void check_final_state(boost::shared_ptr<Ravelin::ArticulatedBodyd>& rb){ boost::shared_ptr<RCArticulatedBodyd> robot = boost::dynamic_pointer_cast<RCArticulatedBodyd>(rb); Ravelin::VectorNd q; robot->get_generalized_coordinates_euler(q); Ravelin::Pose3d P = Utility::vec_to_pose(q.segment(q.size()-7,q.size())); double x_progress = P.x[0]; // Progress from first version: double last_x_progress = 1.01395; #ifdef USE_GTEST ASSERT_LE(last_x_progress,x_progress); #else if(last_x_progress>x_progress){ std::cerr << last_x_progress << " last progress > this progress" << x_progress; exit(EXIT_FAILURE); } #endif }
void Utility::calc_cubic_spline_coefs(const Ravelin::VectorNd& T_,const Ravelin::VectorNd& X, const Ravelin::Vector2d& Xd, Ravelin::VectorNd& B){ static Ravelin::MatrixNd A; // Spline always solves from t[0] = 0 in interval static Ravelin::VectorNd T; T = T_; for(int i=0;i<T.rows();i++) T[i] -= T_[0]; assert(T.rows() == X.rows()); int N = X.rows(); //n_control_points // N_VIRTUAL_KNOTS= 2 // N_SPLINES = num_knots+N_VIRTUAL_KNOTS - 1 // N_CONSTRAINTS = num_knots*3 + num_knots + 2 + 2 // N_COEFS = 4*N_SPLINES B.set_zero(4*(N+1)); A.set_zero(4*(N+1),4*(N+1)); // ---------- start constraint ---------- B[0] = 0; B[1] = Xd[0]; // Velocity clamped spline B[2] = X[0]; // xdd A(0,0) = 6*T[0]; A(0,1) = 2; // xd A(1,0) = 3*T[0]*T[0]; A(1,1) = 2*T[0]; A(1,2) = 1; // x A(2,0) = T[0]*T[0]*T[0]; A(2,1) = T[0]*T[0]; A(2,2) = T[0]; A(2,3) = 1; // ---------- start Virtual constraints ---------- double tv0 = T[0] + (T[1]-T[0])/1000.0; // xdd A(3,0) = 6*tv0; A(3,1) = 2; A(3,4) = -6*tv0; A(3,5) = -2; // xd A(4,0) = 3*tv0*tv0; A(4,1) = 2*tv0; A(4,2) = 1; A(4,4) = -3*tv0*tv0; A(4,5) = -2*tv0; A(4,6) = -1; // x A(5,0) = tv0*tv0*tv0; A(5,1) = tv0*tv0; A(5,2) = tv0; A(5,3) = 1; A(5,4) = -tv0*tv0*tv0; A(5,5) = -tv0*tv0; A(5,6) = -tv0; A(5,7) = -1; // ---------- End Virtual Constraint ---------- double tvN = T[N-1] - (T[N-1]-T[N-2])/1000.0; // xddd // A(A.rows()-6,A.columns()-8) = 6; // A(A.rows()-6,A.columns()-4) = -6; // xdd A(A.rows()-6,A.columns()-8) = 6*tvN; A(A.rows()-6,A.columns()-7) = 2; A(A.rows()-6,A.columns()-4) = -6*tvN; A(A.rows()-6,A.columns()-3) = -2; // xd A(A.rows()-5,A.columns()-8) = 3*tvN*tvN; A(A.rows()-5,A.columns()-7) = 2*tvN; A(A.rows()-5,A.columns()-6) = 1; A(A.rows()-5,A.columns()-4) = -3*tvN*tvN; A(A.rows()-5,A.columns()-3) = -2*tvN; A(A.rows()-5,A.columns()-2) = -1; // x A(A.rows()-4,A.columns()-8) = tvN*tvN*tvN; A(A.rows()-4,A.columns()-7) = tvN*tvN; A(A.rows()-4,A.columns()-6) = tvN; A(A.rows()-4,A.columns()-5) = 1; A(A.rows()-4,A.columns()-4) = -tvN*tvN*tvN; A(A.rows()-4,A.columns()-3) = -tvN*tvN; A(A.rows()-4,A.columns()-2) = -tvN; A(A.rows()-4,A.columns()-1) = -1; // ---------- End constraint ---------- B[B.rows()-3] = 0; B[B.rows()-2] = Xd[1]; // Velocity clamped spline B[B.rows()-1] = X[N-1]; // xdd A(A.rows()-3,A.columns()-4) = 6*T[N-1]; A(A.rows()-3,A.columns()-3) = 2; // xddd // A(A.rows()-3,A.columns()-4) = 6; // xd A(A.rows()-2,A.columns()-4) = 3*T[N-1]*T[N-1]; A(A.rows()-2,A.columns()-3) = 2*T[N-1]; A(A.rows()-2,A.columns()-2) = 1; // x A(A.rows()-1,A.columns()-4) = T[N-1]*T[N-1]*T[N-1]; A(A.rows()-1,A.columns()-3) = T[N-1]*T[N-1]; A(A.rows()-1,A.columns()-2) = T[N-1]; A(A.rows()-1,A.columns()-1) = 1; // ---------- Fill in continuity conponents at each of N-2 knots ---------- for(int i=0;i<N-2;i++){ // Xdd continuity // \ddot{P}_i - \ddot{P}_{i+1} = 0 A(5 + 4*i + 1,3 + 4*i + 1) = 6*T[i+1]; A(5 + 4*i + 1,3 + 4*i + 2) = 2; A(5 + 4*i + 1,3 + 4*(i+1) + 1) = -6*T[i+1]; A(5 + 4*i + 1,3 + 4*(i+1) + 2) = -2; // Xd continuity // \dot{P}_i - \dot{P}_{i+1} = 0 A(5 + 4*i + 2,3 + 4*i + 1) = 3*T[i+1]*T[i+1]; A(5 + 4*i + 2,3 + 4*i + 2) = 2*T[i+1]; A(5 + 4*i + 2,3 + 4*i + 3) = 1; A(5 + 4*i + 2,3 + 4*(i+1) + 1) = -3*T[i+1]*T[i+1]; A(5 + 4*i + 2,3 + 4*(i+1) + 2) = -2*T[i+1]; A(5 + 4*i + 2,3 + 4*(i+1) + 3) = -1; // X continuity // P_i - P_{i+1} = 0 A(5 + 4*i + 3,3 + 4*i + 1) = T[i+1]*T[i+1]*T[i+1]; A(5 + 4*i + 3,3 + 4*i + 2) = T[i+1]*T[i+1]; A(5 + 4*i + 3,3 + 4*i + 3) = T[i+1]; A(5 + 4*i + 3,3 + 4*i + 4) = 1; A(5 + 4*i + 3,3 + 4*(i+1) + 1) = -T[i+1]*T[i+1]*T[i+1]; A(5 + 4*i + 3,3 + 4*(i+1) + 2) = -T[i+1]*T[i+1]; A(5 + 4*i + 3,3 + 4*(i+1) + 3) = -T[i+1]; A(5 + 4*i + 3,3 + 4*(i+1) + 4) = -1; // P_i = X[i] B[5 + 4*i + 4] = X[i+1]; A(5 + 4*i + 4,3 + 4*(i+1) + 1) = T[i+1]*T[i+1]*T[i+1]; A(5 + 4*i + 4,3 + 4*(i+1) + 2) = T[i+1]*T[i+1]; A(5 + 4*i + 4,3 + 4*(i+1) + 3) = T[i+1]; A(5 + 4*i + 4,3 + 4*(i+1) + 4) = 1; } workv_ = B; // Solve linear system (A is corrupted and workv_ has result) LA_.solve_fast(A,workv_); // Exclude virtual points from returned spline coeficients workv_.get_sub_vec(4,workv_.size()-4,B); }