void GoApp::check_for_computed_move() { //return; if (game_status != COMPUTER_THINKING) { return; } auto status = computed_move.wait_for(std::chrono::seconds(0)); if (status == std::future_status::ready) { try { auto move = computed_move.get(); state.do_move(move); // Are there any more moves possible? if (state.get_moves().empty()) { game_status = GAME_OVER; } else { next_player(); } } catch (std::exception& error) { game_status = GAME_ERROR; error_string = error.what(); } } }
int factorial1(std::future<int>& f) { int n = f.get(); int result = 1; for (int i = 1; i <= n; ++i) result *= i; return result; }
/** * Close the task. This will raise in this thread any exception the * task generated in the other thread. Calling this function is * optional, because the destructor will also call this function. * But because it can throw an exception, it is better to call it * explicitly. */ void close() { // If an exception happened in the task, re-throw // it in this thread. This will block if the task // isn't finished. if (m_future.valid()) { m_future.get(); } // Make sure task is done. if (m_thread.joinable()) { m_thread.join(); } }
void handleFuture( std::future< _2Real::BlockResult > &obj, std::string const& info = "" ) { obj.wait(); _2Real::BlockResult val = obj.get(); switch ( val ) { case _2Real::BlockResult::CARRIED_OUT: std::cout << "---- " << info << " was carried out" << std::endl; break; case _2Real::BlockResult::IGNORED: std::cout << "---- " << info << " was ignored" << std::endl; break; } }
std::pair<long double, int> getResult( std::chrono::system_clock::time_point deadline, int maxPrecision) { long double result = 1; int precision = 1; if (std::chrono::system_clock::now() < deadline) { while (precision < maxPrecision) { const int nextPrecision = std::min(maxPrecision, precision * 2); future = std::async(std::launch::async, compute, nextPrecision); if (future.wait_until(deadline) == std::future_status::timeout) break; result = future.get(); precision = nextPrecision; } } return { result, precision }; }
/** * Get the header data from the file. * * @returns Header. * @throws Some form of osmium::io_error if there is an error. */ osmium::io::Header header() { if (m_status == status::error) { throw io_error("Can not get header from reader when in status 'error'"); } try { if (m_header_future.valid()) { m_header = m_header_future.get(); if (m_read_which_entities == osmium::osm_entity_bits::nothing) { m_status = status::eof; } } } catch (...) { close(); m_status = status::error; throw; } return m_header; }
//======================================================================== void CSirServer::NotifyResult(CLIENT* client, std::future<SCRESULT>& result) { SCRESULT rc = result.get(); stringstream ss; switch (rc) { case SCR_SUCCESS: ss << "OK"; break; case SCR_TIMEOUT: ss << "TIMEOUT"; break; default: ss << "ERROR"; break; } ss << std::endl; Notify(client, ss.str()); }
void on_update(const UpdateEvent & e) override { // Around 60 fps if (fixedTimer.milliseconds().count() >= 16 && turret.fired) { float timestep_ms = fixedTimer.milliseconds().count() / 1000.f; turret.projectile.fixed_update(timestep_ms); std::cout << timestep_ms << std::endl; //std::cout << turret.projectile.p.position << std::endl; fixedTimer.reset(); } cameraController.update(e.timestep_ms); time += e.timestep_ms; shaderMonitor.handle_recompile(); // If a new mesh is ready, retrieve it if (pointerFuture.valid()) { auto status = pointerFuture.wait_for(std::chrono::seconds(0)); if (status != std::future_status::timeout) { auto m = pointerFuture.get(); supershape = m; supershape.pose.position = {0, 2, -2}; pointerFuture = {}; } } // If we don't currently have a background task, begin working on the next mesh if (!pointerFuture.valid() && regeneratePointer) { pointerFuture = std::async([]() { return make_supershape_3d(16, ssM, ssN1, ssN2, ssN3); }); } }
TEST_F(DBusConnectionTest, LibdbusConnectionsMayCommitSuicide) { const ::DBusBusType libdbusType = ::DBusBusType::DBUS_BUS_SESSION; ::DBusError libdbusError; dbus_error_init(&libdbusError); ::DBusConnection* libdbusConnection = dbus_bus_get_private(libdbusType, &libdbusError); assert(libdbusConnection); dbus_connection_set_exit_on_disconnect(libdbusConnection, false); auto dispatchThread = std::thread(&dispatch, libdbusConnection); ::DBusMessage* libdbusMessageCall = dbus_message_new_method_call( "org.freedesktop.DBus", "/org/freedesktop/DBus", "org.freedesktop.DBus", "ListNames"); dbus_message_set_signature(libdbusMessageCall, ""); DBusPendingCall* libdbusPendingCall; dbus_connection_send_with_reply( libdbusConnection, libdbusMessageCall, &libdbusPendingCall, 500); dbus_pending_call_set_notify( libdbusPendingCall, notifyThunk, libdbusConnection, NULL); ASSERT_EQ(true, future.get()); dispatchThread.join(); }
BOOST_AUTO_TEST_CASE(future, *boost::unit_test::timeout(15)) { using boost::unit_test::framework::master_test_suite; boost::asio::io_context ios; std::future<int> fut = bp::async_system( ios, boost::asio::use_future, master_test_suite().argv[1], "test", "--exit-code", "42"); ios.run(); int exit_code = 0; BOOST_CHECK_NO_THROW(exit_code = fut.get()); BOOST_CHECK_EQUAL(exit_code, 42); } BOOST_AUTO_TEST_CASE(future_error, *boost::unit_test::timeout(15)) { using boost::unit_test::framework::master_test_suite; boost::asio::io_context ios; std::future<int> fut = bp::async_system( ios, boost::asio::use_future, "invalid-command"); ios.run();
// return from thread int getNum2(std::future<int> &f) { print("In getNum1"); return f.get() + 10; }
/** * Check task for exceptions. * * If an exception happened in the task, re-throw it in this * thread. This will not do anything if there was no exception. */ void check_for_exception() { if (m_future.valid() && m_future.wait_for(std::chrono::seconds(0)) == std::future_status::ready) { m_future.get(); } }
void test(std::future<int>& input) { std::cout << input.get() << std::endl; }
inline void wait_until_done(std::future<T>& future) { if (future.valid()) { future.get(); } }
inline void check_for_exception(std::future<T>& future) { if (future.valid() && future.wait_for(std::chrono::seconds(0)) == std::future_status::ready) { future.get(); } }
void s(std::future<double>& fut) { double x = fut.get(); std::cout << " fut = " << x << std::endl; }
void hook_post_step() { parent_t::hook_post_step(); // includes output this->mem->barrier(); if (this->rank == 0) { // assuring previous async step finished ... #if defined(STD_FUTURE_WORKS) if ( params.async && this->timestep != 0 && // ... but not in first timestep ... ((this->timestep - 1) % this->outfreq != 0) // ... and not after diag call //!((this->timestep-1) == 0 || ((this->timestep-1) % this->outfreq == 0 && (this->timestep-1) >= this->spinup)) // .. and not after diag ) { assert(ftr.valid()); ftr.get(); } else assert(!ftr.valid()); #endif // running synchronous stuff prtcls->step_sync( params.cloudph_opts, make_arrinfo(this->mem->advectee(ix::th)), make_arrinfo(this->mem->advectee(ix::rv)) ); // running asynchronous stuff { using libcloudphxx::lgrngn::particles_t; using libcloudphxx::lgrngn::CUDA; using libcloudphxx::lgrngn::multi_CUDA; #if defined(STD_FUTURE_WORKS) if (params.async) { assert(!ftr.valid()); if(params.backend == multi_CUDA) ftr = std::async( std::launch::async, &particles_t<real_t, multi_CUDA>::step_async, dynamic_cast<particles_t<real_t, multi_CUDA>*>(prtcls.get()), params.cloudph_opts ); else if(params.backend == CUDA) ftr = std::async( std::launch::async, &particles_t<real_t, CUDA>::step_async, dynamic_cast<particles_t<real_t, CUDA>*>(prtcls.get()), params.cloudph_opts ); assert(ftr.valid()); } else #endif prtcls->step_async(params.cloudph_opts); } // performing diagnostics //if (this->timestep == 0 || (this->timestep % this->outfreq == 0 && this->timestep >= this->spinup)) if (this->timestep % this->outfreq == 0) { #if defined(STD_FUTURE_WORKS) if (params.async) { assert(ftr.valid()); ftr.get(); } #endif diag(); } } this->mem->barrier(); }
int testnum = 100; int testnum2 = 1000; int testnum3 = 10000; string teststr = "asdf"; std::future<int> ret1 = tp.AddTask(IncreNum, 120 ); std::future<void> ret2 = tp.AddTask(test2, teststr ); std::future<int> ret3 = tp.AddTask(FindPrime, 1000); typedef decltype(FindPrime(10000)) retType; std::future< retType > ret4 = tp.AddTask(FindPrime, 10000); std::future<void> ret5 = tp.AddTask(IncreNumRefSelfTask, ptp, std::ref(testnum)); tp.RunThreads(); int primes1 = ret3.get(); retType primes2 = ret4.get(); ret5.get(); int increRet = ret1.get(); cout<<"Number of primes under 1000: "<<primes1<<endl; cout<<"Number of primes under 10000: "<<primes2<<endl; SECTION( "Task Results" ) { CHECK( primes1 == 168 ); CHECK( primes2 == 1229 ); CHECK( testnum == 102 ); CHECK( increRet == 121 ); } std::this_thread::sleep_for(std::chrono::milliseconds(2000));
/*** http://www.cnblogs.com/haippy/p/3280643.html promise对象可以保存某一类型T的值,该值可被future对象读取(可能在另外一个线程中),因此promise也提供了一种线程同步的手段。 在promise对象构造时可以和一个共享状态(通常是std::future)相关联,并可以在相关联的共享状态(std::future)上保存一个类型为 T 的值。 可以通过 get_future 来获取与该 promise 对象相关联的 future 对象,调用该函数之后,两个对象共享相同的共享状态(shared state): promise 对象是异步 Provider,它可以在某一时刻设置共享状态的值。 future 对象可以异步返回共享状态的值,或者在必要的情况下阻塞调用者并等待共享状态标志变为 ready,然后才能获取共享状态的值。 ***/ void print_int(std::future<int>& fut) { int x = fut.get(); // 获取共享状态的值. std::cout << "value: " << x << '\n'; // value: 10. }
void helper(std::future<void>& task, ray_tracing::Semaphore& semaphore) { task.get(); semaphore.increase(); }
void thread_pool::handle_task(std::future<void> f) { f.get(); }
void gridding_barrier() { if (gridding_future.valid()) gridding_future.get(); //Block until result becomes available }