void LinearOSNS::computeDiagonalInteractionBlock(const InteractionsGraph::VDescriptor& vd) { DEBUG_BEGIN("LinearOSNS::computeDiagonalInteractionBlock(const InteractionsGraph::VDescriptor& vd)\n"); // Computes matrix _interactionBlocks[inter1][inter1] (and allocates memory if // necessary) one or two DS are concerned by inter1 . How // _interactionBlocks are computed depends explicitely on the type of // Relation of each Interaction. // Warning: we suppose that at this point, all non linear // operators (G for lagrangian relation for example) have been // computed through plug-in mechanism. // Get dimension of the NonSmoothLaw (ie dim of the interactionBlock) SP::InteractionsGraph indexSet = simulation()->indexSet(indexSetLevel()); SP::Interaction inter = indexSet->bundle(vd); // Get osi property from interaction // We assume that all ds in vertex_inter have the same osi. SP::OneStepIntegrator Osi = indexSet->properties(vd).osi; //SP::OneStepIntegrator Osi = simulation()->integratorOfDS(ds); OSI::TYPES osiType = Osi->getType(); // At most 2 DS are linked by an Interaction SP::DynamicalSystem DS1; SP::DynamicalSystem DS2; unsigned int pos1, pos2; // --- Get the dynamical system(s) (edge(s)) connected to the current interaction (vertex) --- if (indexSet->properties(vd).source != indexSet->properties(vd).target) { DEBUG_PRINT("a two DS Interaction\n"); DS1 = indexSet->properties(vd).source; DS2 = indexSet->properties(vd).target; } else { DEBUG_PRINT("a single DS Interaction\n"); DS1 = indexSet->properties(vd).source; DS2 = DS1; // \warning this looks like some debug code, but it gets executed even with NDEBUG. // may be compiler does something smarter, but still it should be rewritten. --xhub InteractionsGraph::OEIterator oei, oeiend; for (std11::tie(oei, oeiend) = indexSet->out_edges(vd); oei != oeiend; ++oei) { // note : at most 4 edges DS2 = indexSet->bundle(*oei); if (DS2 != DS1) { assert(false); break; } } } assert(DS1); assert(DS2); pos1 = indexSet->properties(vd).source_pos; pos2 = indexSet->properties(vd).target_pos; // --- Check block size --- assert(indexSet->properties(vd).block->size(0) == inter->nonSmoothLaw()->size()); assert(indexSet->properties(vd).block->size(1) == inter->nonSmoothLaw()->size()); // --- Compute diagonal block --- // Block to be set in OSNS Matrix, corresponding to // the current interaction SP::SiconosMatrix currentInteractionBlock = indexSet->properties(vd).block; SP::SiconosMatrix leftInteractionBlock, rightInteractionBlock; RELATION::TYPES relationType; double h = simulation()->currentTimeStep(); // General form of the interactionBlock is : interactionBlock = // a*extraInteractionBlock + b * leftInteractionBlock * centralInteractionBlocks // * rightInteractionBlock a and b are scalars, centralInteractionBlocks a // matrix depending on the integrator (and on the DS), the // simulation type ... left, right and extra depend on the relation // type and the non smooth law. relationType = inter->relation()->getType(); VectorOfSMatrices& workMInter = *indexSet->properties(vd).workMatrices; inter->getExtraInteractionBlock(currentInteractionBlock, workMInter); unsigned int nslawSize = inter->nonSmoothLaw()->size(); // loop over the DS connected to the interaction. bool endl = false; unsigned int pos = pos1; for (SP::DynamicalSystem ds = DS1; !endl; ds = DS2) { assert(ds == DS1 || ds == DS2); endl = (ds == DS2); unsigned int sizeDS = ds->dimension(); // get _interactionBlocks corresponding to the current DS // These _interactionBlocks depends on the relation type. leftInteractionBlock.reset(new SimpleMatrix(nslawSize, sizeDS)); inter->getLeftInteractionBlockForDS(pos, leftInteractionBlock, workMInter); DEBUG_EXPR(leftInteractionBlock->display();); // Computing depends on relation type -> move this in Interaction method? if (relationType == FirstOrder) { rightInteractionBlock.reset(new SimpleMatrix(sizeDS, nslawSize)); inter->getRightInteractionBlockForDS(pos, rightInteractionBlock, workMInter); if (osiType == OSI::EULERMOREAUOSI) { if ((std11::static_pointer_cast<EulerMoreauOSI> (Osi))->useGamma() || (std11::static_pointer_cast<EulerMoreauOSI> (Osi))->useGammaForRelation()) { *rightInteractionBlock *= (std11::static_pointer_cast<EulerMoreauOSI> (Osi))->gamma(); } } // for ZOH, we have a different formula ... if (osiType == OSI::ZOHOSI && indexSet->properties(vd).forControl) { *rightInteractionBlock = std11::static_pointer_cast<ZeroOrderHoldOSI>(Osi)->Bd(ds); prod(*leftInteractionBlock, *rightInteractionBlock, *currentInteractionBlock, false); } else { // centralInteractionBlock contains a lu-factorized matrix and we solve // centralInteractionBlock * X = rightInteractionBlock with PLU SP::SiconosMatrix centralInteractionBlock = getOSIMatrix(Osi, ds); centralInteractionBlock->PLUForwardBackwardInPlace(*rightInteractionBlock); inter->computeKhat(*rightInteractionBlock, workMInter, h); // if K is non 0 // integration of r with theta method removed // *currentInteractionBlock += h *Theta[*itDS]* *leftInteractionBlock * (*rightInteractionBlock); //left = C, right = W.B //gemm(h,*leftInteractionBlock,*rightInteractionBlock,1.0,*currentInteractionBlock); *leftInteractionBlock *= h; prod(*leftInteractionBlock, *rightInteractionBlock, *currentInteractionBlock, false); //left = C, right = inv(W).B } } else if (relationType == Lagrangian || relationType == NewtonEuler) { SP::BoundaryCondition bc; Type::Siconos dsType = Type::value(*ds); if (dsType == Type::LagrangianLinearTIDS || dsType == Type::LagrangianDS) { SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (ds); if (d->boundaryConditions()) bc = d->boundaryConditions(); } else if (dsType == Type::NewtonEulerDS) { SP::NewtonEulerDS d = std11::static_pointer_cast<NewtonEulerDS> (ds); if (d->boundaryConditions()) bc = d->boundaryConditions(); } if (bc) { for (std::vector<unsigned int>::iterator itindex = bc->velocityIndices()->begin() ; itindex != bc->velocityIndices()->end(); ++itindex) { // (nslawSize,sizeDS)); SP::SiconosVector coltmp(new SiconosVector(nslawSize)); coltmp->zero(); leftInteractionBlock->setCol(*itindex, *coltmp); } } DEBUG_PRINT("leftInteractionBlock after application of boundary conditions\n"); DEBUG_EXPR(leftInteractionBlock->display(););
void MLCPProjectOnConstraints::computeDiagonalInteractionBlock(const InteractionsGraph::VDescriptor& vd) { SP::InteractionsGraph indexSet = simulation()->indexSet(indexSetLevel()); SP::DynamicalSystem DS1 = indexSet->properties(vd).source; SP::DynamicalSystem DS2 = indexSet->properties(vd).target; SP::Interaction inter = indexSet->bundle(vd); SP::OneStepIntegrator Osi = indexSet->properties(vd).osi; unsigned int pos1, pos2; pos1 = indexSet->properties(vd).source_pos; pos2 = indexSet->properties(vd).target_pos; unsigned int sizeY = 0; sizeY = std11::static_pointer_cast<OSNSMatrixProjectOnConstraints> (_M)->computeSizeForProjection(inter); #ifdef MLCPPROJ_DEBUG std::cout << "\nMLCPProjectOnConstraints::computeDiagonalInteractionBlock" <<std::endl; std::cout << "indexSetLevel()" << indexSetLevel() << std::endl; // std::cout << "indexSet :"<< indexSet << std::endl; // std::cout << "vd :"<< vd << std::endl; // indexSet->display(); // std::cout << "DS1 :" << std::endl; // DS1->display(); // std::cout << "DS2 :" << std::endl; // DS2->display(); #endif assert(indexSet->blockProj[vd]); SP::SiconosMatrix currentInteractionBlock = indexSet->blockProj[vd]; #ifdef MLCPPROJ_DEBUG // std::cout<<"MLCPProjectOnConstraints::computeDiagonalInteractionBlock "<<std::endl; // currentInteractionBlock->display(); std::cout << "sizeY " << sizeY << std::endl; std::cout << "blockProj " << indexSet->blockProj[vd].get() << " of edge " << vd << " of size " << currentInteractionBlock->size(0) << " x " << currentInteractionBlock->size(0) << " for interaction " << inter->number() << std::endl; // std::cout<<"inter1->display() "<< inter1->number()<< std::endl; //inter1->display(); // std::cout<<"inter2->display() "<< inter2->number()<< std::endl; //inter2->display(); #endif assert(currentInteractionBlock->size(0) == sizeY); assert(currentInteractionBlock->size(1) == sizeY); if (!_hasBeenUpdated) computeOptions(inter, inter); // Computes matrix _interactionBlocks[inter1][inter2] (and allocates memory if // necessary) if inter1 and inter2 have commond DynamicalSystem. How // _interactionBlocks are computed depends explicitely on the type of // Relation of each Interaction. // Warning: we suppose that at this point, all non linear // operators (G for lagrangian relation for example) have been // computed through plug-in mechanism. // Get the W and Theta maps of one of the Interaction - // Warning: in the current version, if OSI!=MoreauJeanOSI, this fails. // If OSI = MOREAU, centralInteractionBlocks = W if OSI = LSODAR, // centralInteractionBlocks = M (mass matrices) SP::SiconosMatrix leftInteractionBlock, rightInteractionBlock, leftInteractionBlock1; // General form of the interactionBlock is : interactionBlock = // a*extraInteractionBlock + b * leftInteractionBlock * centralInteractionBlocks // * rightInteractionBlock a and b are scalars, centralInteractionBlocks a // matrix depending on the integrator (and on the DS), the // simulation type ... left, right and extra depend on the relation // type and the non smooth law. VectorOfSMatrices& workMInter = *indexSet->properties(vd).workMatrices; currentInteractionBlock->zero(); // loop over the common DS bool endl = false; unsigned int pos = pos1; for (SP::DynamicalSystem ds = DS1; !endl; ds = DS2) { assert(ds == DS1 || ds == DS2); endl = (ds == DS2); if (Type::value(*ds) == Type::LagrangianLinearTIDS || Type::value(*ds) == Type::LagrangianDS) { if (inter->relation()->getType() != Lagrangian) { RuntimeException::selfThrow( "MLCPProjectOnConstraints::computeDiagonalInteractionBlock - relation is not of type Lagrangian with a LagrangianDS."); } SP::LagrangianDS lds = (std11::static_pointer_cast<LagrangianDS>(ds)); unsigned int sizeDS = lds->getDim(); leftInteractionBlock.reset(new SimpleMatrix(sizeY, sizeDS)); inter->getLeftInteractionBlockForDS(pos, leftInteractionBlock, workMInter); if (lds->boundaryConditions()) // V.A. Should we do that ? { for (std::vector<unsigned int>::iterator itindex = lds->boundaryConditions()->velocityIndices()->begin() ; itindex != lds->boundaryConditions()->velocityIndices()->end(); ++itindex) { // (sizeY,sizeDS)); SP::SiconosVector coltmp(new SiconosVector(sizeY)); coltmp->zero(); leftInteractionBlock->setCol(*itindex, *coltmp); } } // (inter1 == inter2) SP::SiconosMatrix work(new SimpleMatrix(*leftInteractionBlock)); // // std::cout<<"LinearOSNS : leftUBlock\n"; // work->display(); work->trans(); // std::cout<<"LinearOSNS::computeInteractionBlock leftInteractionBlock"<<endl; // leftInteractionBlock->display(); if (_useMassNormalization) { SP::SiconosMatrix centralInteractionBlock = getOSIMatrix(Osi, ds); centralInteractionBlock->PLUForwardBackwardInPlace(*work); prod(*leftInteractionBlock, *work, *currentInteractionBlock, false); // gemm(CblasNoTrans,CblasNoTrans,1.0,*leftInteractionBlock,*work,1.0,*currentInteractionBlock); } else { prod(*leftInteractionBlock, *work, *currentInteractionBlock, false); } //*currentInteractionBlock *=h; } else if (Type::value(*ds) == Type::NewtonEulerDS) { if (inter->relation()->getType() != NewtonEuler) { RuntimeException::selfThrow("MLCPProjectOnConstraints::computeDiagonalInteractionBlock - relation is not from NewtonEulerR."); } SP::NewtonEulerDS neds = (std11::static_pointer_cast<NewtonEulerDS>(ds)); #ifdef MLCPPROJ_WITH_CT unsigned int sizeDS = neds->getDim(); SP::SimpleMatrix T = neds->T(); SP::SimpleMatrix workT(new SimpleMatrix(*T)); workT->trans(); SP::SimpleMatrix workT2(new SimpleMatrix(6, 6)); prod(*workT, *T, *workT2, true); leftInteractionBlock.reset(new SimpleMatrix(sizeY, sizeDS)); inter->getLeftInteractionBlockForDS(pos, leftInteractionBlock); SP::SiconosMatrix work(new SimpleMatrix(*leftInteractionBlock)); std::cout << "LinearOSNS : leftUBlock\n"; work->display(); work->trans(); std::cout << "LinearOSNS::computeInteractionBlock workT2" <<std::endl; workT2->display(); workT2->PLUForwardBackwardInPlace(*work); prod(*leftInteractionBlock, *work, *currentInteractionBlock, false); #else if (0) //(std11::static_pointer_cast<NewtonEulerR> inter->relation())->_isConstact){ { // unsigned int sizeDS = neds->getDim(); // SP::SimpleMatrix T = neds->T(); // SP::SimpleMatrix workT(new SimpleMatrix(*T)); // workT->trans(); // SP::SimpleMatrix workT2(new SimpleMatrix(6, 6)); // prod(*workT, *T, *workT2, true); // leftInteractionBlock1.reset(new SimpleMatrix(sizeY, sizeDS)); // inter->getLeftInteractionBlockForDS(pos, leftInteractionBlock); // leftInteractionBlock.reset(new SimpleMatrix(1, sizeDS)); // for (unsigned int ii = 0; ii < sizeDS; ii++) // leftInteractionBlock->setValue(1, ii, leftInteractionBlock1->getValue(1, ii)); // // SP::SiconosMatrix work(new SimpleMatrix(*leftInteractionBlock)); // //cout<<"LinearOSNS : leftUBlock\n"; // //work->display(); // work->trans(); // //cout<<"LinearOSNS::computeInteractionBlock workT2"<<endl; // //workT2->display(); // workT2->PLUForwardBackwardInPlace(*work); // prod(*leftInteractionBlock, *work, *currentInteractionBlock, false); } else { unsigned int sizeDS = (std11::static_pointer_cast<NewtonEulerDS>(ds))->getqDim(); leftInteractionBlock.reset(new SimpleMatrix(sizeY, sizeDS)); inter->getLeftInteractionBlockForDSProjectOnConstraints(pos, leftInteractionBlock); // #ifdef MLCPPROJ_DEBUG // std::cout << "MLCPProjectOnConstraints::computeDiagonalInteractionBlock - NewtonEuler case leftInteractionBlock : " << std::endl; // leftInteractionBlock->display(); // #endif SP::SiconosMatrix work(new SimpleMatrix(*leftInteractionBlock)); //cout<<"LinearOSNS sizeY="<<sizeY<<": leftUBlock\n"; //work->display(); work->trans(); prod(*leftInteractionBlock, *work, *currentInteractionBlock, false); // #ifdef MLCPPROJ_DEBUG // std::cout << "MLCPProjectOnConstraints::computeDiagonalInteractionBlock - NewtonEuler case currentInteractionBlock : "<< std::endl; // currentInteractionBlock->display(); // #endif } } else RuntimeException::selfThrow("MLCPProjectOnConstraints::computeDiagonalInteractionBlock - ds is not from NewtonEulerDS neither a LagrangianDS."); #endif #ifdef MLCPPROJ_DEBUG std::cout << "MLCPProjectOnConstraints::computeDiagonalInteractionBlock DiaginteractionBlock " << std::endl; currentInteractionBlock->display(); #endif // Set pos for next loop. pos = pos2; } }