void MappingExtrapolate::v_CorrectPressureBCs( const Array<OneD, NekDouble> &pressure) { if(m_HBCdata.num_elements()>0) { int cnt, n; int physTot = m_fields[0]->GetTotPoints(); int nvel = m_fields.num_elements()-1; Array<OneD, NekDouble> Vals; // Remove previous correction for(cnt = n = 0; n < m_PBndConds.num_elements(); ++n) { if(m_PBndConds[n]->GetUserDefined() == "H") { int nq = m_PBndExp[n]->GetNcoeffs(); Vmath::Vsub(nq, &(m_PBndExp[n]->GetCoeffs()[0]), 1, &(m_bcCorrection[cnt]), 1, &(m_PBndExp[n]->UpdateCoeffs()[0]), 1); cnt += nq; } } // Calculate new correction Array<OneD, NekDouble> Jac(physTot, 0.0); m_mapping->GetJacobian(Jac); Array<OneD, Array<OneD, NekDouble> > correction(nvel); Array<OneD, Array<OneD, NekDouble> > gradP(nvel); Array<OneD, Array<OneD, NekDouble> > wk(nvel); Array<OneD, Array<OneD, NekDouble> > wk2(nvel); for (int i=0; i<nvel; i++) { wk[i] = Array<OneD, NekDouble> (physTot, 0.0); gradP[i] = Array<OneD, NekDouble> (physTot, 0.0); correction[i] = Array<OneD, NekDouble> (physTot, 0.0); } // Calculate G(p) for(int i = 0; i < nvel; ++i) { m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[i], pressure, gradP[i]); if(m_fields[0]->GetWaveSpace()) { m_fields[0]->HomogeneousBwdTrans(gradP[i], wk[i]); } else { Vmath::Vcopy(physTot, gradP[i], 1, wk[i], 1); } } m_mapping->RaiseIndex(wk, correction); // G(p) // alpha*J*(G(p)) if (!m_mapping->HasConstantJacobian()) { for(int i = 0; i < nvel; ++i) { Vmath::Vmul(physTot, correction[i], 1, Jac, 1, correction[i], 1); } } for(int i = 0; i < nvel; ++i) { Vmath::Smul(physTot, m_pressureRelaxation, correction[i], 1, correction[i], 1); } if(m_pressure->GetWaveSpace()) { for(int i = 0; i < nvel; ++i) { m_pressure->HomogeneousFwdTrans(correction[i], correction[i]); } } // p_i - alpha*J*div(G(p)) for (int i = 0; i < nvel; ++i) { Vmath::Vsub(physTot, gradP[i], 1, correction[i], 1, correction[i], 1); } // Get value at boundary and calculate Inner product StdRegions::StdExpansionSharedPtr Pbc; StdRegions::StdExpansionSharedPtr elmt; Array<OneD, Array<OneD, const NekDouble> > correctionElmt(m_bnd_dim); Array<OneD, Array<OneD, NekDouble> > BndValues(m_bnd_dim); for(int i = 0; i < m_bnd_dim; i++) { BndValues[i] = Array<OneD, NekDouble> (m_pressureBCsMaxPts,0.0); } for(int j = 0 ; j < m_HBCdata.num_elements() ; j++) { /// Casting the boundary expansion to the specific case Pbc = boost::dynamic_pointer_cast<StdRegions::StdExpansion> (m_PBndExp[m_HBCdata[j].m_bndryID] ->GetExp(m_HBCdata[j].m_bndElmtID)); /// Picking up the element where the HOPBc is located elmt = m_pressure->GetExp(m_HBCdata[j].m_globalElmtID); /// Assigning for(int i = 0; i < m_bnd_dim; i++) { correctionElmt[i] = correction[i] + m_HBCdata[j].m_physOffset; } Vals = m_bcCorrection + m_HBCdata[j].m_coeffOffset; // Getting values on the edge and filling the correction switch(m_pressure->GetExpType()) { case MultiRegions::e2D: case MultiRegions::e3DH1D: { elmt->GetEdgePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, correctionElmt[0], BndValues[0]); elmt->GetEdgePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, correctionElmt[1], BndValues[1]); // InnerProduct Pbc->NormVectorIProductWRTBase(BndValues[0], BndValues[1], Vals); } break; case MultiRegions::e3D: { elmt->GetFacePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, correctionElmt[0], BndValues[0]); elmt->GetFacePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, correctionElmt[1], BndValues[1]); elmt->GetFacePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, correctionElmt[2], BndValues[2]); Pbc->NormVectorIProductWRTBase(BndValues[0], BndValues[1], BndValues[2], Vals); } break; default: ASSERTL0(0,"Dimension not supported"); break; } } // Apply new correction for(cnt = n = 0; n < m_PBndConds.num_elements(); ++n) { if(m_PBndConds[n]->GetUserDefined() == "H") { int nq = m_PBndExp[n]->GetNcoeffs(); Vmath::Vadd(nq, &(m_PBndExp[n]->GetCoeffs()[0]), 1, &(m_bcCorrection[cnt]), 1, &(m_PBndExp[n]->UpdateCoeffs()[0]), 1); cnt += nq; } } } }
void MappingExtrapolate::v_CalcNeumannPressureBCs( const Array<OneD, const Array<OneD, NekDouble> > &fields, const Array<OneD, const Array<OneD, NekDouble> > &N, NekDouble kinvis) { if (m_mapping->HasConstantJacobian() && !m_implicitViscous) { Extrapolate::v_CalcNeumannPressureBCs( fields, N, kinvis); } else { int physTot = m_fields[0]->GetTotPoints(); int nvel = m_fields.num_elements()-1; Array<OneD, NekDouble> Pvals; StdRegions::StdExpansionSharedPtr Pbc; StdRegions::StdExpansionSharedPtr elmt; Array<OneD, Array<OneD, const NekDouble> > Velocity(m_bnd_dim); Array<OneD, Array<OneD, const NekDouble> > Advection(m_bnd_dim); // Get transformation Jacobian Array<OneD, NekDouble> Jac(physTot,0.0); m_mapping->GetJacobian(Jac); // Declare variables Array<OneD, Array<OneD, NekDouble> > BndValues(m_bnd_dim); Array<OneD, Array<OneD, NekDouble> > Q(m_bnd_dim); Array<OneD, Array<OneD, NekDouble> > Q_field(nvel); Array<OneD, Array<OneD, NekDouble> > fields_new(nvel); Array<OneD, Array<OneD, NekDouble> > N_new(m_bnd_dim); // Temporary variables Array<OneD, NekDouble> tmp(physTot,0.0); Array<OneD, NekDouble> tmp2(physTot,0.0); for(int i = 0; i < m_bnd_dim; i++) { BndValues[i] = Array<OneD, NekDouble> (m_pressureBCsMaxPts,0.0); Q[i] = Array<OneD, NekDouble> (m_pressureBCsElmtMaxPts,0.0); N_new[i] = Array<OneD, NekDouble> (physTot,0.0); } for(int i = 0; i < nvel; i++) { Q_field[i] = Array<OneD, NekDouble> (physTot,0.0); fields_new[i] = Array<OneD, NekDouble> (physTot,0.0); } // Multiply convective terms by Jacobian for(int i = 0; i < m_bnd_dim; i++) { if (m_fields[0]->GetWaveSpace()) { m_fields[0]->HomogeneousBwdTrans(N[i],N_new[i]); } else { Vmath::Vcopy(physTot, N[i], 1, N_new[i], 1); } Vmath::Vmul(physTot, Jac, 1, N_new[i], 1, N_new[i], 1); if (m_fields[0]->GetWaveSpace()) { m_fields[0]->HomogeneousFwdTrans(N_new[i],N_new[i]); } } // Get velocity in physical space for(int i = 0; i < nvel; i++) { if (m_fields[0]->GetWaveSpace()) { m_fields[0]->HomogeneousBwdTrans(fields[i],fields_new[i]); } else { Vmath::Vcopy(physTot, fields[i], 1, fields_new[i], 1); } } // Calculate appropriate form of the CurlCurl operator m_mapping->CurlCurlField(fields_new, Q_field, m_implicitViscous); // If viscous terms are treated explicitly, // add grad(U/J \dot grad J) to CurlCurl if ( !m_implicitViscous) { m_mapping->DotGradJacobian(fields_new, tmp); Vmath::Vdiv(physTot, tmp, 1, Jac, 1, tmp, 1); bool wavespace = m_fields[0]->GetWaveSpace(); m_fields[0]->SetWaveSpace(false); for(int i = 0; i < m_bnd_dim; i++) { m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[i], tmp, tmp2); Vmath::Vadd(physTot, Q_field[i], 1, tmp2, 1, Q_field[i], 1); } m_fields[0]->SetWaveSpace(wavespace); } // Multiply by Jacobian and convert to wavespace (if necessary) for(int i = 0; i < m_bnd_dim; i++) { Vmath::Vmul(physTot, Jac, 1, fields_new[i], 1, fields_new[i], 1); Vmath::Vmul(physTot, Jac, 1, Q_field[i] , 1, Q_field[i] , 1); if (m_fields[0]->GetWaveSpace()) { m_fields[0]->HomogeneousFwdTrans(fields_new[i],fields_new[i]); m_fields[0]->HomogeneousFwdTrans(Q_field[i],Q_field[i]); } } for(int j = 0 ; j < m_HBCdata.num_elements() ; j++) { /// Casting the boundary expansion to the specific case Pbc = boost::dynamic_pointer_cast<StdRegions::StdExpansion> (m_PBndExp[m_HBCdata[j].m_bndryID] ->GetExp(m_HBCdata[j].m_bndElmtID)); /// Picking up the element where the HOPBc is located elmt = m_pressure->GetExp(m_HBCdata[j].m_globalElmtID); /// Assigning for(int i = 0; i < m_bnd_dim; i++) { Velocity[i] = fields_new[i] + m_HBCdata[j].m_physOffset; Advection[i] = N_new[i] + m_HBCdata[j].m_physOffset; Q[i] = Q_field[i] + m_HBCdata[j].m_physOffset; } // Mounting advection component into the high-order condition for(int i = 0; i < m_bnd_dim; i++) { MountHOPBCs(m_HBCdata[j].m_ptsInElmt,kinvis,Q[i],Advection[i]); } Pvals = m_pressureHBCs[0] + m_HBCdata[j].m_coeffOffset; // Getting values on the edge and filling the pressure boundary // expansion and the acceleration term. Multiplication by the // normal is required switch(m_pressure->GetExpType()) { case MultiRegions::e2D: case MultiRegions::e3DH1D: { elmt->GetEdgePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, Q[0], BndValues[0]); elmt->GetEdgePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, Q[1], BndValues[1]); // InnerProduct Pbc->NormVectorIProductWRTBase(BndValues[0], BndValues[1], Pvals); } break; case MultiRegions::e3DH2D: { if(m_HBCdata[j].m_elmtTraceID == 0) { (m_PBndExp[m_HBCdata[j].m_bndryID]->UpdateCoeffs() + m_PBndExp[m_HBCdata[j].m_bndryID] ->GetCoeff_Offset( m_HBCdata[j].m_bndElmtID))[0] = -1.0*Q[0][0]; } else if (m_HBCdata[j].m_elmtTraceID == 1) { (m_PBndExp[m_HBCdata[j].m_bndryID]->UpdateCoeffs() + m_PBndExp[m_HBCdata[j].m_bndryID] ->GetCoeff_Offset( m_HBCdata[j].m_bndElmtID))[0] = Q[0][m_HBCdata[j].m_ptsInElmt-1]; } else { ASSERTL0(false, "In the 3D homogeneous 2D approach BCs edge " "ID can be just 0 or 1 "); } } break; case MultiRegions::e3D: { elmt->GetFacePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, Q[0], BndValues[0]); elmt->GetFacePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, Q[1], BndValues[1]); elmt->GetFacePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, Q[2], BndValues[2]); Pbc->NormVectorIProductWRTBase(BndValues[0], BndValues[1], BndValues[2], Pvals); } break; default: ASSERTL0(0,"Dimension not supported"); break; } } } // If pressure terms are treated implicitly, we need to multiply // by the relaxation parameter, and zero the correction term if (m_implicitPressure) { Vmath::Smul(m_pressureHBCs[0].num_elements(), m_pressureRelaxation, m_pressureHBCs[0], 1, m_pressureHBCs[0], 1); } m_bcCorrection = Array<OneD, NekDouble> (m_pressureHBCs[0].num_elements(), 0.0); }