コード例 #1
0
//----------------------------------------------------------------------------
//
// Random fracture criterion function.
//
bool
RandomCriterion::computeFractureCriterion(stk::mesh::Entity& entity, double p) {

  // Fracture only defined on the boundary of the elements
  stk::mesh::EntityRank rank = entity.entity_rank();
  assert(rank == num_dim_ - 1);

  stk::mesh::PairIterRelation neighbor_elems =
    entity.relations(element_rank_);

  // Need an element on each side
  if(neighbor_elems.size() != 2)
    return false;

  bool is_open = false;

  // All we need to do is generate a number between 0 and 1
  double random = 0.5 + 0.5 * Teuchos::ScalarTraits<double>::random();

  if(random < p) {
    is_open = true;
  }

  return is_open;
}
コード例 #2
0
//----------------------------------------------------------------------------
//
// Stress fracture criterion function.
//
bool
StressFracture::computeFractureCriterion(stk::mesh::Entity entity, double p) {
  // Fracture only defined on the boundary of the elements
  stk::mesh::EntityRank rank = entity.entity_rank();
  assert(rank == num_dim_ - 1);

  stk::mesh::PairIterRelation neighbor_elems =
    entity.relations(element_rank_);

  // Need an element on each side of the edge
  if(neighbor_elems.size() != 2)
    return false;

  // Note that these are element GIDs

  stk::mesh::EntityId elem_0_Id =
    neighbor_elems[0].entity()->identifier();
  stk::mesh::EntityId elem_1_Id =
    neighbor_elems[1].entity()->identifier();

  Albany::WsLIDList& elemGIDws = stk_.getElemGIDws();

  // Have two elements, one on each size of the edge (or
  // face). Check and see if the stresses are such that we want to
  // split the mesh here.
  //
  // Initial hack - GAH: if the average stress between two elements
  // is above the input value "Fracture Stress", split them at the
  // edge

  bool is_open = false;

  // Check criterion
  // If average between cells is above crit, split
  //  if (0.5 * (avg_stresses[elemGIDws[elem_0_Id].ws][elemGIDws[elem_0_Id].LID] +
  //    avg_stresses[elemGIDws[elem_1_Id].ws][elemGIDws[elem_1_Id].LID]) >= crit_stress){
  // If stress difference across face it above crit, split
  //  if (fabs(avg_stresses[elemGIDws[elem_0_Id].ws][elemGIDws[elem_0_Id].LID] -
  //    avg_stresses[elemGIDws[elem_1_Id].ws][elemGIDws[elem_1_Id].LID]) >= crit_stress){
  // Just split the doggone elements already!!!
  if(p == 5) {
    if((elem_0_Id - 1 == 35 && elem_1_Id - 1 == 140) ||
        (elem_1_Id - 1 == 35 && elem_0_Id - 1 == 140)) {

      is_open = true;

      std::cout << "Splitting elements " << elem_0_Id - 1 << " and " << elem_1_Id - 1 << std::endl;
      //std::cout << avg_stresses[elemGIDws[elem_0_Id].ws][elemGIDws[elem_0_Id].LID] << " " <<
      //    avg_stresses[elemGIDws[elem_1_Id].ws][elemGIDws[elem_1_Id].LID] << std::endl;

    }
  }

  else if(p == 10) {
    if((elem_0_Id - 1 == 42 && elem_1_Id - 1 == 147) ||
        (elem_1_Id - 1 == 42 && elem_0_Id - 1 == 147)) {

      is_open = true;

      std::cout << "Splitting elements " << elem_0_Id - 1 << " and " << elem_1_Id - 1 << std::endl;
    }
  }

  else if(p == 15) {
    if((elem_0_Id - 1 == 49 && elem_1_Id - 1 == 154) ||
        (elem_1_Id - 1 == 49 && elem_0_Id - 1 == 154)) {

      is_open = true;

      std::cout << "Splitting elements " << elem_0_Id - 1 << " and " << elem_1_Id - 1 << std::endl;
    }
  }

  return is_open;
}
コード例 #3
0
      bool helperSubDim(const stk::mesh::Entity& child_element, stk::mesh::FieldBase *field,  const mesh::BulkData& bulkData)
      {
        EXCEPTWATCH;

        const CellTopologyData * const child_cell_topo_data = stk::percept::PerceptMesh::get_cell_topology(child_element);
        CellTopology child_cell_topo(child_cell_topo_data);
        int child_cell_dimension = child_cell_topo.getDimension();
        int meta_dimension = mesh::fem::FEMMetaData::get_meta_data(mesh::fem::FEMMetaData::get(bulkData)).get_spatial_dimension();

        // for now, only allow face (or edge)
        VERIFY_OP_ON(child_cell_dimension, ==, meta_dimension - 1, "Dimensions don't match");
        
        VectorFieldType& coord_field = *(mesh::fem::FEMMetaData::get(bulkData)).get_field<VectorFieldType>("coordinates");

        // FIXME for fields not on a Node
        unsigned nDOF = m_nDOFs;

        unsigned nCells = PerceptMesh::size1(child_element);
        m_count_elems += nCells;

        typedef IntrepidManager IM;
        unsigned cubDegree = m_cubDegree;
        const stk::mesh::PairIterRelation parent_elements = child_element.relations(child_element.entity_rank() + 1);
        VERIFY_OP_ON(parent_elements.size(), ==, 1, "cant find parent");
        const stk::mesh::Entity& element = *parent_elements[0].entity();
        unsigned i_face = parent_elements[0].identifier();

        const CellTopologyData * const cell_topo_data = stk::percept::PerceptMesh::get_cell_topology(element);
        CellTopology cell_topo(cell_topo_data);
        int cell_dimension = cell_topo.getDimension();
        VERIFY_OP_ON(cell_dimension, ==, meta_dimension , "Dimensions don't match");

        IM im(Elements_Tag(nCells), cell_topo, cubDegree);
        IM imChild(Elements_Tag(nCells), child_cell_topo, cubDegree);
        unsigned numCubPoints_child = imChild.m_cub->getNumPoints(); 
        im.m_Cub_Points_Tag = Cub_Points_Tag(numCubPoints_child);

        if (0)
          {
            std::cout << "numCubPoints_child= " << numCubPoints_child 
                      << " parent rank= " << element.entity_rank()
                      << " parent topo= " << cell_topo.getName()
                      << std::endl;
          }

        // FIXME
        im.m_DOFs_Tag.num = m_nDOFs;
        // FIXME

        // _c suffix is for the child (face) element
        IM::Jacobian              J  (im);
        IM::FaceNormal           fn  (im);
        //IM::JacobianDet          dJ  (im);
        IM::CubaturePoints       xi  (im);
        IM::CubaturePoints       xi_c  (imChild);
        IM::CellWorkSet          cn  (im);
        IM::CubatureWeights      wt  (im);
        IM::CubatureWeights      wt_c  (imChild);
        IM::PhysicalCoords       pc  (im);
        IM::IntegrandValues      iv  (im);
        IM::IntegrandValuesDOF  ivD  (im);
        IM::Integral             Io  (im);
        IM::Bases                Nb  (im);

        IM::WeightedMeasure wXfn  (im);
        IM::FieldValues       fv  (im);

        imChild.m_cub->getCubature(xi_c, wt_c);

        unsigned spaceDim = im.m_Spatial_Dim_Tag.num;

        PerceptMesh::fillCellNodes(element,  &coord_field, cn, spaceDim);

        // get parent cell integration points
        // Map Gauss points on quad to reference face: paramGaussPoints -> refGaussPoints
        CellTools<double>::mapToReferenceSubcell(xi,
                                                 xi_c,
                                                 2, i_face, cell_topo);  // FIXME magic

        // get jacobian
        J(xi, cn, cell_topo);
        //dJ(J);

        //shards::ArrayVector<double, shards::NaturalOrder, Elements_Tag, Cub_Points_Tag > fn_Norm;

        // FIXME
        //fn(J, i_face, cell_topo);
        MDArray J_mda;
        J.copyTo(J_mda);
        MDArray fn_mda(im.m_Elements_Tag.num, numCubPoints_child, spaceDim);
        CellTools<double>::getPhysicalFaceNormals(fn_mda, J_mda, i_face, cell_topo);

        /// get norm of fn
        for (int icell = 0; icell < im.m_Elements_Tag.num; icell++)
          {
            for (int ipt = 0; ipt < (int)numCubPoints_child; ipt++)
              {
                double sum = 0.0;
                for (int i = 0; i < (int)spaceDim; i++)
                  {
                    sum += square(fn_mda(icell, ipt, i));
                  }
                wXfn(icell, ipt) = std::sqrt(sum) * wt_c(ipt);
              }
          }

        if (0)
          {
            using namespace shards;

            //std::cout << "dJ= \n" << dJ << std::endl;
            std::cout << "wXfn= \n" << wXfn << std::endl;
            std::cout << "xi= \n" << xi << std::endl;
            std::cout << "wt= \n" << wt << std::endl;
            std::cout << "cn= \n" << cn << std::endl;
            Util::setDoPause(true);
            Util::pause(true);
          }

        // get physical coordinates at integration points
        pc(cn, xi);

        // get bases
#if 1
        // FIXME
        MDArray xi_mda;
        xi.copyTo(xi_mda);
        Nb(element, xi_mda);
#else
        Nb(element, xi);
#endif

        // apply integrand (right now we have MDArray hard-coded... FIXME - templatize on its type)
        // it should look like this (one instead of multiple lines):
#if 0
        m_integrand(pc, v);
#else
        MDArray pc_mda;
        pc.copyTo(pc_mda);
        std::vector<int>  ivDims;
        ivD.dimensions( ivDims);


        /// NOTE: m_integrand requires the ranks of in/out MDArrays to be such that out_rank >= in_rank
        /// Thus, we use IntegrandValuesDOF with [DOF] = 1, and then copy the result to IntegrandValues
        /// which does not have the additional rightmost DOF index (Intrepid doesn't have the concept of
        /// DOF's, it works on scalars only for the integration routines, or at least that's how I understand
        /// it currently.

        // create an array that stk::percept::Function will like to hold the results

        ivDims[ivDims.size()-1] = m_nDOFs;

        MDArray iv_mda ( Teuchos::Array<int>(ivDims.begin(), ivDims.end()));

        if (m_turboOpt == TURBO_ELEMENT || m_turboOpt == TURBO_BUCKET)
          {
            m_integrand(pc_mda, iv_mda, element, xi_mda);
          }
        else
          {
            m_integrand(pc_mda, iv_mda);
          }

        // now, copy from the results to an array that Intrepid::integrate will like

#endif

        for (unsigned iDof = 0; iDof < nDOF; iDof++)
          {
            iv.copyFrom(im, iv_mda, iDof);

            // get the integral
            if (m_accumulation_type == ACCUMULATE_SUM)
              {
                Io(iv, wXfn, COMP_BLAS);
              }

            //optional design:
            //
            //  Io(integrand(pc_mda, v), wXdJ(w, dJ(J(xi, c, cell_topo)), COMP_BLAS);

            for (unsigned iCell = 0; iCell < nCells; iCell++)
              {
                //                 if (Util::getFlag(0))
                //                   {
                //                     std::cout << "tmp Io(iCell)= " << Io(iCell) << std::endl;
                //                     Util::pause(true, "Io(iCell)");
                //                   }
                if (m_accumulation_type == ACCUMULATE_SUM)
                  {
                    m_accumulation_buffer[iDof] += Io(iCell);
                  }
                else if (m_accumulation_type == ACCUMULATE_MAX)
                  {
                    double valIo = 0.0;
                    for (int ivpts = 0; ivpts < iv.dimension(1); ivpts++)
                      {
                        valIo = std::max(valIo, iv((int)iCell, ivpts));
                      }
                    //std::cout << "m_accumulation_buffer[iDof] = " << m_accumulation_buffer[iDof] << " valIO= " << valIo  << std::endl;
                    m_accumulation_buffer[iDof] = std::max(m_accumulation_buffer[iDof], valIo);
                  }
              }
          }
        return false;
      }
コード例 #4
0
unsigned
Albany::STKDiscretization::determine_local_side_id( const stk::mesh::Entity & elem , stk::mesh::Entity & side ) {

  using namespace stk;

  const CellTopologyData * const elem_top = mesh::fem::get_cell_topology( elem ).getCellTopologyData();

  const mesh::PairIterRelation elem_nodes = elem.relations( mesh::fem::FEMMetaData::NODE_RANK );
  const mesh::PairIterRelation side_nodes = side.relations( mesh::fem::FEMMetaData::NODE_RANK );

  int side_id = -1 ;

  if(elem_nodes.size() == 0 || side_nodes.size() == 0){ // Node relations are not present, look at elem->face

    int elem_rank = elem.entity_rank();
    const mesh::PairIterRelation elem_sides = elem.relations( elem_rank - 1);

    for ( unsigned i = 0 ; i < elem_sides.size() ; ++i ) {

      const stk::mesh::Entity & elem_side = *elem_sides[i].entity();

      if(elem_side.identifier() == side.identifier()){ // Found the local side in the element

         side_id = static_cast<int>(i);

         return side_id;

      }

    }

    if ( side_id < 0 ) {
      std::ostringstream msg ;
      msg << "determine_local_side_id( " ;
      msg << elem_top->name ;
      msg << " , Element[ " ;
      msg << elem.identifier();
      msg << " ]{" ;
      for ( unsigned i = 0 ; i < elem_sides.size() ; ++i ) {
        msg << " " << elem_sides[i].entity()->identifier();
      }
      msg << " } , Side[ " ;
      msg << side.identifier();
      msg << " ] ) FAILED" ;
      throw std::runtime_error( msg.str() );
    }

  }
  else { // Conventional elem->node - side->node connectivity present

    for ( unsigned i = 0 ; side_id == -1 && i < elem_top->side_count ; ++i ) {
      const CellTopologyData & side_top = * elem_top->side[i].topology ;
      const unsigned     * side_map =   elem_top->side[i].node ;

      if ( side_nodes.size() == side_top.node_count ) {

        side_id = i ;

        for ( unsigned j = 0 ;
              side_id == static_cast<int>(i) && j < side_top.node_count ; ++j ) {

          mesh::Entity * const elem_node = elem_nodes[ side_map[j] ].entity();

          bool found = false ;

          for ( unsigned k = 0 ; ! found && k < side_top.node_count ; ++k ) {
            found = elem_node == side_nodes[k].entity();
          }

          if ( ! found ) { side_id = -1 ; }
        }
      }
    }

    if ( side_id < 0 ) {
      std::ostringstream msg ;
      msg << "determine_local_side_id( " ;
      msg << elem_top->name ;
      msg << " , Element[ " ;
      msg << elem.identifier();
      msg << " ]{" ;
      for ( unsigned i = 0 ; i < elem_nodes.size() ; ++i ) {
        msg << " " << elem_nodes[i].entity()->identifier();
      }
      msg << " } , Side[ " ;
      msg << side.identifier();
      msg << " ]{" ;
      for ( unsigned i = 0 ; i < side_nodes.size() ; ++i ) {
        msg << " " << side_nodes[i].entity()->identifier();
      }
      msg << " } ) FAILED" ;
      throw std::runtime_error( msg.str() );
    }
  }

  return static_cast<unsigned>(side_id) ;
}