NLDRNeighborList& operator=(const NLDRNeighborList& nn) { if (&nn==this) return *this; nlist.resize(nn.nlist.size()); nlist=nn.nlist; npoint.resize(nn.npoint.size()); npoint=nn.npoint; opts=nn.opts; }
void RandomTestOctic(std::valarray<T> & coefficients, std::valarray<T> & solutions) { solutions.resize(8); for (int ii=0; ii<8; ii++) solutions[ii] = Random<T>::Generate(); const T& s0 = solutions[0]; const T& s1 = solutions[1]; const T& s2 = solutions[2]; const T& s3 = solutions[3]; const T& s4 = solutions[4]; const T& s5 = solutions[5]; const T& s6 = solutions[6]; const T& s7 = solutions[7]; coefficients.resize(8); // omitting the 1, so it's monic coefficients[0] = s0*s1*s2*s3*s4*s5*s6*s7; coefficients[1] = - s7*(s6*(s5*(s4*(s3*(s2*(s0 + s1) + s0*s1) + s0*s1*s2) + s0*s1*s2*s3) + s0*s1*s2*s3*s4) + s0*s1*s2*s3*s4*s5) - s0*s1*s2*s3*s4*s5*s6; coefficients[2] = s7*(s6*(s4*(s3*(s2*(s0 + s1) + s0*s1) + s0*s1*s2) + s5*(s4*(s2*(s0 + s1) + s0*s1 + s3*(s0 + s1 + s2)) + s3*(s2*(s0 + s1) + s0*s1) + s0*s1*s2) + s0*s1*s2*s3) + s5*(s4*(s3*(s2*(s0 + s1) + s0*s1) + s0*s1*s2) + s0*s1*s2*s3) + s0*s1*s2*s3*s4) + s6*(s5*(s4*(s3*(s2*(s0 + s1) + s0*s1) + s0*s1*s2) + s0*s1*s2*s3) + s0*s1*s2*s3*s4) + s0*s1*s2*s3*s4*s5; coefficients[3] = - s7*(s4*(s3*(s2*(s0 + s1) + s0*s1) + s0*s1*s2) + s5*(s4*(s2*(s0 + s1) + s0*s1 + s3*(s0 + s1 + s2)) + s3*(s2*(s0 + s1) + s0*s1) + s0*s1*s2) + s6*(s5*(s2*(s0 + s1) + s0*s1 + s3*(s0 + s1 + s2) + s4*(s0 + s1 + s2 + s3)) + s4*(s2*(s0 + s1) + s0*s1 + s3*(s0 + s1 + s2)) + s3*(s2*(s0 + s1) + s0*s1) + s0*s1*s2) + s0*s1*s2*s3) - s6*(s4*(s3*(s2*(s0 + s1) + s0*s1) + s0*s1*s2) + s5*(s4*(s2*(s0 + s1) + s0*s1 + s3*(s0 + s1 + s2)) + s3*(s2*(s0 + s1) + s0*s1) + s0*s1*s2) + s0*s1*s2*s3) - s5*(s4*(s3*(s2*(s0 + s1) + s0*s1) + s0*s1*s2) + s0*s1*s2*s3) - s0*s1*s2*s3*s4; coefficients[4] = s7*(s5*(s2*(s0 + s1) + s0*s1 + s3*(s0 + s1 + s2) + s4*(s0 + s1 + s2 + s3)) + s4*(s2*(s0 + s1) + s0*s1 + s3*(s0 + s1 + s2)) + s6*(s2*(s0 + s1) + s0*s1 + s5*(s0 + s1 + s2 + s3 + s4) + s3*(s0 + s1 + s2) + s4*(s0 + s1 + s2 + s3)) + s3*(s2*(s0 + s1) + s0*s1) + s0*s1*s2) + s4*(s3*(s2*(s0 + s1) + s0*s1) + s0*s1*s2) + s5*(s4*(s2*(s0 + s1) + s0*s1 + s3*(s0 + s1 + s2)) + s3*(s2*(s0 + s1) + s0*s1) + s0*s1*s2) + s6*(s5*(s2*(s0 + s1) + s0*s1 + s3*(s0 + s1 + s2) + s4*(s0 + s1 + s2 + s3)) + s4*(s2*(s0 + s1) + s0*s1 + s3*(s0 + s1 + s2)) + s3*(s2*(s0 + s1) + s0*s1) + s0*s1*s2) + s0*s1*s2*s3; coefficients[5] = - s5*(s2*(s0 + s1) + s0*s1 + s3*(s0 + s1 + s2) + s4*(s0 + s1 + s2 + s3)) - s4*(s2*(s0 + s1) + s0*s1 + s3*(s0 + s1 + s2)) - s7*(s2*(s0 + s1) + s0*s1 + s5*(s0 + s1 + s2 + s3 + s4) + s3*(s0 + s1 + s2) + s6*(s0 + s1 + s2 + s3 + s4 + s5) + s4*(s0 + s1 + s2 + s3)) - s6*(s2*(s0 + s1) + s0*s1 + s5*(s0 + s1 + s2 + s3 + s4) + s3*(s0 + s1 + s2) + s4*(s0 + s1 + s2 + s3)) - s3*(s2*(s0 + s1) + s0*s1) - s0*s1*s2; coefficients[6] = s2*(s0 + s1) + s0*s1 + s7*(s0 + s1 + s2 + s3 + s4 + s5 + s6) + s5*(s0 + s1 + s2 + s3 + s4) + s3*(s0 + s1 + s2) + s6*(s0 + s1 + s2 + s3 + s4 + s5) + s4*(s0 + s1 + s2 + s3); coefficients[7] = - s0 - s1 - s2 - s3 - s4 - s5 - s6 - s7; }
AsebaNode() { // create VM vm.nodeId = 0; bytecode.resize(512); vm.bytecode = &bytecode[0]; vm.bytecodeSize = bytecode.size(); stack.resize(64); vm.stack = &stack[0]; vm.stackSize = stack.size(); vm.variables = reinterpret_cast<sint16 *>(&variables); vm.variablesSize = sizeof(variables) / sizeof(sint16); AsebaVMInit(&vm); // fill description accordingly d.name = L"testvm"; d.protocolVersion = ASEBA_PROTOCOL_VERSION; d.bytecodeSize = vm.bytecodeSize; d.variablesSize = vm.variablesSize; d.stackSize = vm.stackSize; /*d.namedVariables.push_back(TargetDescription::NamedVariable("id", 1)); d.namedVariables.push_back(TargetDescription::NamedVariable("source", 1)); d.namedVariables.push_back(TargetDescription::NamedVariable("args", 32));*/ }
NLDRLLEReport& operator=(const NLDRLLEReport& nr) { if (&nr==this) return *this; hd_errors.resize(nr.hd_errors.size()); hd_errors=nr.hd_errors; hd_error=nr.hd_error; ld_errors.resize(nr.ld_errors.size()); ld_errors=nr.ld_errors; ld_error=nr.ld_error; deval.resize(nr.deval.size()); deval=nr.deval; dp1eval=nr.dp1eval; return *this; }
void rfsum(const std::valarray<tblapack::complex>& p1, const std::valarray<tblapack::complex>& q1, const std::valarray<tblapack::complex>& p2, const std::valarray<tblapack::complex>& q2, std::valarray<tblapack::complex>& p, std::valarray<tblapack::complex>& q) { //given the coefficients of the polynomials in P1/Q1+P2/Q2 computes the coefficients //in the polynomials in P/Q (the reduced sum). NO SIMPLIFICATIONS ARE DONE (OF COURSE) q.resize(q1.size()+q2.size()-1); q=0.; for (int i=0; i<q1.size(); i++) for (int j=0; j<q2.size(); j++) q[i+j]+=q1[i]*q2[j]; if (p1.size()==0 || (p2.size()>0 && q1.size()+p2.size()>p1.size()+q2.size())) p.resize(q1.size()+p2.size()-1); else if (p1.size()>0) p.resize(p1.size()+q2.size()-1); else p.resize(0); for (int i=0; i<q1.size(); i++) for (int j=0; j<p2.size(); j++) p[i+j]+=q1[i]*p2[j]; for (int i=0; i<q2.size(); i++) for (int j=0; j<p1.size(); j++) p[i+j]+=q2[i]*p1[j]; }
void set_points(const FMatrix<double>& nP, const FMatrix<double>& np, const std::valarray<double>& nw=std::valarray<double>(0)) { if ((n=nP.rows())<1 || (D=nP.cols())<1) ERROR("Hi-dimensional array has inconsistent sizes."); if (np.rows()!=n || (d=np.cols())<1 || d>D) ERROR("Low-dimensional array has inconsistent sizes."); P=nP; p=np; ftainted=true; w.resize(n); if (nw.size()==0) w=1.0; else w=nw; }
void diff(const std::valarray<double>& a, const std::valarray<double>& b, std::valarray<double>& c) const { #ifdef DEBUG if (a.size()!=b.size()) ERROR("Vector size mismatch in distance."); #endif c.resize(a.size()); pdiff(&a[0], &b[0], &c[0], a.size()); }
AsebaNode() { // setup variables vm.nodeId = 1; bytecode.resize(512); vm.bytecode = &bytecode[0]; vm.bytecodeSize = bytecode.size(); stack.resize(64); vm.stack = &stack[0]; vm.stackSize = stack.size(); vm.variables = reinterpret_cast<sint16 *>(&variables); vm.variablesSize = sizeof(variables) / sizeof(sint16); }
void halve(std:: valarray<float> &imap, int inx, int iny, std:: valarray<float> &omap) { if(inx % 2) { // it is odd std:: cout << " nx of the input map is odd " << std:: endl; std:: cout << " I cannot process ... I will STOP here!!! " << std:: endl; exit(1); } if(iny % 2) { // it is odd std:: cout << " ny of the input map is odd " << std:: endl; std:: cout << " I cannot process ... I will STOP here!!! " << std:: endl; exit(1); } int nx = inx/2; int ny = iny/2; omap.resize(nx*ny); for(int i=0; i<nx; i++) for(int j=0; j<ny; j++) { omap[i+nx*j] = (imap[(2*i)+inx*(2*j)] + imap[(2*i+1)+inx*(2*j)] + imap[(2*i)+inx*(2*j+1)] + imap[(2*i+1)+inx*(2*j+1)])/4; } }
inline void DMatrix::resize(size_type rows, size_type cols, value_type val) { v_.resize(rows*cols,val); v_ = val; rows_ = rows; }
int find_histogram(const std::valarray<T>& vol, std::valarray<int>& hist, unsigned int bins, T& min, T& max) { // size and zero the histogram hist.resize(bins); hist = 0; if(min == max) { min = vol.min(); max = vol.max(); } int validsize(-1); if(min != max) { double fA = bins / double(max - min); double fB = (bins * -min) / double(max - min); validsize = 0; for(unsigned int i = 0; i < vol.size(); ++i) { unsigned int idx = unsigned(fA * vol[i] + fB); ++hist[ std::max(unsigned(0), std::min(idx, bins - 1)) ]; ++validsize; } } return validsize; }
frame& operator=(const frame& nf) { if (&nf==this) return *this; nat=nf.nat; comment=nf.comment; ats.resize(nf.ats.size()); ats=nf.ats; return *this; }
void GLEABC::get_evA(std::valarray<tblapack::complex>& ra) { if (!fr_eva) { EigenDecomposition(A, O, O1, a); fr_eva=true; } ra.resize(a.size()); ra=a; }
void KinematicCarModel::ode(const ob::State *state, const oc::Control *control, std::valarray<double> &dstate) const { const double *u = control->as<oc::RealVectorControlSpace::ControlType>()->values; const double theta = state->as<ob::SE2StateSpace::StateType>()->getYaw(); dstate.resize(3); dstate[0] = u[0] * cos(theta); dstate[1] = u[0] * sin(theta); dstate[2] = u[0] * tan(u[1]) / carLength_; }
//! Loading for std::valarray arithmetic types, using binary serialization, if supported template <class Archive, class T> inline typename std::enable_if<traits::is_input_serializable<BinaryData<T>, Archive>::value && std::is_arithmetic<T>::value, void>::type CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::valarray<T> & valarray ) { size_type valarraySize; ar( make_size_tag( valarraySize ) ); valarray.resize( static_cast<std::size_t>( valarraySize ) ); ar( binary_data( &valarray[0], static_cast<std::size_t>( valarraySize ) * sizeof(T) ) ); }
//! Loading for std::valarray all other types template<class Archive, class T> inline typename std::enable_if< !traits::is_input_serializable<BinaryData<T>, Archive>::value || !std::is_arithmetic<T>::value, void>::type CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::valarray<T> & valarray) { size_type valarraySize; ar(make_size_tag(valarraySize)); valarray.resize(static_cast<size_t>(valarraySize)); for (auto && v : valarray) ar(v); }
void load( Archive & ar, STD::valarray<U> &t, const unsigned int /*file_version*/ ) { collection_size_type count; ar >> BOOST_SERIALIZATION_NVP(count); t.resize(count); if (t.size()){ // explict template arguments to pass intel C++ compiler ar >> serialization::make_array<U, collection_size_type>( static_cast<U *>( boost::addressof(t[0]) ), count ); }
// // Convert an array of null-terminated strings to an array of 64-byte words // with proper MD5 padding // void md5_prep_array(std::valarray<char> &paddedWords, const std::vector<std::string> &words) { paddedWords.resize(64 * words.size()); paddedWords = 0; for(uint i = 0; i != words.size(); i++) { char *w = &paddedWords[i*64]; strncpy(w, words[i].c_str(), 56); md5_prep(w); } }
virtual void incomingData(Dashel::Stream *stream) { uint16 temp; uint16 len; stream->read(&temp, 2); len = bswap16(temp); stream->read(&temp, 2); lastMessageSource = bswap16(temp); lastMessageData.resize(len+2); stream->read(&lastMessageData[0], lastMessageData.size()); AsebaProcessIncomingEvents(&vm); }
static std::size_t next_index (const std::gslice &gsl, std::valarray<std::size_t> &factors) { const std::size_t start = gsl.start (); const std::valarray<std::size_t> asizes = gsl.size (); const std::valarray<std::size_t> astrides = gsl.stride (); const std::size_t ndims = asizes.size (); std::size_t inx = ndims; if (0 == factors.size ()) { factors.resize (ndims); return start; } while (inx && factors [inx - 1] == asizes [inx - 1] - 1) --inx; if (0 == inx) { factors = 0; return start; } ++factors [inx - 1]; if (inx < factors.size ()) { for (std::size_t i = inx; i != ndims; ++i) factors [i] = 0; } else inx = factors.size (); std::size_t index = start; for (std::size_t i = 0; i != inx; ++i) index += factors [i] * astrides [i]; return index; }
void csv2floats(const std::string& istr, std::valarray<double>& vv) { std::vector<double> vl(0); vl.clear(); std::string ls=istr; int pos=0; while( (pos = ls.find_first_of(',')) != ls.npos ) { if(pos > 0) { vl.push_back(str2float(ls.substr(0,pos))); } ls=ls.substr(pos+1); } if(ls.length() > 0) { vl.push_back(str2float(ls)); } vv.resize(vl.size()); //copies onto a valarray for (int k=0; k<vl.size(); k++) vv[k]=vl[k]; }
bool nest::ac_poisson_generator:: Parameters_::extract_array_(const DictionaryDatum &d, const std::string& dname, std::valarray<double>& data) const { if ( d->known(dname) ) { ArrayDatum *ad = dynamic_cast<ArrayDatum *>((*d)[dname].datum()); if ( ad == 0 ) throw BadProperty(); const size_t nd = ad->size(); data.resize(nd); for ( size_t n = 0 ; n < nd ; ++n ) { data[n] = getValue<double>((*ad)[n]); } return true; } else return false; }
void get_gradient(std::valarray<double>& rv) const {rv.resize(vg.size()); rv=vg; }
void eigen_hermitian( const Complex_Matrix1& A, Complex_Matrix2& V, std::valarray<T>& Lambda, const T eps = T( 1.0e-10 ) ) { Lambda.resize( A.row() ); return eigen_hermitian_impl( A, V, Lambda.begin(), eps); }
std::size_t eigen_jacobi( const Matrix1& A, Matrix2& V, std::valarray<T>& Lambda, const T eps = T( 1.0e-10 ) ) { Lambda.resize( A.row() ); return eigen_jacobi( A, V, Lambda.begin(), eps); }
std::size_t cyclic_eigen_jacobi( const Matrix1& A, Matrix2& V, std::valarray<T>& Lambda, std::size_t const max_rot = 80, const T eps = T( 1.0e-10 ) ) { Lambda.resize( A.row() ); return cyclic_eigen_jacobi( A, V, Lambda.begin(), max_rot, eps ); }
inline void DMatrix::free() { v_.resize(0); rows_ = 0; }
NLDRMetricSphere& operator= (const NLDRMetricSphere& no) { if (&no==this) return *this; periods.resize(no.periods.size()); periods=no.periods; }
void get_points(std::valarray<std::valarray<double> >& nP, std::valarray<std::valarray<double> >& np) { nP.resize(n); np.resize(n); for (unsigned long i=0; i<n; ++i) { nP[i].resize(D); for (unsigned long h=0; h<D; ++h) nP[i][h]=P(i,h); } for (unsigned long i=0; i<n; ++i) { np[i].resize(d); for (unsigned long h=0; h<d; ++h) np[i][h]=p(i,h); } }
void get_vars(std::valarray<double>& rv) const { rv.resize(vx.size()); rv=vx; }