDepthBuffer(); // Copy one image from our last as a reference. for (int i=0, n=0; i<range_likelihood_->getRowHeight(); ++i) { for (int j=0; j<range_likelihood_->getColWidth(); ++j) { reference[n++] = depth_buffer[i*range_likelihood_->getWidth() + j]; } } std::vector<Eigen::Isometry3d, Eigen::aligned_allocator<Eigen::Isometry3d> > poses; std::vector<float> scores; poses.push_back (pose_in); range_likelihood_->computeLikelihoods (reference, poses, scores); std::cout << "score: "; for (size_t i = 0; i<scores.size (); ++i) { std::cout << " " << scores[i]; } std::cout << std::endl; std::cout << "camera: " << camera_->getX () << " " << camera_->getY () << " " << camera_->getZ () << " " << camera_->getRoll () << " " << camera_->getPitch () << " " << camera_->getYaw () << std::endl; delete [] reference; // Benchmark Values for // 27840 triangle faces // 13670 vertices // 45.00Hz: simuation only // 1.28Hz: simuation, addNoise? , getPointCloud, writeASCII // 33.33Hz: simuation, getPointCloud // 23.81Hz: simuation, getPointCloud, writeBinary // 14.28Hz: simuation, addNoise, getPointCloud, writeBinary // MODULE TIME FRACTION // simuation 0.02222 31% // addNoise 0.03 41% // getPointCloud 0.008 11% // writeBinary 0.012 16% // total 0.07222 pcl::PointCloud<pcl::PointXYZRGB>::Ptr pc_out (new pcl::PointCloud<pcl::PointXYZRGB>); bool write_cloud = true; if (write_cloud) { // Read Color Buffer from the GPU before creating PointCloud: // By default the buffers are not read back from the GPU range_likelihood_->getColorBuffer (); range_likelihood_->getDepthBuffer (); // Add noise directly to the CPU depth buffer range_likelihood_->addNoise (); // Optional argument to save point cloud in global frame: // Save camera relative: //range_likelihood_->getPointCloud(pc_out); // Save in global frame - applying the camera frame: //range_likelihood_->getPointCloud(pc_out,true,camera_->pose()); // Save in local frame range_likelihood_->getPointCloud (pc_out,false,camera_->getPose ()); // TODO: what to do when there are more than one simulated view? std::cout << pc_out->points.size() << " points written to file\n"; pcl::PCDWriter writer; //writer.write (point_cloud_fname, *pc_out, false); /// ASCII writer.writeBinary (point_cloud_fname, *pc_out); //cout << "finished writing file\n"; } // Disabled all OpenCV stuff for now: dont want the dependency /* bool demo_other_stuff = false; if (demo_other_stuff && write_cloud) { write_score_image (range_likelihood_->getScoreBuffer ()); write_rgb_image (range_likelihood_->getColorBuffer ()); write_depth_image (range_likelihood_->getDepthBuffer ()); // Demo interacton with RangeImage: pcl::RangeImagePlanar rangeImage; range_likelihood_->getRangeImagePlanar (rangeImage); // display viewer: (currently seqfaults on exit of viewer) if (1==0){ boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer; viewer = simpleVis(pc_out); while (!viewer->wasStopped ()){ viewer->spinOnce (100); boost::this_thread::sleep (boost::posix_time::microseconds (100000)); } } } */ }
int main (int argc, char** argv) { int width = 640; int height = 480; window_width_ = width * 2; window_height_ = height * 2; int cols = 30; int rows = 30; int col_width = 20; int row_height = 15; print_info ("Range likelihood performance tests using pcl::simulation. For more information, use: %s -h\n", argv[0]); if (argc < 2) { printHelp (argc, argv); return (-1); } for (int i = 0; i < 2048; ++i) { float v = static_cast<float> (i / 2048.0); v = powf(v, 3)* 6; t_gamma[i] = static_cast<uint16_t> (v*6*256); } glutInit (&argc, argv); glutInitDisplayMode (GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGB); glutInitWindowPosition (10, 10); glutInitWindowSize (window_width_, window_height_); glutCreateWindow ("OpenGL range likelihood"); GLenum err = glewInit (); if (GLEW_OK != err) { std::cerr << "Error: " << glewGetErrorString (err) << std::endl; exit (-1); } std::cout << "Status: Using GLEW " << glewGetString (GLEW_VERSION) << std::endl; if (glewIsSupported ("GL_VERSION_2_0")) std::cout << "OpenGL 2.0 supported" << std::endl; else { std::cerr << "Error: OpenGL 2.0 not supported" << std::endl; exit (1); } std::cout << "GL_MAX_VIEWPORTS: " << GL_MAX_VIEWPORTS << std::endl; camera_ = Camera::Ptr (new Camera ()); scene_ = Scene::Ptr (new Scene ()); range_likelihood_visualization_ = RangeLikelihood::Ptr (new RangeLikelihood (1, 1, height, width, scene_)); range_likelihood_ = RangeLikelihood::Ptr (new RangeLikelihood (rows, cols, row_height, col_width, scene_)); // Actually corresponds to default parameters: range_likelihood_visualization_->setCameraIntrinsicsParameters ( 640, 480, 576.09757860f, 576.09757860f, 321.06398107f, 242.97676897f); range_likelihood_visualization_->setComputeOnCPU (false); range_likelihood_visualization_->setSumOnCPU (false); range_likelihood_visualization_->setUseColor (true); range_likelihood_->setCameraIntrinsicsParameters ( 640, 480, 576.09757860f, 576.09757860f, 321.06398107f, 242.97676897f); range_likelihood_->setComputeOnCPU (false); range_likelihood_->setSumOnCPU (false); range_likelihood_->setUseColor (false); textured_quad_ = TexturedQuad::Ptr (new TexturedQuad (range_likelihood_->getWidth (), range_likelihood_->getHeight ())); initialize (argc, argv); glutDisplayFunc (display); glutIdleFunc (display); glutKeyboardFunc (on_keyboard); glutMainLoop (); }
void display () { float* reference = new float[range_likelihood_->getRowHeight () * range_likelihood_->getColWidth ()]; const float* depth_buffer = range_likelihood_->getDepthBuffer (); // Copy one image from our last as a reference. for (int i = 0, n = 0; i < range_likelihood_->getRowHeight (); ++i) { for (int j = 0; j < range_likelihood_->getColWidth (); ++j) { reference[n++] = depth_buffer[ (i + range_likelihood_->getRowHeight () * range_likelihood_->getRows () / 2) * range_likelihood_->getWidth () + j + range_likelihood_->getColWidth () * range_likelihood_->getCols () / 2]; } } float* reference_vis = new float[range_likelihood_visualization_->getRowHeight () * range_likelihood_visualization_->getColWidth ()]; const float* depth_buffer_vis = range_likelihood_visualization_->getDepthBuffer (); // Copy one image from our last as a reference. for (int i = 0, n = 0; i < range_likelihood_visualization_->getRowHeight (); ++i) { for (int j = 0; j < range_likelihood_visualization_->getColWidth (); ++j) { reference_vis[n++] = depth_buffer_vis[i*range_likelihood_visualization_->getWidth () + j]; } } std::vector<Eigen::Isometry3d, Eigen::aligned_allocator<Eigen::Isometry3d> > poses; std::vector<float> scores; // Render a single pose for visualization poses.clear (); poses.push_back (camera_->getPose ()); range_likelihood_visualization_->computeLikelihoods (reference_vis, poses, scores); glDrawBuffer (GL_BACK); glReadBuffer (GL_BACK); // Draw the resulting images from the range_likelihood glViewport (range_likelihood_visualization_->getWidth (), 0, range_likelihood_visualization_->getWidth (), range_likelihood_visualization_->getHeight ()); glMatrixMode (GL_PROJECTION); glLoadIdentity (); glMatrixMode (GL_MODELVIEW); glLoadIdentity (); // Draw the color image glColorMask (true, true, true, true); glClearColor (0, 0, 0, 0); glClearDepth (1); glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glDisable (GL_DEPTH_TEST); glRasterPos2i (-1,-1); glDrawPixels (range_likelihood_visualization_->getWidth (), range_likelihood_visualization_->getHeight (), GL_RGB, GL_UNSIGNED_BYTE, range_likelihood_visualization_->getColorBuffer ()); // Draw the depth image glViewport (0, 0, range_likelihood_visualization_->getWidth (), range_likelihood_visualization_->getHeight ()); glMatrixMode (GL_PROJECTION); glLoadIdentity (); glMatrixMode (GL_MODELVIEW); glLoadIdentity (); display_depth_image (range_likelihood_visualization_->getDepthBuffer (), range_likelihood_visualization_->getWidth (), range_likelihood_visualization_->getHeight ()); poses.clear (); for (int i = 0; i < range_likelihood_->getRows (); ++i) { for (int j = 0; j < range_likelihood_->getCols (); ++j) { Camera camera (*camera_); camera.move ((j - range_likelihood_->getCols () / 2.0) * 0.1, (i - range_likelihood_->getRows () / 2.0) * 0.1, 0.0); poses.push_back (camera.getPose ()); } } std::cout << std::endl; TicToc tt; tt.tic(); range_likelihood_->computeLikelihoods (reference, poses, scores); tt.toc(); tt.toc_print(); if (gllib::getGLError () != GL_NO_ERROR) { std::cerr << "GL Error: RangeLikelihood::computeLikelihoods: finished" << std::endl; } #if 0 std::cout << "score: "; for (size_t i = 0; i < scores.size (); ++i) { std::cout << " " << scores[i]; } std::cout << std::endl; #endif std::cout << "camera: " << camera_->getX () << " " << camera_->getY () << " " << camera_->getZ () << " " << camera_->getRoll () << " " << camera_->getPitch () << " " << camera_->getYaw () << std::endl; delete [] reference_vis; delete [] reference; if (gllib::getGLError () != GL_NO_ERROR) { std::cerr << "GL Error: before buffers" << std::endl; } glBindFramebuffer (GL_FRAMEBUFFER, 0); glDrawBuffer (GL_BACK); glReadBuffer (GL_BACK); if (gllib::getGLError () != GL_NO_ERROR) { std::cerr << "GL Error: after buffers" << std::endl; } glMatrixMode (GL_PROJECTION); glLoadIdentity (); glMatrixMode (GL_MODELVIEW); glLoadIdentity (); if (gllib::getGLError () != GL_NO_ERROR) { std::cerr << "GL Error: before viewport" << std::endl; } // Draw the score image for the particles glViewport (0, range_likelihood_visualization_->getHeight (), range_likelihood_visualization_->getWidth (), range_likelihood_visualization_->getHeight ()); if (gllib::getGLError () != GL_NO_ERROR) { std::cerr << "GL Error: after viewport" << std::endl; } display_score_image (range_likelihood_->getScoreBuffer ()); // Draw the depth image for the particles glViewport (range_likelihood_visualization_->getWidth (), range_likelihood_visualization_->getHeight (), range_likelihood_visualization_->getWidth (), range_likelihood_visualization_->getHeight ()); display_score_image (range_likelihood_->getDepthBuffer ()); glutSwapBuffers (); }
void display () { float* reference = new float[range_likelihood_->getRowHeight() * range_likelihood_->getColWidth()]; const float* depth_buffer = range_likelihood_->getDepthBuffer(); // Copy one image from our last as a reference. for (int i=0, n=0; i<range_likelihood_->getRowHeight(); ++i) { for (int j=0; j<range_likelihood_->getColWidth(); ++j) { reference[n++] = depth_buffer[i*range_likelihood_->getWidth() + j]; } } std::vector<Eigen::Isometry3d, Eigen::aligned_allocator<Eigen::Isometry3d> > poses; std::vector<float> scores; int n = range_likelihood_->getRows ()*range_likelihood_->getCols (); for (int i = 0; i < n; ++i) { Camera camera(*camera_); camera.move(0.0,i*0.02,0.0); //camera.move(0.0,i*0.02,0.0); poses.push_back (camera.getPose ()); } range_likelihood_->computeLikelihoods (reference, poses, scores); range_likelihood_->computeLikelihoods (reference, poses, scores); std::cout << "score: "; for (size_t i = 0; i<scores.size (); ++i) { std::cout << " " << scores[i]; } std::cout << std::endl; std::cout << "camera: " << camera_->getX () << " " << camera_->getY () << " " << camera_->getZ () << " " << camera_->getRoll () << " " << camera_->getPitch () << " " << camera_->getYaw () << std::endl; delete [] reference; glDrawBuffer (GL_BACK); glReadBuffer (GL_BACK); // Draw the resulting images from the range_likelihood glViewport (range_likelihood_->getWidth (), 0, range_likelihood_->getWidth (), range_likelihood_->getHeight ()); glMatrixMode (GL_PROJECTION); glLoadIdentity (); glMatrixMode (GL_MODELVIEW); glLoadIdentity (); // Draw the color image glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glColorMask (true, true, true, true); glDisable (GL_DEPTH_TEST); glRasterPos2i (-1,-1); glDrawPixels (range_likelihood_->getWidth (), range_likelihood_->getHeight (), GL_RGB, GL_UNSIGNED_BYTE, range_likelihood_->getColorBuffer ()); // Draw the depth image glViewport (0, 0, range_likelihood_->getWidth (), range_likelihood_->getHeight ()); glMatrixMode (GL_PROJECTION); glLoadIdentity (); glMatrixMode (GL_MODELVIEW); glLoadIdentity (); // display_depth_image (range_likelihood_->getDepthBuffer ()); display_depth_image (range_likelihood_->getDepthBuffer (), range_likelihood_->getWidth (), range_likelihood_->getHeight ()); // Draw the score image glViewport (0, range_likelihood_->getHeight (), range_likelihood_->getWidth (), range_likelihood_->getHeight ()); glMatrixMode (GL_PROJECTION); glLoadIdentity (); glMatrixMode (GL_MODELVIEW); glLoadIdentity (); display_score_image (range_likelihood_->getScoreBuffer ()); glutSwapBuffers (); if (write_file_) { range_likelihood_->addNoise (); pcl::RangeImagePlanar rangeImage; range_likelihood_->getRangeImagePlanar (rangeImage); pcl::PointCloud<pcl::PointXYZRGB>::Ptr pc_out (new pcl::PointCloud<pcl::PointXYZRGB>); // Optional argument to save point cloud in global frame: // Save camera relative: //range_likelihood_->getPointCloud(pc_out); // Save in global frame - applying the camera frame: //range_likelihood_->getPointCloud(pc_out,true,camera_->pose()); // Save in local frame range_likelihood_->getPointCloud (pc_out,false,camera_->getPose ()); // TODO: what to do when there are more than one simulated view? pcl::PCDWriter writer; writer.write ("simulated_range_image.pcd", *pc_out, false); cout << "finished writing file\n"; // pcl::visualization::CloudViewer viewer ("Simple Cloud Viewer"); // viewer.showCloud (pc_out); boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer; viewer = simpleVis(pc_out); while (!viewer->wasStopped ()) { viewer->spinOnce (100); boost::this_thread::sleep (boost::posix_time::microseconds (100000)); } // doesnt work: // viewer->~PCLVisualizer(); // viewer.reset(); cout << "done\n"; // Problem: vtk and opengl dont seem to play very well together // vtk seems to misbehave after a little while and wont keep the window on the screen // method1: kill with [x] - but eventually it crashes: //while (!viewer.wasStopped ()){ //} // method2: eventually starts ignoring cin and pops up on screen and closes almost // immediately // cout << "enter 1 to cont\n"; // cin >> pause; // viewer.wasStopped (); // method 3: if you interact with the window with keys, the window is not closed properly // TODO: use pcl methods as this time stuff is probably not cross playform // struct timespec t; // t.tv_sec = 100; // //t.tv_nsec = (time_t)(20000000); // short sleep // t.tv_nsec = (time_t)(0); // long sleep - normal speed // nanosleep (&t, NULL); write_file_ = 0; } }