// After instruction selection, insert COPY_TO_REGCLASS nodes to help in // choosing the proper register classes. void BlackfinDAGToDAGISel::FixRegisterClasses(SelectionDAG &DAG) { const BlackfinInstrInfo &TII = getInstrInfo(); const BlackfinRegisterInfo *TRI = getRegisterInfo(); DAG.AssignTopologicalOrder(); HandleSDNode Dummy(DAG.getRoot()); for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(); NI != DAG.allnodes_end(); ++NI) { if (NI->use_empty() || !NI->isMachineOpcode()) continue; const TargetInstrDesc &DefTID = TII.get(NI->getMachineOpcode()); for (SDNode::use_iterator UI = NI->use_begin(); !UI.atEnd(); ++UI) { if (!UI->isMachineOpcode()) continue; if (UI.getUse().getResNo() >= DefTID.getNumDefs()) continue; const TargetRegisterClass *DefRC = DefTID.OpInfo[UI.getUse().getResNo()].getRegClass(TRI); const TargetInstrDesc &UseTID = TII.get(UI->getMachineOpcode()); if (UseTID.getNumDefs()+UI.getOperandNo() >= UseTID.getNumOperands()) continue; const TargetRegisterClass *UseRC = UseTID.OpInfo[UseTID.getNumDefs()+UI.getOperandNo()].getRegClass(TRI); if (!DefRC || !UseRC) continue; // We cannot copy CC <-> !(CC/D) if ((isCC(DefRC) && !isDCC(UseRC)) || (isCC(UseRC) && !isDCC(DefRC))) { SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, NI->getDebugLoc(), MVT::i32, UI.getUse().get(), DAG.getTargetConstant(BF::DRegClassID, MVT::i32)); UpdateNodeOperand(DAG, *UI, UI.getOperandNo(), SDValue(Copy, 0)); } } } DAG.setRoot(Dummy.getValue()); }
SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) { unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { N->setNodeId(-1); return NULL; // Already selected. } switch (Opc) { default: break; // We are selecting i64 ADD here instead of custom lower it during // DAG legalization, so we can fold some i64 ADDs used for address // calculation into the LOAD and STORE instructions. case ISD::ADD: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (N->getValueType(0) != MVT::i64 || ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS) break; SDLoc DL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32); SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32); SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, LHS, Sub0); SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, LHS, Sub1); SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, RHS, Sub0); SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, RHS, Sub1); SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); SmallVector<SDValue, 8> AddLoArgs; AddLoArgs.push_back(SDValue(Lo0, 0)); AddLoArgs.push_back(SDValue(Lo1, 0)); SDNode *AddLo = CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, VTList, AddLoArgs); SDValue Carry = SDValue(AddLo, 1); SDNode *AddHi = CurDAG->getMachineNode(AMDGPU::S_ADDC_U32, DL, MVT::i32, SDValue(Hi0, 0), SDValue(Hi1, 0), Carry); SDValue Args[5] = { CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, MVT::i32), SDValue(AddLo,0), Sub0, SDValue(AddHi,0), Sub1, }; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, MVT::i64, Args, 5); } case ISD::BUILD_VECTOR: { unsigned RegClassID; const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); const AMDGPURegisterInfo *TRI = static_cast<const AMDGPURegisterInfo*>(TM.getRegisterInfo()); const SIRegisterInfo *SIRI = static_cast<const SIRegisterInfo*>(TM.getRegisterInfo()); EVT VT = N->getValueType(0); unsigned NumVectorElts = VT.getVectorNumElements(); assert(VT.getVectorElementType().bitsEq(MVT::i32)); if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { bool UseVReg = true; for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); U != E; ++U) { if (!U->isMachineOpcode()) { continue; } const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); if (!RC) { continue; } if (SIRI->isSGPRClass(RC)) { UseVReg = false; } } switch(NumVectorElts) { case 1: RegClassID = UseVReg ? AMDGPU::VReg_32RegClassID : AMDGPU::SReg_32RegClassID; break; case 2: RegClassID = UseVReg ? AMDGPU::VReg_64RegClassID : AMDGPU::SReg_64RegClassID; break; case 4: RegClassID = UseVReg ? AMDGPU::VReg_128RegClassID : AMDGPU::SReg_128RegClassID; break; case 8: RegClassID = UseVReg ? AMDGPU::VReg_256RegClassID : AMDGPU::SReg_256RegClassID; break; case 16: RegClassID = UseVReg ? AMDGPU::VReg_512RegClassID : AMDGPU::SReg_512RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } } else { // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG // that adds a 128 bits reg copy when going through TwoAddressInstructions // pass. We want to avoid 128 bits copies as much as possible because they // can't be bundled by our scheduler. switch(NumVectorElts) { case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break; case 4: RegClassID = AMDGPU::R600_Reg128RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } } SDValue RegClass = CurDAG->getTargetConstant(RegClassID, MVT::i32); if (NumVectorElts == 1) { return CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, VT.getVectorElementType(), N->getOperand(0), RegClass); } assert(NumVectorElts <= 16 && "Vectors with more than 16 elements not " "supported yet"); // 16 = Max Num Vector Elements // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) // 1 = Vector Register Class SDValue RegSeqArgs[16 * 2 + 1]; RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, MVT::i32); bool IsRegSeq = true; for (unsigned i = 0; i < N->getNumOperands(); i++) { // XXX: Why is this here? if (dyn_cast<RegisterSDNode>(N->getOperand(i))) { IsRegSeq = false; break; } RegSeqArgs[1 + (2 * i)] = N->getOperand(i); RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(TRI->getSubRegFromChannel(i), MVT::i32); } if (!IsRegSeq) break; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs, 2 * N->getNumOperands() + 1); } case ISD::BUILD_PAIR: { SDValue RC, SubReg0, SubReg1; const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } if (N->getValueType(0) == MVT::i128) { RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, MVT::i32); } else if (N->getValueType(0) == MVT::i64) { RC = CurDAG->getTargetConstant(AMDGPU::VSrc_64RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32); } else { llvm_unreachable("Unhandled value type for BUILD_PAIR"); } const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, N->getOperand(1), SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SDLoc(N), N->getValueType(0), Ops); } case AMDGPUISD::REGISTER_LOAD: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) break; SDValue Addr, Offset; SelectADDRIndirect(N->getOperand(1), Addr, Offset); const SDValue Ops[] = { Addr, Offset, CurDAG->getTargetConstant(0, MVT::i32), N->getOperand(0), }; return CurDAG->getMachineNode(AMDGPU::SI_RegisterLoad, SDLoc(N), CurDAG->getVTList(MVT::i32, MVT::i64, MVT::Other), Ops); } case AMDGPUISD::REGISTER_STORE: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) break; SDValue Addr, Offset; SelectADDRIndirect(N->getOperand(2), Addr, Offset); const SDValue Ops[] = { N->getOperand(1), Addr, Offset, CurDAG->getTargetConstant(0, MVT::i32), N->getOperand(0), }; return CurDAG->getMachineNode(AMDGPU::SI_RegisterStorePseudo, SDLoc(N), CurDAG->getVTList(MVT::Other), Ops); } } return SelectCode(N); }
SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) { const R600InstrInfo *TII = static_cast<const R600InstrInfo*>(TM.getInstrInfo()); unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { return NULL; // Already selected. } switch (Opc) { default: break; case AMDGPUISD::CONST_ADDRESS: { for (SDNode::use_iterator I = N->use_begin(), Next = llvm::next(I); I != SDNode::use_end(); I = Next) { Next = llvm::next(I); if (!I->isMachineOpcode()) { continue; } unsigned Opcode = I->getMachineOpcode(); bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1; int SrcIdx = I.getOperandNo(); int SelIdx; // Unlike MachineInstrs, SDNodes do not have results in their operand // list, so we need to increment the SrcIdx, since // R600InstrInfo::getOperandIdx is based on the MachineInstr indices. if (HasDst) { SrcIdx++; } SelIdx = TII->getSelIdx(I->getMachineOpcode(), SrcIdx); if (SelIdx < 0) { continue; } SDValue CstOffset; if (N->getValueType(0).isVector() || !SelectGlobalValueConstantOffset(N->getOperand(0), CstOffset)) continue; // Gather constants values int SrcIndices[] = { TII->getOperandIdx(Opcode, AMDGPU::OpName::src0), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1), TII->getOperandIdx(Opcode, AMDGPU::OpName::src2), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W) }; std::vector<unsigned> Consts; for (unsigned i = 0; i < sizeof(SrcIndices) / sizeof(int); i++) { int OtherSrcIdx = SrcIndices[i]; int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx); if (OtherSrcIdx < 0 || OtherSelIdx < 0) { continue; } if (HasDst) { OtherSrcIdx--; OtherSelIdx--; } if (RegisterSDNode *Reg = dyn_cast<RegisterSDNode>(I->getOperand(OtherSrcIdx))) { if (Reg->getReg() == AMDGPU::ALU_CONST) { ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(I->getOperand(OtherSelIdx)); Consts.push_back(Cst->getZExtValue()); } } } ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(CstOffset); Consts.push_back(Cst->getZExtValue()); if (!TII->fitsConstReadLimitations(Consts)) continue; // Convert back to SDNode indices if (HasDst) { SrcIdx--; SelIdx--; } std::vector<SDValue> Ops; for (int i = 0, e = I->getNumOperands(); i != e; ++i) { if (i == SrcIdx) { Ops.push_back(CurDAG->getRegister(AMDGPU::ALU_CONST, MVT::f32)); } else if (i == SelIdx) { Ops.push_back(CstOffset); } else { Ops.push_back(I->getOperand(i)); } } CurDAG->UpdateNodeOperands(*I, Ops.data(), Ops.size()); } break; } case ISD::BUILD_VECTOR: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } unsigned RegClassID; switch(N->getValueType(0).getVectorNumElements()) { case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break; case 4: RegClassID = AMDGPU::R600_Reg128RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } // BUILD_VECTOR is usually lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG // that adds a 128 bits reg copy when going through TwoAddressInstructions // pass. We want to avoid 128 bits copies as much as possible because they // can't be bundled by our scheduler. SDValue RegSeqArgs[9] = { CurDAG->getTargetConstant(RegClassID, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub2, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub3, MVT::i32) }; bool IsRegSeq = true; for (unsigned i = 0; i < N->getNumOperands(); i++) { if (dyn_cast<RegisterSDNode>(N->getOperand(i))) { IsRegSeq = false; break; } RegSeqArgs[2 * i + 1] = N->getOperand(i); } if (!IsRegSeq) break; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs, 2 * N->getNumOperands() + 1); } case ISD::BUILD_PAIR: { SDValue RC, SubReg0, SubReg1; const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } if (N->getValueType(0) == MVT::i128) { RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, MVT::i32); } else if (N->getValueType(0) == MVT::i64) { RC = CurDAG->getTargetConstant(AMDGPU::VSrc_64RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32); } else { llvm_unreachable("Unhandled value type for BUILD_PAIR"); } const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, N->getOperand(1), SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SDLoc(N), N->getValueType(0), Ops); } case ISD::ConstantFP: case ISD::Constant: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); // XXX: Custom immediate lowering not implemented yet. Instead we use // pseudo instructions defined in SIInstructions.td if (ST.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } uint64_t ImmValue = 0; unsigned ImmReg = AMDGPU::ALU_LITERAL_X; if (N->getOpcode() == ISD::ConstantFP) { // XXX: 64-bit Immediates not supported yet assert(N->getValueType(0) != MVT::f64); ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N); APFloat Value = C->getValueAPF(); float FloatValue = Value.convertToFloat(); if (FloatValue == 0.0) { ImmReg = AMDGPU::ZERO; } else if (FloatValue == 0.5) { ImmReg = AMDGPU::HALF; } else if (FloatValue == 1.0) { ImmReg = AMDGPU::ONE; } else { ImmValue = Value.bitcastToAPInt().getZExtValue(); } } else { // XXX: 64-bit Immediates not supported yet assert(N->getValueType(0) != MVT::i64); ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); if (C->getZExtValue() == 0) { ImmReg = AMDGPU::ZERO; } else if (C->getZExtValue() == 1) { ImmReg = AMDGPU::ONE_INT; } else { ImmValue = C->getZExtValue(); } } for (SDNode::use_iterator Use = N->use_begin(), Next = llvm::next(Use); Use != SDNode::use_end(); Use = Next) { Next = llvm::next(Use); std::vector<SDValue> Ops; for (unsigned i = 0; i < Use->getNumOperands(); ++i) { Ops.push_back(Use->getOperand(i)); } if (!Use->isMachineOpcode()) { if (ImmReg == AMDGPU::ALU_LITERAL_X) { // We can only use literal constants (e.g. AMDGPU::ZERO, // AMDGPU::ONE, etc) in machine opcodes. continue; } } else { if (!TII->isALUInstr(Use->getMachineOpcode()) || (TII->get(Use->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR)) { continue; } int ImmIdx = TII->getOperandIdx(Use->getMachineOpcode(), AMDGPU::OpName::literal); if (ImmIdx == -1) { continue; } if (TII->getOperandIdx(Use->getMachineOpcode(), AMDGPU::OpName::dst) != -1) { // subtract one from ImmIdx, because the DST operand is usually index // 0 for MachineInstrs, but we have no DST in the Ops vector. ImmIdx--; } // Check that we aren't already using an immediate. // XXX: It's possible for an instruction to have more than one // immediate operand, but this is not supported yet. if (ImmReg == AMDGPU::ALU_LITERAL_X) { ConstantSDNode *C = dyn_cast<ConstantSDNode>(Use->getOperand(ImmIdx)); assert(C); if (C->getZExtValue() != 0) { // This instruction is already using an immediate. continue; } // Set the immediate value Ops[ImmIdx] = CurDAG->getTargetConstant(ImmValue, MVT::i32); } } // Set the immediate register Ops[Use.getOperandNo()] = CurDAG->getRegister(ImmReg, MVT::i32); CurDAG->UpdateNodeOperands(*Use, Ops.data(), Use->getNumOperands()); } break; } } SDNode *Result = SelectCode(N); // Fold operands of selected node const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { const R600InstrInfo *TII = static_cast<const R600InstrInfo*>(TM.getInstrInfo()); if (Result && Result->isMachineOpcode() && Result->getMachineOpcode() == AMDGPU::DOT_4) { bool IsModified = false; do { std::vector<SDValue> Ops; for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end(); I != E; ++I) Ops.push_back(*I); IsModified = FoldDotOperands(Result->getMachineOpcode(), TII, Ops); if (IsModified) { Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size()); } } while (IsModified); } if (Result && Result->isMachineOpcode() && !(TII->get(Result->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR) && TII->hasInstrModifiers(Result->getMachineOpcode())) { // Fold FNEG/FABS // TODO: Isel can generate multiple MachineInst, we need to recursively // parse Result bool IsModified = false; do { std::vector<SDValue> Ops; for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end(); I != E; ++I) Ops.push_back(*I); IsModified = FoldOperands(Result->getMachineOpcode(), TII, Ops); if (IsModified) { Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size()); } } while (IsModified); // If node has a single use which is CLAMP_R600, folds it if (Result->hasOneUse() && Result->isMachineOpcode()) { SDNode *PotentialClamp = *Result->use_begin(); if (PotentialClamp->isMachineOpcode() && PotentialClamp->getMachineOpcode() == AMDGPU::CLAMP_R600) { unsigned ClampIdx = TII->getOperandIdx(Result->getMachineOpcode(), AMDGPU::OpName::clamp); std::vector<SDValue> Ops; unsigned NumOp = Result->getNumOperands(); for (unsigned i = 0; i < NumOp; ++i) { Ops.push_back(Result->getOperand(i)); } Ops[ClampIdx - 1] = CurDAG->getTargetConstant(1, MVT::i32); Result = CurDAG->SelectNodeTo(PotentialClamp, Result->getMachineOpcode(), PotentialClamp->getVTList(), Ops.data(), NumOp); } } } } return Result; }
SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) { unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { return NULL; // Already selected. } switch (Opc) { default: break; case ISD::BUILD_VECTOR: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.device()->getGeneration() > AMDGPUDeviceInfo::HD6XXX) { break; } // BUILD_VECTOR is usually lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG // that adds a 128 bits reg copy when going through TwoAddressInstructions // pass. We want to avoid 128 bits copies as much as possible because they // can't be bundled by our scheduler. SDValue RegSeqArgs[9] = { CurDAG->getTargetConstant(AMDGPU::R600_Reg128RegClassID, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub2, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub3, MVT::i32) }; bool IsRegSeq = true; for (unsigned i = 0; i < N->getNumOperands(); i++) { if (dyn_cast<RegisterSDNode>(N->getOperand(i))) { IsRegSeq = false; break; } RegSeqArgs[2 * i + 1] = N->getOperand(i); } if (!IsRegSeq) break; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs, 2 * N->getNumOperands() + 1); } case ISD::ConstantFP: case ISD::Constant: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); // XXX: Custom immediate lowering not implemented yet. Instead we use // pseudo instructions defined in SIInstructions.td if (ST.device()->getGeneration() > AMDGPUDeviceInfo::HD6XXX) { break; } const R600InstrInfo *TII = static_cast<const R600InstrInfo*>(TM.getInstrInfo()); uint64_t ImmValue = 0; unsigned ImmReg = AMDGPU::ALU_LITERAL_X; if (N->getOpcode() == ISD::ConstantFP) { // XXX: 64-bit Immediates not supported yet assert(N->getValueType(0) != MVT::f64); ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N); APFloat Value = C->getValueAPF(); float FloatValue = Value.convertToFloat(); if (FloatValue == 0.0) { ImmReg = AMDGPU::ZERO; } else if (FloatValue == 0.5) { ImmReg = AMDGPU::HALF; } else if (FloatValue == 1.0) { ImmReg = AMDGPU::ONE; } else { ImmValue = Value.bitcastToAPInt().getZExtValue(); } } else { // XXX: 64-bit Immediates not supported yet assert(N->getValueType(0) != MVT::i64); ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); if (C->getZExtValue() == 0) { ImmReg = AMDGPU::ZERO; } else if (C->getZExtValue() == 1) { ImmReg = AMDGPU::ONE_INT; } else { ImmValue = C->getZExtValue(); } } for (SDNode::use_iterator Use = N->use_begin(), Next = llvm::next(Use); Use != SDNode::use_end(); Use = Next) { Next = llvm::next(Use); std::vector<SDValue> Ops; for (unsigned i = 0; i < Use->getNumOperands(); ++i) { Ops.push_back(Use->getOperand(i)); } if (!Use->isMachineOpcode()) { if (ImmReg == AMDGPU::ALU_LITERAL_X) { // We can only use literal constants (e.g. AMDGPU::ZERO, // AMDGPU::ONE, etc) in machine opcodes. continue; } } else { if (!TII->isALUInstr(Use->getMachineOpcode()) || (TII->get(Use->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR)) { continue; } int ImmIdx = TII->getOperandIdx(Use->getMachineOpcode(), R600Operands::IMM); assert(ImmIdx != -1); // subtract one from ImmIdx, because the DST operand is usually index // 0 for MachineInstrs, but we have no DST in the Ops vector. ImmIdx--; // Check that we aren't already using an immediate. // XXX: It's possible for an instruction to have more than one // immediate operand, but this is not supported yet. if (ImmReg == AMDGPU::ALU_LITERAL_X) { ConstantSDNode *C = dyn_cast<ConstantSDNode>(Use->getOperand(ImmIdx)); assert(C); if (C->getZExtValue() != 0) { // This instruction is already using an immediate. continue; } // Set the immediate value Ops[ImmIdx] = CurDAG->getTargetConstant(ImmValue, MVT::i32); } } // Set the immediate register Ops[Use.getOperandNo()] = CurDAG->getRegister(ImmReg, MVT::i32); CurDAG->UpdateNodeOperands(*Use, Ops.data(), Use->getNumOperands()); } break; } } SDNode *Result = SelectCode(N); // Fold operands of selected node const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX) { const R600InstrInfo *TII = static_cast<const R600InstrInfo*>(TM.getInstrInfo()); if (Result && Result->isMachineOpcode() && !(TII->get(Result->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR) && TII->isALUInstr(Result->getMachineOpcode())) { // Fold FNEG/FABS/CONST_ADDRESS // TODO: Isel can generate multiple MachineInst, we need to recursively // parse Result bool IsModified = false; do { std::vector<SDValue> Ops; for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end(); I != E; ++I) Ops.push_back(*I); IsModified = FoldOperands(Result->getMachineOpcode(), TII, Ops); if (IsModified) { Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size()); } } while (IsModified); // If node has a single use which is CLAMP_R600, folds it if (Result->hasOneUse() && Result->isMachineOpcode()) { SDNode *PotentialClamp = *Result->use_begin(); if (PotentialClamp->isMachineOpcode() && PotentialClamp->getMachineOpcode() == AMDGPU::CLAMP_R600) { unsigned ClampIdx = TII->getOperandIdx(Result->getMachineOpcode(), R600Operands::CLAMP); std::vector<SDValue> Ops; unsigned NumOp = Result->getNumOperands(); for (unsigned i = 0; i < NumOp; ++i) { Ops.push_back(Result->getOperand(i)); } Ops[ClampIdx - 1] = CurDAG->getTargetConstant(1, MVT::i32); Result = CurDAG->SelectNodeTo(PotentialClamp, Result->getMachineOpcode(), PotentialClamp->getVTList(), Ops.data(), NumOp); } } } } return Result; }
SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) { unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { return NULL; // Already selected. } switch (Opc) { default: break; case ISD::BUILD_VECTOR: { unsigned RegClassID; const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); const AMDGPURegisterInfo *TRI = static_cast<const AMDGPURegisterInfo*>(TM.getRegisterInfo()); const SIRegisterInfo *SIRI = static_cast<const SIRegisterInfo*>(TM.getRegisterInfo()); EVT VT = N->getValueType(0); unsigned NumVectorElts = VT.getVectorNumElements(); assert(VT.getVectorElementType().bitsEq(MVT::i32)); if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { bool UseVReg = true; for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); U != E; ++U) { if (!U->isMachineOpcode()) { continue; } const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); if (!RC) { continue; } if (SIRI->isSGPRClass(RC)) { UseVReg = false; } } switch(NumVectorElts) { case 1: RegClassID = UseVReg ? AMDGPU::VReg_32RegClassID : AMDGPU::SReg_32RegClassID; break; case 2: RegClassID = UseVReg ? AMDGPU::VReg_64RegClassID : AMDGPU::SReg_64RegClassID; break; case 4: RegClassID = UseVReg ? AMDGPU::VReg_128RegClassID : AMDGPU::SReg_128RegClassID; break; case 8: RegClassID = UseVReg ? AMDGPU::VReg_256RegClassID : AMDGPU::SReg_256RegClassID; break; case 16: RegClassID = UseVReg ? AMDGPU::VReg_512RegClassID : AMDGPU::SReg_512RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } } else { // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG // that adds a 128 bits reg copy when going through TwoAddressInstructions // pass. We want to avoid 128 bits copies as much as possible because they // can't be bundled by our scheduler. switch(NumVectorElts) { case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break; case 4: RegClassID = AMDGPU::R600_Reg128RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } } SDValue RegClass = CurDAG->getTargetConstant(RegClassID, MVT::i32); if (NumVectorElts == 1) { return CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, VT.getVectorElementType(), N->getOperand(0), RegClass); } assert(NumVectorElts <= 16 && "Vectors with more than 16 elements not " "supported yet"); // 16 = Max Num Vector Elements // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) // 1 = Vector Register Class SDValue RegSeqArgs[16 * 2 + 1]; RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, MVT::i32); bool IsRegSeq = true; for (unsigned i = 0; i < N->getNumOperands(); i++) { // XXX: Why is this here? if (dyn_cast<RegisterSDNode>(N->getOperand(i))) { IsRegSeq = false; break; } RegSeqArgs[1 + (2 * i)] = N->getOperand(i); RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(TRI->getSubRegFromChannel(i), MVT::i32); } if (!IsRegSeq) break; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs, 2 * N->getNumOperands() + 1); } case ISD::BUILD_PAIR: { SDValue RC, SubReg0, SubReg1; const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } if (N->getValueType(0) == MVT::i128) { RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, MVT::i32); } else if (N->getValueType(0) == MVT::i64) { RC = CurDAG->getTargetConstant(AMDGPU::VSrc_64RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32); } else { llvm_unreachable("Unhandled value type for BUILD_PAIR"); } const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, N->getOperand(1), SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SDLoc(N), N->getValueType(0), Ops); } } return SelectCode(N); }