void TMVAClassificationApplication_TX(TString myMethodList = "" , TString iFileName = "", TString sampleLocation = "", TString outputLocation = "") { #ifdef __CINT__ gROOT->ProcessLine( ".O0" ); // turn off optimization in CINT #endif //--------------------------------------------------------------- // This loads the library TMVA::Tools::Instance(); // Default MVA methods to be trained + tested std::map<std::string,int> Use; // --- Cut optimisation Use["Cuts"] = 0; Use["CutsD"] = 0; Use["CutsPCA"] = 0; Use["CutsGA"] = 0; Use["CutsSA"] = 0; // // // --- Boosted Decision Trees Use["BDT"] = 1; // uses Adaptive Boost std::cout << std::endl; std::cout << "==> Start TMVAClassificationApplication" << std::endl; // Select methods (don't look at this code - not of interest) if (myMethodList != "") { for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0; std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' ); for (UInt_t i=0; i<mlist.size(); i++) { std::string regMethod(mlist[i]); if (Use.find(regMethod) == Use.end()) { std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl; for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { std::cout << it->first << " "; } std::cout << std::endl; return; } Use[regMethod] = 1; } } // -------------------------------------------------------------------------------------------------- // --- Create the Reader object TMVA::Reader *reader = new TMVA::Reader("!Color:!Silent" ); // Create a set of variables and declare them to the reader // - the variable names MUST corresponds in name and type to those given in the weight file(s) used Float_t var1, var2, var3, var4, var5, var6, var7, var8, var9, var10, var11, var12, var13, var14, var15, var16, var17, var18, var19, var20, var21, var22, var23, var24, var25, var26, var27, var28, var29; //reader->AddVariable( "Alt$(jet_pt_singleLepCalc[0],0)", &var1); //reader->AddVariable( "Alt$(jet_pt_singleLepCalc[1],0)", &var2 ); //reader->AddVariable( "Alt$(jet_pt_singleLepCalc[2],0)", &var3 ); reader->AddVariable( "Alt$(bJetPt_CATopoCalc[0],0)", &var4 ); reader->AddVariable( "Alt$(bJetPt_CATopoCalc[1],0)", &var5 ); //reader->AddVariable( "corr_met_singleLepCalc", &var6 ); //reader->AddVariable( "muon_1_pt_singleLepCalc", &var7 ); //reader->AddVariable( "nBJets_CATopoCalc", &var8 ); //reader->AddVariable( "nSelJets_CommonCalc", &var9 ); //reader->AddVariable( "LeptonJet_DeltaR_LjetsTopoCalcNew", &var10); reader->AddVariable( "Mevent_LjetsTopoCalcNew", &var11); //reader->AddVariable( "W_Pt_LjetsTopoCalcNew", &var12 ); reader->AddVariable( "Jet1Jet2_Pt_LjetsTopoCalcNew", &var13 ); //reader->AddVariable( "BestTop_LjetsTopoCalcNew", &var14 ); //reader->AddVariable( "BTagTopMass_LjetsTopoCalcNew", &var15 ); //reader->AddVariable( "Alt$(CAHEPTopJetMass_JetSubCalc[0],0)", &var16 ); //reader->AddVariable( "Alt$(CAWCSVMSubJets_JetSubCalc[0],0)", &var17 ); //reader->AddVariable( "Alt$(CAWCSVLSubJets_JetSubCalc[0],0)", &var18 ); reader->AddVariable( "Alt$(CAWJetPt_JetSubCalc[0],0)", &var19 ); reader->AddVariable( "Alt$(CAWJetMass_JetSubCalc[0],0)", &var20 ); //reader->AddVariable( "Alt$(CAHEPTopJetMass_JetSubCalc[1],0)", &var21 ); //reader->AddVariable( "Hz_LjetsTopoCalcNew", &var22 ); //reader->AddVariable( "Centrality_LjetsTopoCalcNew", &var23 ); reader->AddVariable( "SqrtsT_LjetsTopoCalcNew", &var24 ); reader->AddVariable( "CAMindrBMass_CATopoCalc", &var28 ); reader->AddVariable( "minDRCAtoB_CATopoCalc", &var29 ); //reader->AddVariable( "HT2prime_LjetsTopoCalcNew", &var25 ); reader->AddVariable( "HT2_LjetsTopoCalcNew", &var26 ); //reader->AddVariable( "dphiLepMet_LjetsTopoCalcNew", &var27 ); // Spectator variables declared in the training have to be added to the reader, too // Float_t spec1,spec2; // reader->AddSpectator( "spec1 := var1*2", &spec1 ); // reader->AddSpectator( "spec2 := var1*3", &spec2 ); // Float_t Category_cat1, Category_cat2, Category_cat3; // if (Use["Category"]){ // // Add artificial spectators for distinguishing categories // reader->AddSpectator( "Category_cat1 := var3<=0", &Category_cat1 ); // reader->AddSpectator( "Category_cat2 := (var3>0)&&(var4<0)", &Category_cat2 ); // reader->AddSpectator( "Category_cat3 := (var3>0)&&(var4>=0)", &Category_cat3 ); // } // --- Book the MVA methods // Book method(s) TString weightFileName = "weights/TMVAClassification_BDT.weights"; reader->BookMVA("BDT method", weightFileName+".xml" ); // Book output histograms UInt_t nbin = 100; TH1F *histBdt(0); histBdt = new TH1F( "MVA_BDT_TX", "MVA_BDT_TX", nbin, -1.0, 1.0); // Prepare input tree (this must be replaced by your data source) // in this example, there is a toy tree with signal and one with background events // we'll later on use only the "signal" events for the test in this example. // TFile *input(0); TString fileName = iFileName; TString fname = sampleLocation+"/"; fname += fileName; TString oFileName = fileName; if (!gSystem->AccessPathName( fname )) input = TFile::Open( fname ); // check if file in local directory exists if (!input) { std::cout << "ERROR: could not open data file" << std::endl; exit(1); } std::cout << "--- TMVAClassificationApp : Using input file: " << input->GetName() << std::endl; // --- Event loop // Prepare the event tree // - here the variable names have to corresponds to your tree // - you can use the same variables as above which is slightly faster, // but of course you can use different ones and copy the values inside the event loop // std::cout << "--- Select signal sample" << std::endl; TTree* theTree = (TTree*)input->Get("ljmet"); gSystem->mkdir( outputLocation ); TFile *target = new TFile( outputLocation+"/"+oFileName,"RECREATE" ); TTree *newTree = theTree->CloneTree(); Float_t BDT; TBranch *branchBDT = newTree->Branch("__BDT_TX__",&BDT,"__BDT_TX__/F"); std::vector<Double_t> *vecVar1; std::vector<Double_t> *vecVar4; std::vector<Double_t> *vecVar16; std::vector<Int_t> *vecVar17; std::vector<Int_t> *vecVar18; std::vector<Double_t> *vecVar19; std::vector<Double_t> *vecVar20; Int_t *intVar5, *intVar8, *intVar9; Double_t *dVar2, *dVar3, *dVar6, *dVar7, *dVar10, *dVar11, *dVar12, *dVar13, *dVar14, *dVar15, *dVar22, *dVar23, *dVar24, dVar25, *dVar26, *dVar27, *dVar28, *dVar29; theTree->SetBranchAddress( "jet_pt_singleLepCalc", &vecVar1); theTree->SetBranchAddress( "bJetPt_CATopoCalc", &vecVar4 ); theTree->SetBranchAddress( "corr_met_singleLepCalc", &dVar6 ); theTree->SetBranchAddress( "muon_1_pt_singleLepCalc", &dVar7 ); theTree->SetBranchAddress( "nBJets_CATopoCalc", &intVar8 ); theTree->SetBranchAddress( "nSelJets_CommonCalc", &intVar9 ); theTree->SetBranchAddress( "LeptonJet_DeltaR_LjetsTopoCalcNew", &dVar10); theTree->SetBranchAddress( "Mevent_LjetsTopoCalcNew", &dVar11); theTree->SetBranchAddress( "W_Pt_LjetsTopoCalcNew", &dVar12 ); theTree->SetBranchAddress( "Jet1Jet2_Pt_LjetsTopoCalcNew", &dVar13 ); theTree->SetBranchAddress( "BestTop_LjetsTopoCalcNew", &dVar14 ); theTree->SetBranchAddress( "BTagTopMass_LjetsTopoCalcNew", &dVar15 ); theTree->SetBranchAddress( "CAHEPTopJetMass_JetSubCalc", &vecVar16 ); theTree->SetBranchAddress( "CAWCSVMSubJets_JetSubCalc", &vecVar17 ); theTree->SetBranchAddress( "CAWCSVLSubJets_JetSubCalc", &vecVar18 ); theTree->SetBranchAddress( "CAWJetPt_JetSubCalc", &vecVar19 ); theTree->SetBranchAddress( "CAWJetMass_JetSubCalc", &vecVar20 ); theTree->SetBranchAddress( "Hz_LjetsTopoCalcNew", &dVar22 ); theTree->SetBranchAddress( "Centrality_LjetsTopoCalcNew", &dVar23 ); theTree->SetBranchAddress( "SqrtsT_LjetsTopoCalcNew", &dVar24 ); theTree->SetBranchAddress( "HT2prime_LjetsTopoCalcNew", &dVar25 ); theTree->SetBranchAddress( "HT2_LjetsTopoCalcNew", &dVar26 ); theTree->SetBranchAddress( "dphiLepMet_LjetsTopoCalcNew", &dVar27 ); theTree->SetBranchAddress( "CAMindrBMass_CATopoCalc", &dVar28 ); theTree->SetBranchAddress( "minDRCAtoB_CATopoCalc", &dVar29 ); // Efficiency calculator for cut method Int_t nSelCutsGA = 0; Double_t effS = 0.7; std::vector<Float_t> vecVar(4); // vector for EvaluateMVA tests std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl; TStopwatch sw; sw.Start(); for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) { if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl; theTree->GetEntry(ievt); if(vecVar1->size()>0){ var1 = vecVar1->at(0); } if(vecVar1->size()>1){ var2 = vecVar1->at(1); } if(vecVar1->size()>2){ var3 = vecVar1->at(2); } if(vecVar4->size()>0){ var4 = vecVar4->at(0); } if(vecVar4->size()>1){ var5 = vecVar4->at(1); } var6 = dVar6; var7 = dVar7; var8 = intVar8; var9 = intVar9; var10 = dVar10; var11 = dVar11; var12 = dVar12; var13 = dVar13; var14 = dVar14; var15 = dVar15; if(vecVar16->size()>0){ var16 = vecVar16->at(0); } else{ var16 = 0; } if(vecVar17->size()>0){ var17 = vecVar17->at(0); } else{ var18 = 0; } if(vecVar19->size()>0){ var19 = vecVar19->at(0); } else{ var19 = 0; } if(vecVar20->size()>0){ var20 = vecVar20->at(0); } else{ var20 = 0; } if(vecVar16->size()>1){ var21 = vecVar16->at(1); } else{ var21 = 0; } var22 = dVar22; var23 = dVar23; var24 = dVar24; var25 = dVar25; var26 = dVar26; var27 = dVar27; var28 = dVar28; var29 = dVar29; // --- Return the MVA outputs and fill into histograms if (Use["CutsGA"]) { // Cuts is a special case: give the desired signal efficienciy Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS ); if (passed) nSelCutsGA++; } BDT = reader->EvaluateMVA( "BDT method"); histBdt->Fill(BDT); branchBDT->Fill(); } // Get elapsed time sw.Stop(); std::cout << "--- End of event loop: "; sw.Print(); // Get efficiency for cuts classifier if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries() << " (for a required signal efficiency of " << effS << ")" << std::endl; if (Use["CutsGA"]) { // test: retrieve cuts for particular signal efficiency // CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ; if (mcuts) { std::vector<Double_t> cutsMin; std::vector<Double_t> cutsMax; mcuts->GetCuts( 0.7, cutsMin, cutsMax ); std::cout << "--- -------------------------------------------------------------" << std::endl; std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl; for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) { std::cout << "... Cut: " << cutsMin[ivar] << " < \"" << mcuts->GetInputVar(ivar) << "\" <= " << cutsMax[ivar] << std::endl; } std::cout << "--- -------------------------------------------------------------" << std::endl; } } // --- Write histograms newTree->Write("",TObject::kOverwrite); target->Close(); std::cout << "--- Created root file: \""<<oFileName<<"\" containing the MVA output histograms" << std::endl; delete reader; std::cout << "==> TMVAClassificationApplication is done!" << endl << std::endl; }
void TMVAClassificationApplication_new(TString myMethodList = "" , TString iFileName = "", TString bkgSample = "", TString sampleLocation = "", TString massPoint = "", TString oFileLocation = "") { #ifdef __CINT__ gROOT->ProcessLine( ".O0" ); // turn off optimization in CINT #endif //--------------------------------------------------------------- // This loads the library TMVA::Tools::Instance(); // Default MVA methods to be trained + tested std::map<std::string,int> Use; // --- Cut optimisation Use["Cuts"] = 0; Use["CutsD"] = 0; Use["CutsPCA"] = 0; Use["CutsGA"] = 0; Use["CutsSA"] = 0; // // // --- Boosted Decision Trees Use["BDT"] = 1; // uses Adaptive Boost std::cout << std::endl; std::cout << "==> Start TMVAClassificationApplication" << std::endl; // Select methods (don't look at this code - not of interest) if (myMethodList != "") { for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0; std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' ); for (UInt_t i=0; i<mlist.size(); i++) { std::string regMethod(mlist[i]); if (Use.find(regMethod) == Use.end()) { std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl; for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { std::cout << it->first << " "; } std::cout << std::endl; return; } Use[regMethod] = 1; } } // -------------------------------------------------------------------------------------------------- // --- Create the Reader object TMVA::Reader *reader = new TMVA::Reader("!Color:!Silent" ); TString weightTail = "_"; weightTail = weightTail + massPoint; // Create a set of variables and declare them to the reader // - the variable names MUST corresponds in name and type to those given in the weight file(s) used Float_t var1, var2, var3, var4, var5, var6, var7, var8, var9, var10, var11, var12, var13, var14, var15, var16, var17, var18; reader->AddVariable( "svMass", &var1); reader->AddVariable( "dRTauTau", &var3 ); reader->AddVariable( "dRJJ", &var4 ); // reader->AddVariable( "svPt", &var5 ); // reader->AddVariable( "dRhh", &var6 ); reader->AddVariable( "met", &var7 ); reader->AddVariable( "mJJ", &var8 ); // reader->AddVariable( "metTau1DPhi", &var9 ); // reader->AddVariable( "metTau2DPhi", &var10); // reader->AddVariable( "metJ1DPhi", &var11); // reader->AddVariable( "metJ2DPhi", &var12 ); // reader->AddVariable( "metTauPairDPhi", &var13 ); // reader->AddVariable( "metSvTauPairDPhi", &var14 ); // reader->AddVariable( "metJetPairDPhi", &var15 ); // reader->AddVariable( "CSVJ1", &var16 ); // reader->AddVariable( "CSVJ2", &var17 ); reader->AddVariable( "fMassKinFit", &var2 ); reader->AddVariable( "chi2KinFit2", &var18 ); // Spectator variables declared in the training have to be added to the reader, too // Float_t spec1,spec2; // reader->AddSpectator( "spec1 := var1*2", &spec1 ); // reader->AddSpectator( "spec2 := var1*3", &spec2 ); // Float_t Category_cat1, Category_cat2, Category_cat3; // if (Use["Category"]){ // // Add artificial spectators for distinguishing categories // reader->AddSpectator( "Category_cat1 := var3<=0", &Category_cat1 ); // reader->AddSpectator( "Category_cat2 := (var3>0)&&(var4<0)", &Category_cat2 ); // reader->AddSpectator( "Category_cat3 := (var3>0)&&(var4>=0)", &Category_cat3 ); // } // --- Book the MVA methods // Book method(s) TString weightFileName = "/nfs_scratch/zmao/test/CMSSW_5_3_15/src/TMVA-v4.2.0/test/weights/TMVAClassification_BDT.weights_"; weightFileName += bkgSample; weightFileName += weightTail; reader->BookMVA("BDT method", weightFileName+".xml" ); // Book output histograms UInt_t nbin = 200; TH1F *histBdt(0); histBdt = new TH1F( "MVA_BDT", "MVA_BDT", nbin, -1.0, 1.0); // Prepare input tree (this must be replaced by your data source) // in this example, there is a toy tree with signal and one with background events // we'll later on use only the "signal" events for the test in this example. // TFile *input(0); TString fileName = iFileName; TString fname = sampleLocation; fname += fileName; TString oFileName = oFileLocation; oFileName += "ClassApp_" + bkgSample; oFileName += "_"; oFileName += fileName; if (!gSystem->AccessPathName( fname )) input = TFile::Open(fname); // check if file in local directory exists if (!input) { std::cout << "ERROR: could not open data file" << std::endl; exit(1); } std::cout << "--- TMVAClassificationApp : Using input file: " << input->GetName() << std::endl; // --- Event loop // Prepare the event tree // - here the variable names have to corresponds to your tree // - you can use the same variables as above which is slightly faster, // but of course you can use different ones and copy the values inside the event loop // std::cout << "--- Select signal sample" << std::endl; TTree* theTree = (TTree*)input->Get("eventTree"); TFile *target = new TFile( oFileName,"RECREATE" ); TTree *newTree = theTree->CloneTree(); Float_t BDT; TBranch *branchBDT = newTree->Branch("BDT_"+bkgSample,&BDT,"BDT/F"); std::vector<Double_t> *vecVar1; std::vector<Double_t> *vecVar5; std::vector<Double_t> *vecVar7; theTree->SetBranchAddress( "svMass", &vecVar1); theTree->SetBranchAddress( "dRTauTau", &var3); theTree->SetBranchAddress( "dRJJ", &var4 ); // theTree->SetBranchAddress( "svPt", &vecVar5 ); // theTree->SetBranchAddress( "dRhh", &var6 ); theTree->SetBranchAddress( "met", &vecVar7 ); theTree->SetBranchAddress( "mJJ", &var8 ); // theTree->SetBranchAddress( "metTau1DPhi", &var9 ); // theTree->SetBranchAddress( "metTau2DPhi", &var10); // theTree->SetBranchAddress( "metJ1DPhi", &var11); // theTree->SetBranchAddress( "metJ2DPhi", &var12 ); // theTree->SetBranchAddress( "metTauPairDPhi", &var13 ); // theTree->SetBranchAddress( "metSvTauPairDPhi", &var14 ); // theTree->SetBranchAddress( "metJetPairDPhi", &var15 ); // theTree->SetBranchAddress( "CSVJ1", &var16 ); // theTree->SetBranchAddress( "CSVJ2", &var17 ); theTree->SetBranchAddress( "fMassKinFit", &var2); theTree->SetBranchAddress( "chi2KinFit2", &var18); //to get initial pre-processed events TH1F* cutFlow = (TH1F*)input->Get("preselection"); // Efficiency calculator for cut method Int_t nSelCutsGA = 0; Double_t effS = 0.7; std::vector<Float_t> vecVar(4); // vector for EvaluateMVA tests std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl; TStopwatch sw; sw.Start(); for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) { if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl; theTree->GetEntry(ievt); var1 = vecVar1->at(0); // var5 = vecVar5->at(0); var7 = vecVar7->at(0); // --- Return the MVA outputs and fill into histograms if (Use["CutsGA"]) { // Cuts is a special case: give the desired signal efficienciy Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS ); if (passed) nSelCutsGA++; } BDT = reader->EvaluateMVA( "BDT method"); histBdt->Fill(BDT); branchBDT->Fill(); } // Get elapsed time sw.Stop(); std::cout << "--- End of event loop: "; sw.Print(); // Get efficiency for cuts classifier if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries() << " (for a required signal efficiency of " << effS << ")" << std::endl; if (Use["CutsGA"]) { // test: retrieve cuts for particular signal efficiency // CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ; if (mcuts) { std::vector<Double_t> cutsMin; std::vector<Double_t> cutsMax; mcuts->GetCuts( 0.7, cutsMin, cutsMax ); std::cout << "--- -------------------------------------------------------------" << std::endl; std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl; for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) { std::cout << "... Cut: " << cutsMin[ivar] << " < \"" << mcuts->GetInputVar(ivar) << "\" <= " << cutsMax[ivar] << std::endl; } std::cout << "--- -------------------------------------------------------------" << std::endl; } } // --- Write histograms histBdt->Write(); cutFlow->Write(); newTree->Write(); target->Close(); std::cout << "--- Created root file: \""<<oFileName<<"\" containing the MVA output histograms" << std::endl; delete reader; std::cout << "==> TMVAClassificationApplication is done!" << endl << std::endl; }
void TMVAClassificationApplication( TString myMethodList = "" ) { //--------------------------------------------------------------- // default MVA methods to be trained + tested // this loads the library TMVA::Tools::Instance(); std::map<std::string,int> Use; Use["CutsGA"] = 0; // other "Cuts" methods work identically // --- Use["Likelihood"] = 1; Use["LikelihoodD"] = 0; // the "D" extension indicates decorrelated input variables (see option strings) Use["LikelihoodPCA"] = 0; // the "PCA" extension indicates PCA-transformed input variables (see option strings) Use["LikelihoodKDE"] = 0; Use["LikelihoodMIX"] = 0; // --- Use["PDERS"] = 0; Use["PDERSD"] = 0; Use["PDERSPCA"] = 0; Use["PDERSkNN"] = 0; // depreciated until further notice Use["PDEFoam"] = 0; // -- Use["KNN"] = 0; // --- Use["HMatrix"] = 0; Use["Fisher"] = 0; Use["FisherG"] = 0; Use["BoostedFisher"] = 0; Use["LD"] = 0; // --- Use["FDA_GA"] = 0; Use["FDA_SA"] = 0; Use["FDA_MC"] = 0; Use["FDA_MT"] = 0; Use["FDA_GAMT"] = 0; Use["FDA_MCMT"] = 0; // --- Use["MLP"] = 0; // this is the recommended ANN Use["MLPBFGS"] = 0; // recommended ANN with optional training method Use["MLPBNN"] = 0; // Use["CFMlpANN"] = 0; // *** missing Use["TMlpANN"] = 0; // --- Use["SVM"] = 0; // --- Use["BDT"] = 1; Use["BDTD"] = 0; Use["BDTG"] = 0; Use["BDTB"] = 0; // --- Use["RuleFit"] = 0; // --- Use["Category"] = 0; // --- Use["Plugin"] = 0; // --------------------------------------------------------------- std::cout << std::endl; std::cout << "==> Start TMVAClassificationApplication" << std::endl; if (myMethodList != "") { for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0; std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' ); for (UInt_t i=0; i<mlist.size(); i++) { std::string regMethod(mlist[i]); if (Use.find(regMethod) == Use.end()) { std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl; for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first << " "; std::cout << std::endl; return; } Use[regMethod] = 0; } } // // create the Reader object // TMVA::Reader *reader = new TMVA::Reader( "!Color:!Silent" ); Float_t Z_rapidity_z; reader->AddVariable("Z_rapidity_z",&Z_rapidity_z); Float_t THRUST_2D; reader->AddVariable("THRUST_2D",&THRUST_2D); Float_t L1_L2_cosangle; reader->AddVariable("L1_L2_cosangle",&L1_L2_cosangle); Float_t TransMass_ZH150_uncl; reader->AddVariable("TransMass_ZH150_uncl",&TransMass_ZH150_uncl); Float_t TransMass_ZH150; reader->AddVariable("TransMass_ZH150",&TransMass_ZH150); Float_t DeltaPhi_ZH; reader->AddVariable("DeltaPhi_ZH",&DeltaPhi_ZH); Float_t DeltaPhi_ZH_uncl; reader->AddVariable("DeltaPhi_ZH_uncl",&DeltaPhi_ZH_uncl); Float_t CMAngle; reader->AddVariable("CMAngle",&CMAngle); Float_t CS_cosangle; reader->AddVariable("CS_cosangle",&CS_cosangle); // create a set of variables and declare them to the reader // - the variable names must corresponds in name and type to // those given in the weight file(s) that you use Float_t var1, var2; Float_t var3, var4; // reader->AddVariable( "myvar1 := var1+var2", &var1 ); // reader->AddVariable( "myvar2 := var1-var2", &var2 ); // reader->AddVariable( "var3", &var3 ); // reader->AddVariable( "var4", &var4 ); //Spectator variables declared in the training have to be added to the reader, too Float_t spec1,spec2; // reader->AddSpectator( "spec1 := var1*2", &spec1 ); float nonsense =0; // reader->AddSpectator( "spec2 := var1*3", &spec2 ); float nonsense =0; Float_t Category_cat1, Category_cat2, Category_cat3; if (Use["Category"]){ // add artificial spectators for distinguishing categories // reader->AddSpectator( "Category_cat1 := var3<=0", &Category_cat1 ); float nonsense =0; // reader->AddSpectator( "Category_cat2 := (var3>0)&&(var4<0)", &Category_cat2 ); float nonsense =0; // reader->AddSpectator( "Category_cat3 := (var3>0)&&(var4>=0)", &Category_cat3 ); float nonsense =0; } // // book the MVA methods // TString dir = "weights/"; TString prefix = "TMVAClassification"; // book method(s) for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { if (it->second) { TString methodName = it->first + " method"; TString weightfile = dir + prefix + "_" + TString(it->first) + ".weights.xml"; reader->BookMVA( methodName, weightfile ); } } // example how to use your own method as plugin if (Use["Plugin"]) { // the weight file contains a line // Method : MethodName::InstanceName // if MethodName is not a known TMVA method, it is assumed to be // a user implemented method which has to be loaded via the // plugin mechanism // for user implemented methods the line in the weight file can be // Method : PluginName::InstanceName // where PluginName can be anything // before usage the plugin has to be defined, which can happen // either through the following line in .rootrc: // # plugin handler plugin class library constructor format // Plugin.TMVA@@MethodBase: PluginName MethodClassName UserPackage "MethodName(DataSet&,TString)" // // or by telling the global plugin manager directly gPluginMgr->AddHandler("TMVA@@MethodBase", "PluginName", "MethodClassName", "UserPackage", "MethodName(DataSet&,TString)"); // the class is then looked for in libUserPackage.so // now the method can be booked like any other reader->BookMVA( "User method", dir + prefix + "_User.weights.txt" ); } // book output histograms UInt_t nbin = 100; TH1F *histLk(0), *histLkD(0), *histLkPCA(0), *histLkKDE(0), *histLkMIX(0), *histPD(0), *histPDD(0); TH1F *histPDPCA(0), *histPDEFoam(0), *histPDEFoamErr(0), *histPDEFoamSig(0), *histKNN(0), *histHm(0); TH1F *histFi(0), *histFiG(0), *histFiB(0), *histLD(0), *histNn(0),*histNnbfgs(0),*histNnbnn(0), *histNnC(0), *histNnT(0), *histBdt(0), *histBdtG(0), *histBdtD(0); TH1F *histRf(0), *histSVMG(0), *histSVMP(0), *histSVML(0), *histFDAMT(0), *histFDAGA(0), *histCat(0), *histPBdt(0); if (Use["Likelihood"]) histLk = new TH1F( "MVA_Likelihood", "MVA_Likelihood", nbin, -1, 1 ); if (Use["LikelihoodD"]) histLkD = new TH1F( "MVA_LikelihoodD", "MVA_LikelihoodD", nbin, -1, 0.9999 ); if (Use["LikelihoodPCA"]) histLkPCA = new TH1F( "MVA_LikelihoodPCA", "MVA_LikelihoodPCA", nbin, -1, 1 ); if (Use["LikelihoodKDE"]) histLkKDE = new TH1F( "MVA_LikelihoodKDE", "MVA_LikelihoodKDE", nbin, -0.00001, 0.99999 ); if (Use["LikelihoodMIX"]) histLkMIX = new TH1F( "MVA_LikelihoodMIX", "MVA_LikelihoodMIX", nbin, 0, 1 ); if (Use["PDERS"]) histPD = new TH1F( "MVA_PDERS", "MVA_PDERS", nbin, 0, 1 ); if (Use["PDERSD"]) histPDD = new TH1F( "MVA_PDERSD", "MVA_PDERSD", nbin, 0, 1 ); if (Use["PDERSPCA"]) histPDPCA = new TH1F( "MVA_PDERSPCA", "MVA_PDERSPCA", nbin, 0, 1 ); if (Use["KNN"]) histKNN = new TH1F( "MVA_KNN", "MVA_KNN", nbin, 0, 1 ); if (Use["HMatrix"]) histHm = new TH1F( "MVA_HMatrix", "MVA_HMatrix", nbin, -0.95, 1.55 ); if (Use["Fisher"]) histFi = new TH1F( "MVA_Fisher", "MVA_Fisher", nbin, -4, 4 ); if (Use["FisherG"]) histFiG = new TH1F( "MVA_FisherG", "MVA_FisherG", nbin, -1, 1 ); if (Use["BoostedFisher"]) histFiB = new TH1F( "MVA_BoostedFisher", "MVA_BoostedFisher", nbin, -2, 2 ); if (Use["LD"]) histLD = new TH1F( "MVA_LD", "MVA_LD", nbin, -2, 2 ); if (Use["MLP"]) histNn = new TH1F( "MVA_MLP", "MVA_MLP", nbin, -1.25, 1.5 ); if (Use["MLPBFGS"]) histNnbfgs = new TH1F( "MVA_MLPBFGS", "MVA_MLPBFGS", nbin, -1.25, 1.5 ); if (Use["MLPBNN"]) histNnbnn = new TH1F( "MVA_MLPBNN", "MVA_MLPBNN", nbin, -1.25, 1.5 ); if (Use["CFMlpANN"]) histNnC = new TH1F( "MVA_CFMlpANN", "MVA_CFMlpANN", nbin, 0, 1 ); if (Use["TMlpANN"]) histNnT = new TH1F( "MVA_TMlpANN", "MVA_TMlpANN", nbin, -1.3, 1.3 ); if (Use["BDT"]) histBdt = new TH1F( "MVA_BDT", "MVA_BDT", nbin, -0.8, 0.8 ); if (Use["BDTD"]) histBdtD = new TH1F( "MVA_BDTD", "MVA_BDTD", nbin, -0.8, 0.8 ); if (Use["BDTG"]) histBdtG = new TH1F( "MVA_BDTG", "MVA_BDTG", nbin, -1.0, 1.0 ); if (Use["RuleFit"]) histRf = new TH1F( "MVA_RuleFit", "MVA_RuleFit", nbin, -2.0, 2.0 ); if (Use["SVM_Gauss"]) histSVMG = new TH1F( "MVA_SVM_Gauss", "MVA_SVM_Gauss", nbin, 0.0, 1.0 ); if (Use["SVM_Poly"]) histSVMP = new TH1F( "MVA_SVM_Poly", "MVA_SVM_Poly", nbin, 0.0, 1.0 ); if (Use["SVM_Lin"]) histSVML = new TH1F( "MVA_SVM_Lin", "MVA_SVM_Lin", nbin, 0.0, 1.0 ); if (Use["FDA_MT"]) histFDAMT = new TH1F( "MVA_FDA_MT", "MVA_FDA_MT", nbin, -2.0, 3.0 ); if (Use["FDA_GA"]) histFDAGA = new TH1F( "MVA_FDA_GA", "MVA_FDA_GA", nbin, -2.0, 3.0 ); if (Use["Category"]) histCat = new TH1F( "MVA_Category", "MVA_Category", nbin, -2., 2. ); if (Use["Plugin"]) histPBdt = new TH1F( "MVA_PBDT", "MVA_BDT", nbin, -0.8, 0.8 ); // PDEFoam also returns per-event error, fill in histogram, and also fill significance if (Use["PDEFoam"]) { histPDEFoam = new TH1F( "MVA_PDEFoam", "MVA_PDEFoam", nbin, 0, 1 ); histPDEFoamErr = new TH1F( "MVA_PDEFoamErr", "MVA_PDEFoam error", nbin, 0, 1 ); histPDEFoamSig = new TH1F( "MVA_PDEFoamSig", "MVA_PDEFoam significance", nbin, 0, 10 ); } // book example histogram for probability (the other methods are done similarly) TH1F *probHistFi(0), *rarityHistFi(0); if (Use["Fisher"]) { probHistFi = new TH1F( "MVA_Fisher_Proba", "MVA_Fisher_Proba", nbin, 0, 1 ); rarityHistFi = new TH1F( "MVA_Fisher_Rarity", "MVA_Fisher_Rarity", nbin, 0, 1 ); } // Prepare input tree (this must be replaced by your data source) // in this example, there is a toy tree with signal and one with background events // we'll later on use only the "signal" events for the test in this example. // TFile *input(0); TString fname = "/tmp/chasco/ORIGINAL//Data_MuEG2011B_1.root"; if (!gSystem->AccessPathName( fname )) { input = TFile::Open( fname ); // check if file in local directory exists } else { input = TFile::Open( "http://root.cern.ch/files/tmva_class_example.root" ); // if not: download from ROOT server } if (!input) { std::cout << "ERROR: could not open data file" << std::endl; exit(1); } std::cout << "--- TMVAClassificationApp : Using input file: " << input->GetName() << std::endl; // // prepare the tree // - here the variable names have to corresponds to your tree // - you can use the same variables as above which is slightly faster, // but of course you can use different ones and copy the values inside the event loop // TTree* BigTree = (TTree*)input->Get("data"); TFile *tmp = new TFile( "tmp.root","RECREATE" ); TTree* theTree = BigTree->CopyTree("((cat == 1) + (cat == 2))*(ln==0)*(Cosmic==0)*(fabs(Mass_Z - 91.18)<10)*(Pt_Z>30)*(DeltaPhi_metjet>0.5)*(Pt_J1 < 30)*(pfMEToverPt_Z > 0.4)*(pfMEToverPt_Z < 1.8)*((Pt_Jet_btag_CSV_max > 20)*(btag_CSV_max < 0.244) + (1-(Pt_Jet_btag_CSV_max > 20)))*(sqrt(pow(dilepPROJLong + 1.25*recoilPROJLong + 0.0*uncertPROJLong,2)*(dilepPROJLong + 1.25*recoilPROJLong + 0.0*uncertPROJLong > 0) + 1.0*pow(dilepPROJPerp + 1.25*recoilPROJPerp + 0.0*uncertPROJPerp,2)*(dilepPROJPerp + 1.25*recoilPROJPerp + 0.0*uncertPROJPerp > 0)) > 45.0)"); std::cout << "--- Select signal sample" << std::endl; Float_t userVar1, userVar2; // theTree->SetBranchAddress( "var1", &userVar1 ); // theTree->SetBranchAddress( "var2", &userVar2 ); // theTree->SetBranchAddress( "var3", &var3 ); // theTree->SetBranchAddress( "var4", &var4 ); theTree->SetBranchAddress( " Z_rapidity_z", &Z_rapidity_z); theTree->SetBranchAddress( " THRUST_2D", &THRUST_2D); theTree->SetBranchAddress( " L1_L2_cosangle", &L1_L2_cosangle); theTree->SetBranchAddress( " TransMass_ZH150_uncl", &TransMass_ZH150_uncl); theTree->SetBranchAddress( " TransMass_ZH150", &TransMass_ZH150); theTree->SetBranchAddress( " DeltaPhi_ZH", &DeltaPhi_ZH); theTree->SetBranchAddress( " DeltaPhi_ZH_uncl", &DeltaPhi_ZH_uncl); theTree->SetBranchAddress( " CMAngle", &CMAngle); theTree->SetBranchAddress( " CS_cosangle", &CS_cosangle); // efficiency calculator for cut method Int_t nSelCutsGA = 0; Double_t effS = 0.7; std::vector<Float_t> vecVar(9); // vector for EvaluateMVA tests std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl; TStopwatch sw; sw.Start(); for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) { if (ievt%1000 == 0){ std::cout << "--- ... Processing event: " << ievt << std::endl; } theTree->GetEntry(ievt); var1 = userVar1 + userVar2; var2 = userVar1 - userVar2; if (ievt <20){ // test the twodifferent Reader::EvaluateMVA functions // access via registered variables compared to access via vector<float> // vecVar[0]=var1; // vecVar[1]=var2; // vecVar[2]=var3; // vecVar[3]=var4; vecVar[0]=Z_rapidity_z; vecVar[1]=THRUST_2D; vecVar[2]=L1_L2_cosangle; vecVar[3]=TransMass_ZH150_uncl; vecVar[4]=TransMass_ZH150; vecVar[5]=DeltaPhi_ZH; vecVar[6]=DeltaPhi_ZH_uncl; vecVar[7]=CMAngle; vecVar[8]=CS_cosangle; for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { if (it->second) { TString mName = it->first + " method"; Double_t mva1 = reader->EvaluateMVA( mName); Double_t mva2 = reader->EvaluateMVA( vecVar, mName); if (mva1 != mva2) { std::cout << "++++++++++++++ ERROR in "<< mName <<", comparing different EvaluateMVA results val1=" << mva1 << " val2="<<mva2<<std::endl; } } } // now test that the inputs do matter TRandom3 rand(0); // vecVar[0]=rand.Rndm(); // vecVar[1]=rand.Rndm(); // vecVar[2]=rand.Rndm(); // vecVar[3]=rand.Rndm(); vecVar[0]=rand.Rndm(); vecVar[1]=rand.Rndm(); vecVar[2]=rand.Rndm(); vecVar[3]=rand.Rndm(); vecVar[4]=rand.Rndm(); vecVar[5]=rand.Rndm(); vecVar[6]=rand.Rndm(); vecVar[7]=rand.Rndm(); vecVar[8]=rand.Rndm(); for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { if (it->second) { TString mName = it->first + " method"; Double_t mva1 = reader->EvaluateMVA( mName); Double_t mva2 = reader->EvaluateMVA( vecVar, mName); if (mva1 == mva2) { std::cout << "++++++++++++++ ERROR in "<< mName <<", obtaining idnetical output for different inputs" <<std::endl; } } } } // // return the MVAs and fill to histograms // if (Use["CutsGA"]) { // Cuts is a special case: give the desired signal efficienciy Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS ); if (passed) nSelCutsGA++; } if (Use["Likelihood" ]) histLk ->Fill( reader->EvaluateMVA( "Likelihood method" ) ); if (Use["LikelihoodD" ]) histLkD ->Fill( reader->EvaluateMVA( "LikelihoodD method" ) ); if (Use["LikelihoodPCA"]) histLkPCA ->Fill( reader->EvaluateMVA( "LikelihoodPCA method" ) ); if (Use["LikelihoodKDE"]) histLkKDE ->Fill( reader->EvaluateMVA( "LikelihoodKDE method" ) ); if (Use["LikelihoodMIX"]) histLkMIX ->Fill( reader->EvaluateMVA( "LikelihoodMIX method" ) ); if (Use["PDERS" ]) histPD ->Fill( reader->EvaluateMVA( "PDERS method" ) ); if (Use["PDERSD" ]) histPDD ->Fill( reader->EvaluateMVA( "PDERSD method" ) ); if (Use["PDERSPCA" ]) histPDPCA ->Fill( reader->EvaluateMVA( "PDERSPCA method" ) ); if (Use["KNN" ]) histKNN ->Fill( reader->EvaluateMVA( "KNN method" ) ); if (Use["HMatrix" ]) histHm ->Fill( reader->EvaluateMVA( "HMatrix method" ) ); if (Use["Fisher" ]) histFi ->Fill( reader->EvaluateMVA( "Fisher method" ) ); if (Use["FisherG" ]) histFiG ->Fill( reader->EvaluateMVA( "FisherG method" ) ); if (Use["BoostedFisher"]) histFiB ->Fill( reader->EvaluateMVA( "BoostedFisher method" ) ); if (Use["LD" ]) histLD ->Fill( reader->EvaluateMVA( "LD method" ) ); if (Use["MLP" ]) histNn ->Fill( reader->EvaluateMVA( "MLP method" ) ); if (Use["MLPBFGS" ]) histNnbfgs ->Fill( reader->EvaluateMVA( "MLPBFGS method" ) ); if (Use["MLPBNN" ]) histNnbnn ->Fill( reader->EvaluateMVA( "MLPBNN method" ) ); if (Use["CFMlpANN" ]) histNnC ->Fill( reader->EvaluateMVA( "CFMlpANN method" ) ); if (Use["TMlpANN" ]) histNnT ->Fill( reader->EvaluateMVA( "TMlpANN method" ) ); if (Use["BDT" ]) histBdt ->Fill( reader->EvaluateMVA( "BDT method" ) ); if (Use["BDTD" ]) histBdtD ->Fill( reader->EvaluateMVA( "BDTD method" ) ); if (Use["BDTG" ]) histBdtG ->Fill( reader->EvaluateMVA( "BDTG method" ) ); if (Use["RuleFit" ]) histRf ->Fill( reader->EvaluateMVA( "RuleFit method" ) ); if (Use["SVM_Gauss" ]) histSVMG ->Fill( reader->EvaluateMVA( "SVM_Gauss method" ) ); if (Use["SVM_Poly" ]) histSVMP ->Fill( reader->EvaluateMVA( "SVM_Poly method" ) ); if (Use["SVM_Lin" ]) histSVML ->Fill( reader->EvaluateMVA( "SVM_Lin method" ) ); if (Use["FDA_MT" ]) histFDAMT ->Fill( reader->EvaluateMVA( "FDA_MT method" ) ); if (Use["FDA_GA" ]) histFDAGA ->Fill( reader->EvaluateMVA( "FDA_GA method" ) ); if (Use["Category" ]) histCat ->Fill( reader->EvaluateMVA( "Category method" ) ); if (Use["Plugin" ]) histPBdt ->Fill( reader->EvaluateMVA( "P_BDT method" ) ); // retrieve also per-event error if (Use["PDEFoam"]) { Double_t val = reader->EvaluateMVA( "PDEFoam method" ); Double_t err = reader->GetMVAError(); histPDEFoam ->Fill( val ); histPDEFoamErr->Fill( err ); histPDEFoamSig->Fill( val/err ); } // retrieve probability instead of MVA output if (Use["Fisher"]) { probHistFi ->Fill( reader->GetProba ( "Fisher method" ) ); rarityHistFi->Fill( reader->GetRarity( "Fisher method" ) ); } } // get elapsed time sw.Stop(); std::cout << "--- End of event loop: "; sw.Print(); // get efficiency for cuts classifier if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries() << " (for a required signal efficiency of " << effS << ")" << std::endl; if (Use["CutsGA"]) { // test: retrieve cuts for particular signal efficiency // CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ; if (mcuts) { std::vector<Double_t> cutsMin; std::vector<Double_t> cutsMax; mcuts->GetCuts( 0.7, cutsMin, cutsMax ); std::cout << "--- -------------------------------------------------------------" << std::endl; std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl; for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) { std::cout << "... Cut: " << cutsMin[ivar] << " < \"" << mcuts->GetInputVar(ivar) << "\" <= " << cutsMax[ivar] << std::endl; } std::cout << "--- -------------------------------------------------------------" << std::endl; } } // // write histograms // TFile *target = new TFile( "TMVApp.root","RECREATE" ); if (Use["Likelihood" ]) histLk ->Write(); if (Use["LikelihoodD" ]) histLkD ->Write(); if (Use["LikelihoodPCA"]) histLkPCA ->Write(); if (Use["LikelihoodKDE"]) histLkKDE ->Write(); if (Use["LikelihoodMIX"]) histLkMIX ->Write(); if (Use["PDERS" ]) histPD ->Write(); if (Use["PDERSD" ]) histPDD ->Write(); if (Use["PDERSPCA" ]) histPDPCA ->Write(); if (Use["KNN" ]) histKNN ->Write(); if (Use["HMatrix" ]) histHm ->Write(); if (Use["Fisher" ]) histFi ->Write(); if (Use["FisherG" ]) histFiG ->Write(); if (Use["BoostedFisher"]) histFiB ->Write(); if (Use["LD" ]) histLD ->Write(); if (Use["MLP" ]) histNn ->Write(); if (Use["MLPBFGS" ]) histNnbfgs ->Write(); if (Use["MLPBNN" ]) histNnbnn ->Write(); if (Use["CFMlpANN" ]) histNnC ->Write(); if (Use["TMlpANN" ]) histNnT ->Write(); if (Use["BDT" ]) histBdt ->Write(); if (Use["BDTD" ]) histBdtD ->Write(); if (Use["BDTG" ]) histBdtG ->Write(); if (Use["RuleFit" ]) histRf ->Write(); if (Use["SVM_Gauss" ]) histSVMG ->Write(); if (Use["SVM_Poly" ]) histSVMP ->Write(); if (Use["SVM_Lin" ]) histSVML ->Write(); if (Use["FDA_MT" ]) histFDAMT ->Write(); if (Use["FDA_GA" ]) histFDAGA ->Write(); if (Use["Category" ]) histCat ->Write(); if (Use["Plugin" ]) histPBdt ->Write(); // write also error and significance histos if (Use["PDEFoam"]) { histPDEFoam->Write(); histPDEFoamErr->Write(); histPDEFoamSig->Write(); } // write also probability hists if (Use["Fisher"]) { if (probHistFi != 0) probHistFi->Write(); if (rarityHistFi != 0) rarityHistFi->Write(); } target->Close(); std::cout << "--- Created root file: \"TMVApp.root\" containing the MVA output histograms" << std::endl; delete reader; std::cout << "==> TMVAClassificationApplication is done!" << endl << std::endl; }
void TMVAClassificationApplication( TString myMethodList = "" ) { #ifdef __CINT__ gROOT->ProcessLine( ".O0" ); // turn off optimization in CINT #endif //--------------------------------------------------------------- // This loads the library TMVA::Tools::Instance(); // Default MVA methods to be trained + tested std::map<std::string,int> Use; Use["MLP"] = 0; // Recommended ANN Use["BDT"] = 1; // uses Adaptive Boost std::cout << std::endl; std::cout << "==> Start TMVAClassificationApplication" << std::endl; // --- Create the Reader object TMVA::Reader *reader = new TMVA::Reader( "!Color:!Silent" ); // Create a set of variables and declare them to the reader // - the variable names MUST corresponds in name and type to those given in the weight file(s) used Float_t var1, var2; Float_t var3, var4; reader->AddVariable( "myvar1 := var1+var2", &var1 ); reader->AddVariable( "myvar2 := var1-var2", &var2 ); reader->AddVariable( "var3", &var3 ); reader->AddVariable( "var4", &var4 ); // Spectator variables declared in the training have to be added to the reader, too Float_t spec1,spec2; reader->AddSpectator( "spec1 := var1*2", &spec1 ); reader->AddSpectator( "spec2 := var1*3", &spec2 ); Float_t Category_cat1, Category_cat2, Category_cat3; if (Use["Category"]){ // Add artificial spectators for distinguishing categories reader->AddSpectator( "Category_cat1 := var3<=0", &Category_cat1 ); reader->AddSpectator( "Category_cat2 := (var3>0)&&(var4<0)", &Category_cat2 ); reader->AddSpectator( "Category_cat3 := (var3>0)&&(var4>=0)", &Category_cat3 ); } // --- Book the MVA methods TString dir = "weights/"; TString prefix = "TMVAClassification"; // Book method(s) for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { if (it->second) { TString methodName = TString(it->first) + TString(" method"); TString weightfile = dir + prefix + TString("_") + TString(it->first) + TString(".weights.xml"); reader->BookMVA( methodName, weightfile ); } } // Book output histograms UInt_t nbin = 100; TH1F *histLk(0), *histLkD(0), *histLkPCA(0), *histLkKDE(0), *histLkMIX(0), *histPD(0), *histPDD(0); TH1F *histPDPCA(0), *histPDEFoam(0), *histPDEFoamErr(0), *histPDEFoamSig(0), *histKNN(0), *histHm(0); TH1F *histFi(0), *histFiG(0), *histFiB(0), *histLD(0), *histNn(0),*histNnbfgs(0),*histNnbnn(0); TH1F *histNnC(0), *histNnT(0), *histBdt(0), *histBdtG(0), *histBdtD(0), *histRf(0), *histSVMG(0); TH1F *histSVMP(0), *histSVML(0), *histFDAMT(0), *histFDAGA(0), *histCat(0), *histPBdt(0); if (Use["Likelihood"]) histLk = new TH1F( "MVA_Likelihood", "MVA_Likelihood", nbin, -1, 1 ); if (Use["LikelihoodD"]) histLkD = new TH1F( "MVA_LikelihoodD", "MVA_LikelihoodD", nbin, -1, 0.9999 ); if (Use["LikelihoodPCA"]) histLkPCA = new TH1F( "MVA_LikelihoodPCA", "MVA_LikelihoodPCA", nbin, -1, 1 ); if (Use["LikelihoodKDE"]) histLkKDE = new TH1F( "MVA_LikelihoodKDE", "MVA_LikelihoodKDE", nbin, -0.00001, 0.99999 ); if (Use["LikelihoodMIX"]) histLkMIX = new TH1F( "MVA_LikelihoodMIX", "MVA_LikelihoodMIX", nbin, 0, 1 ); if (Use["PDERS"]) histPD = new TH1F( "MVA_PDERS", "MVA_PDERS", nbin, 0, 1 ); if (Use["PDERSD"]) histPDD = new TH1F( "MVA_PDERSD", "MVA_PDERSD", nbin, 0, 1 ); if (Use["PDERSPCA"]) histPDPCA = new TH1F( "MVA_PDERSPCA", "MVA_PDERSPCA", nbin, 0, 1 ); if (Use["KNN"]) histKNN = new TH1F( "MVA_KNN", "MVA_KNN", nbin, 0, 1 ); if (Use["HMatrix"]) histHm = new TH1F( "MVA_HMatrix", "MVA_HMatrix", nbin, -0.95, 1.55 ); if (Use["Fisher"]) histFi = new TH1F( "MVA_Fisher", "MVA_Fisher", nbin, -4, 4 ); if (Use["FisherG"]) histFiG = new TH1F( "MVA_FisherG", "MVA_FisherG", nbin, -1, 1 ); if (Use["BoostedFisher"]) histFiB = new TH1F( "MVA_BoostedFisher", "MVA_BoostedFisher", nbin, -2, 2 ); if (Use["LD"]) histLD = new TH1F( "MVA_LD", "MVA_LD", nbin, -2, 2 ); if (Use["MLP"]) histNn = new TH1F( "MVA_MLP", "MVA_MLP", nbin, -1.25, 1.5 ); if (Use["MLPBFGS"]) histNnbfgs = new TH1F( "MVA_MLPBFGS", "MVA_MLPBFGS", nbin, -1.25, 1.5 ); if (Use["MLPBNN"]) histNnbnn = new TH1F( "MVA_MLPBNN", "MVA_MLPBNN", nbin, -1.25, 1.5 ); if (Use["CFMlpANN"]) histNnC = new TH1F( "MVA_CFMlpANN", "MVA_CFMlpANN", nbin, 0, 1 ); if (Use["TMlpANN"]) histNnT = new TH1F( "MVA_TMlpANN", "MVA_TMlpANN", nbin, -1.3, 1.3 ); if (Use["BDT"]) histBdt = new TH1F( "MVA_BDT", "MVA_BDT", nbin, -0.8, 0.8 ); if (Use["BDTD"]) histBdtD = new TH1F( "MVA_BDTD", "MVA_BDTD", nbin, -0.8, 0.8 ); if (Use["BDTG"]) histBdtG = new TH1F( "MVA_BDTG", "MVA_BDTG", nbin, -1.0, 1.0 ); if (Use["RuleFit"]) histRf = new TH1F( "MVA_RuleFit", "MVA_RuleFit", nbin, -2.0, 2.0 ); if (Use["SVM_Gauss"]) histSVMG = new TH1F( "MVA_SVM_Gauss", "MVA_SVM_Gauss", nbin, 0.0, 1.0 ); if (Use["SVM_Poly"]) histSVMP = new TH1F( "MVA_SVM_Poly", "MVA_SVM_Poly", nbin, 0.0, 1.0 ); if (Use["SVM_Lin"]) histSVML = new TH1F( "MVA_SVM_Lin", "MVA_SVM_Lin", nbin, 0.0, 1.0 ); if (Use["FDA_MT"]) histFDAMT = new TH1F( "MVA_FDA_MT", "MVA_FDA_MT", nbin, -2.0, 3.0 ); if (Use["FDA_GA"]) histFDAGA = new TH1F( "MVA_FDA_GA", "MVA_FDA_GA", nbin, -2.0, 3.0 ); if (Use["Category"]) histCat = new TH1F( "MVA_Category", "MVA_Category", nbin, -2., 2. ); if (Use["Plugin"]) histPBdt = new TH1F( "MVA_PBDT", "MVA_BDT", nbin, -0.8, 0.8 ); // PDEFoam also returns per-event error, fill in histogram, and also fill significance if (Use["PDEFoam"]) { histPDEFoam = new TH1F( "MVA_PDEFoam", "MVA_PDEFoam", nbin, 0, 1 ); histPDEFoamErr = new TH1F( "MVA_PDEFoamErr", "MVA_PDEFoam error", nbin, 0, 1 ); histPDEFoamSig = new TH1F( "MVA_PDEFoamSig", "MVA_PDEFoam significance", nbin, 0, 10 ); } // Book example histogram for probability (the other methods are done similarly) TH1F *probHistFi(0), *rarityHistFi(0); if (Use["Fisher"]) { probHistFi = new TH1F( "MVA_Fisher_Proba", "MVA_Fisher_Proba", nbin, 0, 1 ); rarityHistFi = new TH1F( "MVA_Fisher_Rarity", "MVA_Fisher_Rarity", nbin, 0, 1 ); } // Prepare input tree (this must be replaced by your data source) // in this example, there is a toy tree with signal and one with background events // we'll later on use only the "signal" events for the test in this example. // TFile *input(0); TString fname = "./tmva_example.root"; if (!gSystem->AccessPathName( fname )) input = TFile::Open( fname ); // check if file in local directory exists else input = TFile::Open( "http://root.cern.ch/files/tmva_class_example.root" ); // if not: download from ROOT server if (!input) { std::cout << "ERROR: could not open data file" << std::endl; exit(1); } std::cout << "--- TMVAClassificationApp : Using input file: " << input->GetName() << std::endl; // --- Event loop // Prepare the event tree // - here the variable names have to corresponds to your tree // - you can use the same variables as above which is slightly faster, // but of course you can use different ones and copy the values inside the event loop // std::cout << "--- Select signal sample" << std::endl; TTree* theTree = (TTree*)input->Get("TreeS"); Float_t userVar1, userVar2; theTree->SetBranchAddress( "var1", &userVar1 ); theTree->SetBranchAddress( "var2", &userVar2 ); theTree->SetBranchAddress( "var3", &var3 ); theTree->SetBranchAddress( "var4", &var4 ); // Efficiency calculator for cut method Int_t nSelCutsGA = 0; Double_t effS = 0.7; std::vector<Float_t> vecVar(4); // vector for EvaluateMVA tests std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl; TStopwatch sw; sw.Start(); for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) { if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl; theTree->GetEntry(ievt); var1 = userVar1 + userVar2; var2 = userVar1 - userVar2; // --- Return the MVA outputs and fill into histograms if (Use["CutsGA"]) { // Cuts is a special case: give the desired signal efficienciy Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS ); if (passed) nSelCutsGA++; } if (Use["Likelihood" ]) histLk ->Fill( reader->EvaluateMVA( "Likelihood method" ) ); if (Use["LikelihoodD" ]) histLkD ->Fill( reader->EvaluateMVA( "LikelihoodD method" ) ); if (Use["LikelihoodPCA"]) histLkPCA ->Fill( reader->EvaluateMVA( "LikelihoodPCA method" ) ); if (Use["LikelihoodKDE"]) histLkKDE ->Fill( reader->EvaluateMVA( "LikelihoodKDE method" ) ); if (Use["LikelihoodMIX"]) histLkMIX ->Fill( reader->EvaluateMVA( "LikelihoodMIX method" ) ); if (Use["PDERS" ]) histPD ->Fill( reader->EvaluateMVA( "PDERS method" ) ); if (Use["PDERSD" ]) histPDD ->Fill( reader->EvaluateMVA( "PDERSD method" ) ); if (Use["PDERSPCA" ]) histPDPCA ->Fill( reader->EvaluateMVA( "PDERSPCA method" ) ); if (Use["KNN" ]) histKNN ->Fill( reader->EvaluateMVA( "KNN method" ) ); if (Use["HMatrix" ]) histHm ->Fill( reader->EvaluateMVA( "HMatrix method" ) ); if (Use["Fisher" ]) histFi ->Fill( reader->EvaluateMVA( "Fisher method" ) ); if (Use["FisherG" ]) histFiG ->Fill( reader->EvaluateMVA( "FisherG method" ) ); if (Use["BoostedFisher"]) histFiB ->Fill( reader->EvaluateMVA( "BoostedFisher method" ) ); if (Use["LD" ]) histLD ->Fill( reader->EvaluateMVA( "LD method" ) ); if (Use["MLP" ]) histNn ->Fill( reader->EvaluateMVA( "MLP method" ) ); if (Use["MLPBFGS" ]) histNnbfgs ->Fill( reader->EvaluateMVA( "MLPBFGS method" ) ); if (Use["MLPBNN" ]) histNnbnn ->Fill( reader->EvaluateMVA( "MLPBNN method" ) ); if (Use["CFMlpANN" ]) histNnC ->Fill( reader->EvaluateMVA( "CFMlpANN method" ) ); if (Use["TMlpANN" ]) histNnT ->Fill( reader->EvaluateMVA( "TMlpANN method" ) ); if (Use["BDT" ]) histBdt ->Fill( reader->EvaluateMVA( "BDT method" ) ); if (Use["BDTD" ]) histBdtD ->Fill( reader->EvaluateMVA( "BDTD method" ) ); if (Use["BDTG" ]) histBdtG ->Fill( reader->EvaluateMVA( "BDTG method" ) ); if (Use["RuleFit" ]) histRf ->Fill( reader->EvaluateMVA( "RuleFit method" ) ); if (Use["SVM_Gauss" ]) histSVMG ->Fill( reader->EvaluateMVA( "SVM_Gauss method" ) ); if (Use["SVM_Poly" ]) histSVMP ->Fill( reader->EvaluateMVA( "SVM_Poly method" ) ); if (Use["SVM_Lin" ]) histSVML ->Fill( reader->EvaluateMVA( "SVM_Lin method" ) ); if (Use["FDA_MT" ]) histFDAMT ->Fill( reader->EvaluateMVA( "FDA_MT method" ) ); if (Use["FDA_GA" ]) histFDAGA ->Fill( reader->EvaluateMVA( "FDA_GA method" ) ); if (Use["Category" ]) histCat ->Fill( reader->EvaluateMVA( "Category method" ) ); if (Use["Plugin" ]) histPBdt ->Fill( reader->EvaluateMVA( "P_BDT method" ) ); // Retrieve also per-event error if (Use["PDEFoam"]) { Double_t val = reader->EvaluateMVA( "PDEFoam method" ); Double_t err = reader->GetMVAError(); histPDEFoam ->Fill( val ); histPDEFoamErr->Fill( err ); if (err>1.e-50) histPDEFoamSig->Fill( val/err ); } // Retrieve probability instead of MVA output if (Use["Fisher"]) { probHistFi ->Fill( reader->GetProba ( "Fisher method" ) ); rarityHistFi->Fill( reader->GetRarity( "Fisher method" ) ); } } // Get elapsed time sw.Stop(); std::cout << "--- End of event loop: "; sw.Print(); // Get efficiency for cuts classifier if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries() << " (for a required signal efficiency of " << effS << ")" << std::endl; if (Use["CutsGA"]) { // test: retrieve cuts for particular signal efficiency // CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ; if (mcuts) { std::vector<Double_t> cutsMin; std::vector<Double_t> cutsMax; mcuts->GetCuts( 0.7, cutsMin, cutsMax ); std::cout << "--- -------------------------------------------------------------" << std::endl; std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl; for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) { std::cout << "... Cut: " << cutsMin[ivar] << " < \"" << mcuts->GetInputVar(ivar) << "\" <= " << cutsMax[ivar] << std::endl; } std::cout << "--- -------------------------------------------------------------" << std::endl; } } // --- Write histograms TFile *target = new TFile( "TMVApp.root","RECREATE" ); if (Use["Likelihood" ]) histLk ->Write(); if (Use["LikelihoodD" ]) histLkD ->Write(); if (Use["LikelihoodPCA"]) histLkPCA ->Write(); if (Use["LikelihoodKDE"]) histLkKDE ->Write(); if (Use["LikelihoodMIX"]) histLkMIX ->Write(); if (Use["PDERS" ]) histPD ->Write(); if (Use["PDERSD" ]) histPDD ->Write(); if (Use["PDERSPCA" ]) histPDPCA ->Write(); if (Use["KNN" ]) histKNN ->Write(); if (Use["HMatrix" ]) histHm ->Write(); if (Use["Fisher" ]) histFi ->Write(); if (Use["FisherG" ]) histFiG ->Write(); if (Use["BoostedFisher"]) histFiB ->Write(); if (Use["LD" ]) histLD ->Write(); if (Use["MLP" ]) histNn ->Write(); if (Use["MLPBFGS" ]) histNnbfgs ->Write(); if (Use["MLPBNN" ]) histNnbnn ->Write(); if (Use["CFMlpANN" ]) histNnC ->Write(); if (Use["TMlpANN" ]) histNnT ->Write(); if (Use["BDT" ]) histBdt ->Write(); if (Use["BDTD" ]) histBdtD ->Write(); if (Use["BDTG" ]) histBdtG ->Write(); if (Use["RuleFit" ]) histRf ->Write(); if (Use["SVM_Gauss" ]) histSVMG ->Write(); if (Use["SVM_Poly" ]) histSVMP ->Write(); if (Use["SVM_Lin" ]) histSVML ->Write(); if (Use["FDA_MT" ]) histFDAMT ->Write(); if (Use["FDA_GA" ]) histFDAGA ->Write(); if (Use["Category" ]) histCat ->Write(); if (Use["Plugin" ]) histPBdt ->Write(); // Write also error and significance histos if (Use["PDEFoam"]) { histPDEFoam->Write(); histPDEFoamErr->Write(); histPDEFoamSig->Write(); } // Write also probability hists if (Use["Fisher"]) { if (probHistFi != 0) probHistFi->Write(); if (rarityHistFi != 0) rarityHistFi->Write(); } target->Close(); std::cout << "--- Created root file: \"TMVApp.root\" containing the MVA output histograms" << std::endl; delete reader; std::cout << "==> TMVAClassificationApplication is done!" << endl << std::endl; }
void Classify_HWW( TString myMethodList = "" ) { #ifdef __CINT__ gROOT->ProcessLine( ".O0" ); // turn off optimization in CINT #endif //-------------------------------------------------------------------- // path to weights dir (this is where MVA training info is stored) // output root file will be stored at [path]/output //-------------------------------------------------------------------- TString path = "Trainings/v5/H160_WW_10vars_dphi10/"; //TString path = "./"; //----------------------------------- // select samples to run over //----------------------------------- char* babyPath = "/tas/cerati/HtoWWmvaBabies/latest"; int mH = 160; // choose Higgs mass vector<char*> samples; samples.push_back("WWTo2L2Nu"); samples.push_back("GluGluToWWTo4L"); samples.push_back("WZ"); samples.push_back("ZZ"); samples.push_back("TTJets"); samples.push_back("tW"); samples.push_back("WJetsToLNu"); samples.push_back("DY"); //samples.push_back("WJetsFO3"); if ( mH == 130 ) samples.push_back("Higgs130"); else if( mH == 160 ) samples.push_back("Higgs160"); else if( mH == 200 ) samples.push_back("Higgs200"); else{ cout << "Error, unrecognized Higgs mass " << mH << " GeV, quitting" << endl; exit(0); } //-------------------------------------------------------------------------------- // IMPORTANT: set the following variables to the same set used for MVA training!!! //-------------------------------------------------------------------------------- std::map<std::string,int> mvaVar; mvaVar[ "lephard_pt" ] = 1; mvaVar[ "lepsoft_pt" ] = 1; mvaVar[ "dil_dphi" ] = 1; mvaVar[ "dil_mass" ] = 1; mvaVar[ "event_type" ] = 0; mvaVar[ "met_projpt" ] = 1; mvaVar[ "met_pt" ] = 0; mvaVar[ "mt_lephardmet" ] = 1; mvaVar[ "mt_lepsoftmet" ] = 1; mvaVar[ "mthiggs" ] = 1; mvaVar[ "dphi_lephardmet" ] = 1; mvaVar[ "dphi_lepsoftmet" ] = 1; mvaVar[ "lepsoft_fbrem" ] = 0; mvaVar[ "lepsoft_eOverPIn" ] = 0; mvaVar[ "lepsoft_qdphi" ] = 0; //--------------------------------------------------------------- // This loads the library TMVA::Tools::Instance(); // Default MVA methods to be trained + tested std::map<std::string,int> Use; // --- Cut optimisation Use["Cuts"] = 1; Use["CutsD"] = 1; Use["CutsPCA"] = 0; Use["CutsGA"] = 0; Use["CutsSA"] = 0; // // --- 1-dimensional likelihood ("naive Bayes estimator") Use["Likelihood"] = 1; Use["LikelihoodD"] = 0; // the "D" extension indicates decorrelated input variables (see option strings) Use["LikelihoodPCA"] = 1; // the "PCA" extension indicates PCA-transformed input variables (see option strings) Use["LikelihoodKDE"] = 0; Use["LikelihoodMIX"] = 0; // // --- Mutidimensional likelihood and Nearest-Neighbour methods Use["PDERS"] = 1; Use["PDERSD"] = 0; Use["PDERSPCA"] = 0; Use["PDEFoam"] = 1; Use["PDEFoamBoost"] = 0; // uses generalised MVA method boosting Use["KNN"] = 1; // k-nearest neighbour method // // --- Linear Discriminant Analysis Use["LD"] = 1; // Linear Discriminant identical to Fisher Use["Fisher"] = 0; Use["FisherG"] = 0; Use["BoostedFisher"] = 0; // uses generalised MVA method boosting Use["HMatrix"] = 0; // // --- Function Discriminant analysis Use["FDA_GA"] = 1; // minimisation of user-defined function using Genetics Algorithm Use["FDA_SA"] = 0; Use["FDA_MC"] = 0; Use["FDA_MT"] = 0; Use["FDA_GAMT"] = 0; Use["FDA_MCMT"] = 0; // // --- Neural Networks (all are feed-forward Multilayer Perceptrons) Use["MLP"] = 0; // Recommended ANN Use["MLPBFGS"] = 0; // Recommended ANN with optional training method Use["MLPBNN"] = 1; // Recommended ANN with BFGS training method and bayesian regulator Use["CFMlpANN"] = 0; // Depreciated ANN from ALEPH Use["TMlpANN"] = 0; // ROOT's own ANN // // --- Support Vector Machine Use["SVM"] = 1; // // --- Boosted Decision Trees Use["BDT"] = 1; // uses Adaptive Boost Use["BDTG"] = 0; // uses Gradient Boost Use["BDTB"] = 0; // uses Bagging Use["BDTD"] = 0; // decorrelation + Adaptive Boost // // --- Friedman's RuleFit method, ie, an optimised series of cuts ("rules") Use["RuleFit"] = 1; // --------------------------------------------------------------- Use["Plugin"] = 0; Use["Category"] = 0; Use["SVM_Gauss"] = 0; Use["SVM_Poly"] = 0; Use["SVM_Lin"] = 0; std::cout << std::endl; std::cout << "==> Start TMVAClassificationApplication" << std::endl; // Select methods (don't look at this code - not of interest) if (myMethodList != "") { for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0; std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' ); for (UInt_t i=0; i<mlist.size(); i++) { std::string regMethod(mlist[i]); if (Use.find(regMethod) == Use.end()) { std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl; for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { std::cout << it->first << " "; } std::cout << std::endl; return; } Use[regMethod] = 1; } } // -------------------------------------------------------------------------------------------------- const unsigned int nsamples = samples.size(); for( unsigned int i = 0 ; i < nsamples ; ++i ){ // --- Create the Reader object TMVA::Reader *reader = new TMVA::Reader( "!Color:!Silent" ); // Create a set of variables and declare them to the reader // - the variable names MUST corresponds in name and type to those given in the weight file(s) used // Float_t var1, var2; // Float_t var3, var4; // reader->AddVariable( "myvar1 := var1+var2", &var1 ); // reader->AddVariable( "myvar2 := var1-var2", &var2 ); // reader->AddVariable( "var3", &var3 ); // reader->AddVariable( "var4", &var4 ); Float_t lephard_pt; Float_t lepsoft_pt; Float_t dil_dphi; Float_t dil_mass; Float_t event_type; Float_t met_projpt; Float_t met_pt; Float_t mt_lephardmet; Float_t mt_lepsoftmet; Float_t mthiggs; Float_t dphi_lephardmet; Float_t dphi_lepsoftmet; Float_t lepsoft_fbrem; Float_t lepsoft_eOverPIn; Float_t lepsoft_qdphi; if( mvaVar["lephard_pt"]) reader->AddVariable( "lephard_pt" , &lephard_pt ); if( mvaVar["lepsoft_pt"]) reader->AddVariable( "lepsoft_pt" , &lepsoft_pt ); if( mvaVar["dil_dphi"]) reader->AddVariable( "dil_dphi" , &dil_dphi ); if( mvaVar["dil_mass"]) reader->AddVariable( "dil_mass" , &dil_mass ); if( mvaVar["event_type"]) reader->AddVariable( "event_type" , &event_type ); if( mvaVar["met_projpt"]) reader->AddVariable( "met_projpt" , &met_pt ); if( mvaVar["met_pt"]) reader->AddVariable( "met_pt" , &met_pt ); if( mvaVar["mt_lephardmet"]) reader->AddVariable( "mt_lephardmet" , &mt_lephardmet ); if( mvaVar["mt_lepsoftmet"]) reader->AddVariable( "mt_lepsoftmet" , &mt_lepsoftmet ); if( mvaVar["mthiggs"]) reader->AddVariable( "mthiggs" , &mthiggs ); if( mvaVar["dphi_lephardmet"]) reader->AddVariable( "dphi_lephardmet" , &dphi_lephardmet ); if( mvaVar["dphi_lepsoftmet"]) reader->AddVariable( "dphi_lepsoftmet" , &dphi_lepsoftmet ); if( mvaVar["lepsoft_fbrem"]) reader->AddVariable( "lepsoft_fbrem" , &lepsoft_fbrem ); if( mvaVar["lepsoft_eOverPIn"]) reader->AddVariable( "lepsoft_eOverPIn" , &lepsoft_eOverPIn ); if( mvaVar["lepsoft_qdphi"]) reader->AddVariable( "lepsoft_q * lepsoft_dPhiIn" , &lepsoft_qdphi ); // Spectator variables declared in the training have to be added to the reader, too // Float_t spec1,spec2; // reader->AddSpectator( "spec1 := var1*2", &spec1 ); // reader->AddSpectator( "spec2 := var1*3", &spec2 ); Float_t Category_cat1, Category_cat2, Category_cat3; if (Use["Category"]){ // Add artificial spectators for distinguishing categories // reader->AddSpectator( "Category_cat1 := var3<=0", &Category_cat1 ); // reader->AddSpectator( "Category_cat2 := (var3>0)&&(var4<0)", &Category_cat2 ); // reader->AddSpectator( "Category_cat3 := (var3>0)&&(var4>=0)", &Category_cat3 ); } // --- Book the MVA methods //-------------------------------------------------------------------------------------- // tell Classify_HWW where to find the weights dir, which contains the trained MVA's. // In this example, the weights dir is located at [path]/[dir] // and the output root file is written to [path]/[output] //-------------------------------------------------------------------------------------- TString dir = path + "weights/"; TString outdir = path + "output/"; TString prefix = "TMVAClassification"; // Book method(s) for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { if (it->second) { TString methodName = TString(it->first) + TString(" method"); TString weightfile = dir + prefix + TString("_") + TString(it->first) + TString(".weights.xml"); reader->BookMVA( methodName, weightfile ); } } // Book output histograms UInt_t nbin = 1000; TH1F *histLk(0), *histLkD(0), *histLkPCA(0), *histLkKDE(0), *histLkMIX(0), *histPD(0), *histPDD(0); TH1F *histPDPCA(0), *histPDEFoam(0), *histPDEFoamErr(0), *histPDEFoamSig(0), *histKNN(0), *histHm(0); TH1F *histFi(0), *histFiG(0), *histFiB(0), *histLD(0), *histNn(0),*histNnbfgs(0),*histNnbnn(0); TH1F *histNnC(0), *histNnT(0), *histBdt(0), *histBdtG(0), *histBdtD(0), *histRf(0), *histSVMG(0); TH1F *histSVMP(0), *histSVML(0), *histFDAMT(0), *histFDAGA(0), *histCat(0), *histPBdt(0); if (Use["Likelihood"]) histLk = new TH1F( "MVA_Likelihood", "MVA_Likelihood", nbin, -1, 1 ); if (Use["LikelihoodD"]) histLkD = new TH1F( "MVA_LikelihoodD", "MVA_LikelihoodD", nbin, -1, 0.9999 ); if (Use["LikelihoodPCA"]) histLkPCA = new TH1F( "MVA_LikelihoodPCA", "MVA_LikelihoodPCA", nbin, -1, 1 ); if (Use["LikelihoodKDE"]) histLkKDE = new TH1F( "MVA_LikelihoodKDE", "MVA_LikelihoodKDE", nbin, -0.00001, 0.99999 ); if (Use["LikelihoodMIX"]) histLkMIX = new TH1F( "MVA_LikelihoodMIX", "MVA_LikelihoodMIX", nbin, 0, 1 ); if (Use["PDERS"]) histPD = new TH1F( "MVA_PDERS", "MVA_PDERS", nbin, 0, 1 ); if (Use["PDERSD"]) histPDD = new TH1F( "MVA_PDERSD", "MVA_PDERSD", nbin, 0, 1 ); if (Use["PDERSPCA"]) histPDPCA = new TH1F( "MVA_PDERSPCA", "MVA_PDERSPCA", nbin, 0, 1 ); if (Use["KNN"]) histKNN = new TH1F( "MVA_KNN", "MVA_KNN", nbin, 0, 1 ); if (Use["HMatrix"]) histHm = new TH1F( "MVA_HMatrix", "MVA_HMatrix", nbin, -0.95, 1.55 ); if (Use["Fisher"]) histFi = new TH1F( "MVA_Fisher", "MVA_Fisher", nbin, -4, 4 ); if (Use["FisherG"]) histFiG = new TH1F( "MVA_FisherG", "MVA_FisherG", nbin, -1, 1 ); if (Use["BoostedFisher"]) histFiB = new TH1F( "MVA_BoostedFisher", "MVA_BoostedFisher", nbin, -2, 2 ); if (Use["LD"]) histLD = new TH1F( "MVA_LD", "MVA_LD", nbin, -2, 2 ); if (Use["MLP"]) histNn = new TH1F( "MVA_MLP", "MVA_MLP", nbin, -1.25, 1.5 ); if (Use["MLPBFGS"]) histNnbfgs = new TH1F( "MVA_MLPBFGS", "MVA_MLPBFGS", nbin, -1.25, 1.5 ); if (Use["MLPBNN"]) histNnbnn = new TH1F( "MVA_MLPBNN", "MVA_MLPBNN", nbin, -1.25, 1.5 ); if (Use["CFMlpANN"]) histNnC = new TH1F( "MVA_CFMlpANN", "MVA_CFMlpANN", nbin, 0, 1 ); if (Use["TMlpANN"]) histNnT = new TH1F( "MVA_TMlpANN", "MVA_TMlpANN", nbin, -1.3, 1.3 ); if (Use["BDT"]) histBdt = new TH1F( "MVA_BDT", "MVA_BDT", nbin, -1. , 1. ); if (Use["BDTD"]) histBdtD = new TH1F( "MVA_BDTD", "MVA_BDTD", nbin, -0.8, 0.8 ); if (Use["BDTG"]) histBdtG = new TH1F( "MVA_BDTG", "MVA_BDTG", nbin, -1.0, 1.0 ); if (Use["RuleFit"]) histRf = new TH1F( "MVA_RuleFit", "MVA_RuleFit", nbin, -2.0, 2.0 ); if (Use["SVM_Gauss"]) histSVMG = new TH1F( "MVA_SVM_Gauss", "MVA_SVM_Gauss", nbin, 0.0, 1.0 ); if (Use["SVM_Poly"]) histSVMP = new TH1F( "MVA_SVM_Poly", "MVA_SVM_Poly", nbin, 0.0, 1.0 ); if (Use["SVM_Lin"]) histSVML = new TH1F( "MVA_SVM_Lin", "MVA_SVM_Lin", nbin, 0.0, 1.0 ); if (Use["FDA_MT"]) histFDAMT = new TH1F( "MVA_FDA_MT", "MVA_FDA_MT", nbin, -2.0, 3.0 ); if (Use["FDA_GA"]) histFDAGA = new TH1F( "MVA_FDA_GA", "MVA_FDA_GA", nbin, -2.0, 3.0 ); if (Use["Category"]) histCat = new TH1F( "MVA_Category", "MVA_Category", nbin, -2., 2. ); if (Use["Plugin"]) histPBdt = new TH1F( "MVA_PBDT", "MVA_BDT", nbin, -0.8, 0.8 ); if (Use["Likelihood"]) histLk ->Sumw2(); if (Use["LikelihoodD"]) histLkD ->Sumw2(); if (Use["LikelihoodPCA"]) histLkPCA ->Sumw2(); if (Use["LikelihoodKDE"]) histLkKDE ->Sumw2(); if (Use["LikelihoodMIX"]) histLkMIX ->Sumw2(); if (Use["PDERS"]) histPD ->Sumw2(); if (Use["PDERSD"]) histPDD ->Sumw2(); if (Use["PDERSPCA"]) histPDPCA ->Sumw2(); if (Use["KNN"]) histKNN ->Sumw2(); if (Use["HMatrix"]) histHm ->Sumw2(); if (Use["Fisher"]) histFi ->Sumw2(); if (Use["FisherG"]) histFiG ->Sumw2(); if (Use["BoostedFisher"]) histFiB ->Sumw2(); if (Use["LD"]) histLD ->Sumw2(); if (Use["MLP"]) histNn ->Sumw2(); if (Use["MLPBFGS"]) histNnbfgs ->Sumw2(); if (Use["MLPBNN"]) histNnbnn ->Sumw2(); if (Use["CFMlpANN"]) histNnC ->Sumw2(); if (Use["TMlpANN"]) histNnT ->Sumw2(); if (Use["BDT"]) histBdt ->Sumw2(); if (Use["BDTD"]) histBdtD ->Sumw2(); if (Use["BDTG"]) histBdtG ->Sumw2(); if (Use["RuleFit"]) histRf ->Sumw2(); if (Use["SVM_Gauss"]) histSVMG ->Sumw2(); if (Use["SVM_Poly"]) histSVMP ->Sumw2(); if (Use["SVM_Lin"]) histSVML ->Sumw2(); if (Use["FDA_MT"]) histFDAMT ->Sumw2(); if (Use["FDA_GA"]) histFDAGA ->Sumw2(); if (Use["Category"]) histCat ->Sumw2(); if (Use["Plugin"]) histPBdt ->Sumw2(); // PDEFoam also returns per-event error, fill in histogram, and also fill significance if (Use["PDEFoam"]) { histPDEFoam = new TH1F( "MVA_PDEFoam", "MVA_PDEFoam", nbin, 0, 1 ); histPDEFoamErr = new TH1F( "MVA_PDEFoamErr", "MVA_PDEFoam error", nbin, 0, 1 ); histPDEFoamSig = new TH1F( "MVA_PDEFoamSig", "MVA_PDEFoam significance", nbin, 0, 10 ); } // Book example histogram for probability (the other methods are done similarly) TH1F *probHistFi(0), *rarityHistFi(0); if (Use["Fisher"]) { probHistFi = new TH1F( "MVA_Fisher_Proba", "MVA_Fisher_Proba", nbin, 0, 1 ); rarityHistFi = new TH1F( "MVA_Fisher_Rarity", "MVA_Fisher_Rarity", nbin, 0, 1 ); } // Prepare input tree (this must be replaced by your data source) // in this example, there is a toy tree with signal and one with background events // we'll later on use only the "signal" events for the test in this example. // TChain *ch = new TChain("Events"); if( strcmp( samples.at(i) , "DY" ) == 0 ){ ch -> Add( Form("%s/DYToMuMuM20_PU_testFinal_baby.root",babyPath) ); ch -> Add( Form("%s/DYToMuMuM10To20_PU_testFinal_baby.root",babyPath) ); ch -> Add( Form("%s/DYToEEM20_PU_testFinal_baby.root",babyPath) ); ch -> Add( Form("%s/DYToEEM10To20_PU_testFinal_baby.root",babyPath) ); ch -> Add( Form("%s/DYToTauTauM20_PU_testFinal_baby.root",babyPath) ); ch -> Add( Form("%s/DYToTauTauM10To20_PU_testFinal_baby.root",babyPath) ); } if( strcmp( samples.at(i) , "WJetsFO3" ) == 0 ){ ch -> Add( Form("%s/WJetsToLNu_FOv3_PU_testFinal_baby.root",babyPath) ); ch -> Add( Form("%s/WToLNu_FOv3_testFinal_baby.root",babyPath) ); } else if( strcmp( samples.at(i) , "Higgs130" ) == 0 ){ ch -> Add( Form("%s/HToWWTo2L2NuM130_PU_testFinal_baby.root",babyPath) ); ch -> Add( Form("%s/HToWWToLNuTauNuM130_PU_testFinal_baby.root",babyPath) ); ch -> Add( Form("%s/HToWWTo2Tau2NuM130_PU_testFinal_baby.root",babyPath) ); } else if( strcmp( samples.at(i) , "Higgs160" ) == 0 ){ ch -> Add( Form("%s/HToWWTo2L2NuM160_PU_testFinal_baby.root",babyPath) ); ch -> Add( Form("%s/HToWWToLNuTauNuM160_PU_testFinal_baby.root",babyPath) ); ch -> Add( Form("%s/HToWWTo2Tau2NuM160_PU_testFinal_baby.root",babyPath) ); } else if( strcmp( samples.at(i) , "Higgs200" ) == 0 ){ ch -> Add( Form("%s/HToWWTo2L2NuM200_PU_testFinal_baby.root",babyPath) ); ch -> Add( Form("%s/HToWWToLNuTauNuM200_PU_testFinal_baby.root",babyPath) ); ch -> Add( Form("%s/HToWWTo2Tau2NuM200_PU_testFinal_baby.root",babyPath) ); } else{ ch -> Add( Form("%s/%s_PU_testFinal_baby.root",babyPath,samples.at(i)) ); } // --- Event loop // Prepare the event tree // - here the variable names have to corresponds to your tree // - you can use the same variables as above which is slightly faster, // but of course you can use different ones and copy the values inside the event loop // TTree *theTree = (TTree*) ch; std::cout << "--- Using input files: -------------------" << std::endl; TObjArray *listOfFiles = ch->GetListOfFiles(); TIter fileIter(listOfFiles); TChainElement* currentFile = 0; while((currentFile = (TChainElement*)fileIter.Next())) { std::cout << currentFile->GetTitle() << std::endl; } Float_t lephard_pt_; Float_t lepsoft_pt_; Float_t lepsoft_fr_; Float_t dil_dphi_; Float_t dil_mass_; Float_t event_type_; Float_t met_projpt_; Int_t jets_num_; Int_t extralep_num_; Int_t lowptbtags_num_; Int_t softmu_num_; Float_t event_scale1fb_; Float_t met_pt_; Int_t lepsoft_passTighterId_; Float_t mt_lephardmet_; Float_t mt_lepsoftmet_; Float_t mthiggs_; Float_t dphi_lephardmet_; Float_t dphi_lepsoftmet_; Float_t lepsoft_fbrem_; Float_t lepsoft_eOverPIn_; Float_t lepsoft_q_; Float_t lepsoft_dPhiIn_; theTree->SetBranchAddress( "lephard_pt_" , &lephard_pt_ ); theTree->SetBranchAddress( "lepsoft_pt_" , &lepsoft_pt_ ); theTree->SetBranchAddress( "lepsoft_fr_" , &lepsoft_fr_ ); theTree->SetBranchAddress( "dil_dphi_" , &dil_dphi_ ); theTree->SetBranchAddress( "dil_mass_" , &dil_mass_ ); theTree->SetBranchAddress( "event_type_" , &event_type_ ); theTree->SetBranchAddress( "met_projpt_" , &met_projpt_ ); theTree->SetBranchAddress( "jets_num_" , &jets_num_ ); theTree->SetBranchAddress( "extralep_num_" , &extralep_num_ ); theTree->SetBranchAddress( "lowptbtags_num_" , &lowptbtags_num_ ); theTree->SetBranchAddress( "softmu_num_" , &softmu_num_ ); theTree->SetBranchAddress( "event_scale1fb_" , &event_scale1fb_ ); theTree->SetBranchAddress( "lepsoft_passTighterId_" , &lepsoft_passTighterId_ ); theTree->SetBranchAddress( "met_pt_" , &met_pt_ ); theTree->SetBranchAddress( "mt_lephardmet_" , &mt_lephardmet_ ); theTree->SetBranchAddress( "mt_lepsoftmet_" , &mt_lepsoftmet_ ); theTree->SetBranchAddress( "mthiggs_" , &mthiggs_ ); theTree->SetBranchAddress( "dphi_lephardmet_" , &dphi_lephardmet_ ); theTree->SetBranchAddress( "dphi_lepsoftmet_" , &dphi_lepsoftmet_ ); theTree->SetBranchAddress( "lepsoft_fbrem_" , &lepsoft_fbrem_ ); theTree->SetBranchAddress( "lepsoft_eOverPIn_" , &lepsoft_eOverPIn_ ); theTree->SetBranchAddress( "lepsoft_q_" , &lepsoft_q_ ); theTree->SetBranchAddress( "lepsoft_dPhiIn_" , &lepsoft_dPhiIn_ ); // Efficiency calculator for cut method Int_t nSelCutsGA = 0; Double_t effS = 0.7; std::vector<Float_t> vecVar(4); // vector for EvaluateMVA tests std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl; TStopwatch sw; sw.Start(); int npass = 0; float yield = 0.; for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) { if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl; theTree->GetEntry(ievt); //------------------------------------------------------- // event selection //------------------------------------------------------- if( dil_dphi_ > 1. ) continue; //em if( event_type_ > 0.5 && event_type_ < 2.5 ){ if( met_projpt_ < 20. ) continue; } //ee/mm if( event_type_ < 0.5 || event_type_ > 2.5 ){ if( met_projpt_ < 35. ) continue; } if( lephard_pt_ < 20. ) continue; if( jets_num_ > 0 ) continue; if( extralep_num_ > 0 ) continue; if( lowptbtags_num_ > 0 ) continue; if( softmu_num_ > 0 ) continue; if( dil_mass_ < 12. ) continue; if( lepsoft_passTighterId_ == 0 ) continue; //if( event_type_ < 1.5 ) continue; //if( event_type > 1.5 && lepsoft_pt_ < 15. ) continue; //mH-dependent selection if( mH == 130 ){ if( lepsoft_pt_ < 10. ) continue; if( dil_mass_ > 90. ) continue; } else if( mH == 160 ){ if( lepsoft_pt_ < 20. ) continue; if( dil_mass_ > 100. ) continue; } else if( mH == 200 ){ if( lepsoft_pt_ < 20. ) continue; if( dil_mass_ > 130. ) continue; } float weight = event_scale1fb_ * lepsoft_fr_ * 0.5; //-------------------------------------------------------- // important: here we associate branches to MVA variables //-------------------------------------------------------- lephard_pt = lephard_pt_; lepsoft_pt = lepsoft_pt_; dil_mass = dil_mass_; dil_dphi = dil_dphi_; event_type = event_type_; met_pt = met_pt_; met_projpt = met_projpt_; mt_lephardmet = mt_lephardmet_; mt_lepsoftmet = mt_lepsoftmet_; mthiggs = mthiggs_; dphi_lephardmet = dphi_lephardmet_; dphi_lepsoftmet = dphi_lepsoftmet_; lepsoft_fbrem = lepsoft_fbrem_; lepsoft_eOverPIn = lepsoft_eOverPIn_; lepsoft_qdphi = lepsoft_q_ * lepsoft_dPhiIn_; npass++; yield+=weight; // var1 = userVar1 + userVar2; // var2 = userVar1 - userVar2; // --- Return the MVA outputs and fill into histograms if (Use["CutsGA"]) { // Cuts is a special case: give the desired signal efficienciy Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS ); if (passed) nSelCutsGA++; } if (Use["Likelihood" ]) histLk ->Fill( reader->EvaluateMVA( "Likelihood method" ) , weight); if (Use["LikelihoodD" ]) histLkD ->Fill( reader->EvaluateMVA( "LikelihoodD method" ) , weight); if (Use["LikelihoodPCA"]) histLkPCA ->Fill( reader->EvaluateMVA( "LikelihoodPCA method" ) , weight); if (Use["LikelihoodKDE"]) histLkKDE ->Fill( reader->EvaluateMVA( "LikelihoodKDE method" ) , weight); if (Use["LikelihoodMIX"]) histLkMIX ->Fill( reader->EvaluateMVA( "LikelihoodMIX method" ) , weight); if (Use["PDERS" ]) histPD ->Fill( reader->EvaluateMVA( "PDERS method" ) , weight); if (Use["PDERSD" ]) histPDD ->Fill( reader->EvaluateMVA( "PDERSD method" ) , weight); if (Use["PDERSPCA" ]) histPDPCA ->Fill( reader->EvaluateMVA( "PDERSPCA method" ) , weight); if (Use["KNN" ]) histKNN ->Fill( reader->EvaluateMVA( "KNN method" ) , weight); if (Use["HMatrix" ]) histHm ->Fill( reader->EvaluateMVA( "HMatrix method" ) , weight); if (Use["Fisher" ]) histFi ->Fill( reader->EvaluateMVA( "Fisher method" ) , weight); if (Use["FisherG" ]) histFiG ->Fill( reader->EvaluateMVA( "FisherG method" ) , weight); if (Use["BoostedFisher"]) histFiB ->Fill( reader->EvaluateMVA( "BoostedFisher method" ) , weight); if (Use["LD" ]) histLD ->Fill( reader->EvaluateMVA( "LD method" ) , weight); if (Use["MLP" ]) histNn ->Fill( reader->EvaluateMVA( "MLP method" ) , weight); if (Use["MLPBFGS" ]) histNnbfgs ->Fill( reader->EvaluateMVA( "MLPBFGS method" ) , weight); if (Use["MLPBNN" ]) histNnbnn ->Fill( reader->EvaluateMVA( "MLPBNN method" ) , weight); if (Use["CFMlpANN" ]) histNnC ->Fill( reader->EvaluateMVA( "CFMlpANN method" ) , weight); if (Use["TMlpANN" ]) histNnT ->Fill( reader->EvaluateMVA( "TMlpANN method" ) , weight); if (Use["BDT" ]) histBdt ->Fill( reader->EvaluateMVA( "BDT method" ) , weight); if (Use["BDTD" ]) histBdtD ->Fill( reader->EvaluateMVA( "BDTD method" ) , weight); if (Use["BDTG" ]) histBdtG ->Fill( reader->EvaluateMVA( "BDTG method" ) , weight); if (Use["RuleFit" ]) histRf ->Fill( reader->EvaluateMVA( "RuleFit method" ) , weight); if (Use["SVM_Gauss" ]) histSVMG ->Fill( reader->EvaluateMVA( "SVM_Gauss method" ) , weight); if (Use["SVM_Poly" ]) histSVMP ->Fill( reader->EvaluateMVA( "SVM_Poly method" ) , weight); if (Use["SVM_Lin" ]) histSVML ->Fill( reader->EvaluateMVA( "SVM_Lin method" ) , weight); if (Use["FDA_MT" ]) histFDAMT ->Fill( reader->EvaluateMVA( "FDA_MT method" ) , weight); if (Use["FDA_GA" ]) histFDAGA ->Fill( reader->EvaluateMVA( "FDA_GA method" ) , weight); if (Use["Category" ]) histCat ->Fill( reader->EvaluateMVA( "Category method" ) , weight); if (Use["Plugin" ]) histPBdt ->Fill( reader->EvaluateMVA( "P_BDT method" ) , weight); // Retrieve also per-event error if (Use["PDEFoam"]) { Double_t val = reader->EvaluateMVA( "PDEFoam method" ); Double_t err = reader->GetMVAError(); histPDEFoam ->Fill( val ); histPDEFoamErr->Fill( err ); if (err>1.e-50) histPDEFoamSig->Fill( val/err , weight); } // Retrieve probability instead of MVA output if (Use["Fisher"]) { probHistFi ->Fill( reader->GetProba ( "Fisher method" ) , weight); rarityHistFi->Fill( reader->GetRarity( "Fisher method" ) , weight); } } std::cout << npass << " events passing selection, yield " << yield << std::endl; // Get elapsed time sw.Stop(); std::cout << "--- End of event loop: "; sw.Print(); // Get efficiency for cuts classifier if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries() << " (for a required signal efficiency of " << effS << ")" << std::endl; if (Use["CutsGA"]) { // test: retrieve cuts for particular signal efficiency // CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ; if (mcuts) { std::vector<Double_t> cutsMin; std::vector<Double_t> cutsMax; mcuts->GetCuts( 0.7, cutsMin, cutsMax ); std::cout << "--- -------------------------------------------------------------" << std::endl; std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl; for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) { std::cout << "... Cut: " << cutsMin[ivar] << " < \"" << mcuts->GetInputVar(ivar) << "\" <= " << cutsMax[ivar] << std::endl; } std::cout << "--- -------------------------------------------------------------" << std::endl; } } // --- Write histograms cout << "dir " << dir << endl; char* mydir = outdir; TFile *target = new TFile( Form("%s/%s.root",mydir,samples.at(i) ) ,"RECREATE" ); cout << "Writing to file " << Form("%s/%s.root",mydir,samples.at(i) ) << endl; if (Use["Likelihood" ]) histLk ->Write(); if (Use["LikelihoodD" ]) histLkD ->Write(); if (Use["LikelihoodPCA"]) histLkPCA ->Write(); if (Use["LikelihoodKDE"]) histLkKDE ->Write(); if (Use["LikelihoodMIX"]) histLkMIX ->Write(); if (Use["PDERS" ]) histPD ->Write(); if (Use["PDERSD" ]) histPDD ->Write(); if (Use["PDERSPCA" ]) histPDPCA ->Write(); if (Use["KNN" ]) histKNN ->Write(); if (Use["HMatrix" ]) histHm ->Write(); if (Use["Fisher" ]) histFi ->Write(); if (Use["FisherG" ]) histFiG ->Write(); if (Use["BoostedFisher"]) histFiB ->Write(); if (Use["LD" ]) histLD ->Write(); if (Use["MLP" ]) histNn ->Write(); if (Use["MLPBFGS" ]) histNnbfgs ->Write(); if (Use["MLPBNN" ]) histNnbnn ->Write(); if (Use["CFMlpANN" ]) histNnC ->Write(); if (Use["TMlpANN" ]) histNnT ->Write(); if (Use["BDT" ]) histBdt ->Write(); if (Use["BDTD" ]) histBdtD ->Write(); if (Use["BDTG" ]) histBdtG ->Write(); if (Use["RuleFit" ]) histRf ->Write(); if (Use["SVM_Gauss" ]) histSVMG ->Write(); if (Use["SVM_Poly" ]) histSVMP ->Write(); if (Use["SVM_Lin" ]) histSVML ->Write(); if (Use["FDA_MT" ]) histFDAMT ->Write(); if (Use["FDA_GA" ]) histFDAGA ->Write(); if (Use["Category" ]) histCat ->Write(); if (Use["Plugin" ]) histPBdt ->Write(); // Write also error and significance histos if (Use["PDEFoam"]) { histPDEFoam->Write(); histPDEFoamErr->Write(); histPDEFoamSig->Write(); } // Write also probability hists if (Use["Fisher"]) { if (probHistFi != 0) probHistFi->Write(); if (rarityHistFi != 0) rarityHistFi->Write(); } target->Close(); delete reader; std::cout << "==> TMVAClassificationApplication is done with sample " << samples.at(i) << endl << std::endl; } }
void ZTMVAClassificationApplication( string filename, TString myMethodList = "" ) { #ifdef __CINT__ gROOT->ProcessLine( ".O0" ); // turn off optimization in CINT #endif //--------------------------------------------------------------- // This loads the library TMVA::Tools::Instance(); // Default MVA methods to be trained + tested std::map<std::string,int> Use; // --- Cut optimisation Use["Cuts"] = 0; Use["CutsD"] = 0; Use["CutsPCA"] = 0; Use["CutsGA"] = 0; Use["CutsSA"] = 0; // // --- 1-dimensional likelihood ("naive Bayes estimator") Use["Likelihood"] = 0; Use["LikelihoodD"] = 0; // the "D" extension indicates decorrelated input variables (see option strings) Use["LikelihoodPCA"] = 0; // the "PCA" extension indicates PCA-transformed input variables (see option strings) Use["LikelihoodKDE"] = 0; Use["LikelihoodMIX"] = 0; // // --- Mutidimensional likelihood and Nearest-Neighbour methods Use["PDERS"] = 0; Use["PDERSD"] = 0; Use["PDERSPCA"] = 0; Use["PDEFoam"] = 0; Use["PDEFoamBoost"] = 0; // uses generalised MVA method boosting Use["KNN"] = 0; // k-nearest neighbour method // // --- Linear Discriminant Analysis Use["LD"] = 0; // Linear Discriminant identical to Fisher Use["Fisher"] = 0; Use["FisherG"] = 0; Use["BoostedFisher"] = 0; // uses generalised MVA method boosting Use["HMatrix"] = 0; // // --- Function Discriminant analysis Use["FDA_GA"] = 0; // minimisation of user-defined function using Genetics Algorithm Use["FDA_SA"] = 0; Use["FDA_MC"] = 0; Use["FDA_MT"] = 0; Use["FDA_GAMT"] = 0; Use["FDA_MCMT"] = 0; // // --- Neural Networks (all are feed-forward Multilayer Perceptrons) Use["MLP"] = 1; // Recommended ANN Use["MLPBFGS"] = 0; // Recommended ANN with optional training method Use["MLPBNN"] = 0; // Recommended ANN with BFGS training method and bayesian regulator Use["CFMlpANN"] = 0; // Depreciated ANN from ALEPH Use["TMlpANN"] = 0; // ROOT's own ANN // // --- Support Vector Machine Use["SVM"] = 0; // // --- Boosted Decision Trees Use["BDT"] = 1; // uses Adaptive Boost Use["BDTG"] = 1; // uses Gradient Boost Use["BDTB"] = 0; // uses Bagging Use["BDTD"] = 1; // decorrelation + Adaptive Boost // // --- Friedman's RuleFit method, ie, an optimised series of cuts ("rules") Use["RuleFit"] = 0; // --------------------------------------------------------------- Use["Plugin"] = 0; Use["Category"] = 0; Use["SVM_Gauss"] = 0; Use["SVM_Poly"] = 0; Use["SVM_Lin"] = 0; std::cout << std::endl; std::cout << "==> Start TMVAClassificationApplication" << std::endl; // Select methods (don't look at this code - not of interest) if (myMethodList != "") { for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0; std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' ); for (UInt_t i=0; i<mlist.size(); i++) { std::string regMethod(mlist[i]); if (Use.find(regMethod) == Use.end()) { std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl; for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { std::cout << it->first << " "; } std::cout << std::endl; return; } Use[regMethod] = 1; } } // -------------------------------------------------------------------------------------------------- // --- Create the Reader object TMVA::Reader *reader = new TMVA::Reader( "!Color:!Silent" ); Float_t B_s0_ln_FDCHI2; reader->AddVariable("B_s0_ln_FDCHI2", &B_s0_ln_FDCHI2 ); Float_t B_s0_ln_IPCHI2; reader->AddVariable("B_s0_ln_IPCHI2", &B_s0_ln_IPCHI2 ); Float_t B_s0_ln_EVCHI2; reader->AddVariable("B_s0_ln_EVCHI2", &B_s0_ln_EVCHI2 ); Float_t B_s0_PT_fiveGeV;reader->AddVariable("B_s0_PT_fiveGeV",&B_s0_PT_fiveGeV); Float_t B_s0_Eta; reader->AddVariable("B_s0_Eta", &B_s0_Eta ); Float_t minK_PT_GeV; reader->AddVariable("minK_PT_GeV", &minK_PT_GeV ); Float_t minK_ln_IPCHI2; reader->AddVariable("minK_ln_IPCHI2", &minK_ln_IPCHI2 ); Float_t Category_cat1, Category_cat2, Category_cat3; if (Use["Category"]){ // Add artificial spectators for distinguishing categories reader->AddSpectator( "Category_cat1 := var3<=0", &Category_cat1 ); reader->AddSpectator( "Category_cat2 := (var3>0)&&(var4<0)", &Category_cat2 ); reader->AddSpectator( "Category_cat3 := (var3>0)&&(var4>=0)", &Category_cat3 ); } // --- Book the MVA methods TString dir = "weights/"; TString prefix = "TMVAClassification"; // Book method(s) for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { if (it->second) { TString methodName = TString(it->first) + TString(" method"); TString weightfile = dir + prefix + TString("_") + TString(it->first) + TString(".weights.xml"); reader->BookMVA( methodName, weightfile ); } } // Book output histograms UInt_t nbin = 100; TH1F *histLk(0), *histLkD(0), *histLkPCA(0), *histLkKDE(0), *histLkMIX(0), *histPD(0), *histPDD(0); TH1F *histPDPCA(0), *histPDEFoam(0), *histPDEFoamErr(0), *histPDEFoamSig(0), *histKNN(0), *histHm(0); TH1F *histFi(0), *histFiG(0), *histFiB(0), *histLD(0), *histNn(0),*histNnbfgs(0),*histNnbnn(0); TH1F *histNnC(0), *histNnT(0), *histBdt(0), *histBdtG(0), *histBdtD(0), *histRf(0), *histSVMG(0); TH1F *histSVMP(0), *histSVML(0), *histFDAMT(0), *histFDAGA(0), *histCat(0), *histPBdt(0); if (Use["Likelihood"]) histLk = new TH1F( "MVA_Likelihood", "MVA_Likelihood", nbin, -1, 1 ); if (Use["LikelihoodD"]) histLkD = new TH1F( "MVA_LikelihoodD", "MVA_LikelihoodD", nbin, -1, 0.9999 ); if (Use["LikelihoodPCA"]) histLkPCA = new TH1F( "MVA_LikelihoodPCA", "MVA_LikelihoodPCA", nbin, -1, 1 ); if (Use["LikelihoodKDE"]) histLkKDE = new TH1F( "MVA_LikelihoodKDE", "MVA_LikelihoodKDE", nbin, -0.00001, 0.99999 ); if (Use["LikelihoodMIX"]) histLkMIX = new TH1F( "MVA_LikelihoodMIX", "MVA_LikelihoodMIX", nbin, 0, 1 ); if (Use["PDERS"]) histPD = new TH1F( "MVA_PDERS", "MVA_PDERS", nbin, 0, 1 ); if (Use["PDERSD"]) histPDD = new TH1F( "MVA_PDERSD", "MVA_PDERSD", nbin, 0, 1 ); if (Use["PDERSPCA"]) histPDPCA = new TH1F( "MVA_PDERSPCA", "MVA_PDERSPCA", nbin, 0, 1 ); if (Use["KNN"]) histKNN = new TH1F( "MVA_KNN", "MVA_KNN", nbin, 0, 1 ); if (Use["HMatrix"]) histHm = new TH1F( "MVA_HMatrix", "MVA_HMatrix", nbin, -0.95, 1.55 ); if (Use["Fisher"]) histFi = new TH1F( "MVA_Fisher", "MVA_Fisher", nbin, -4, 4 ); if (Use["FisherG"]) histFiG = new TH1F( "MVA_FisherG", "MVA_FisherG", nbin, -1, 1 ); if (Use["BoostedFisher"]) histFiB = new TH1F( "MVA_BoostedFisher", "MVA_BoostedFisher", nbin, -2, 2 ); if (Use["LD"]) histLD = new TH1F( "MVA_LD", "MVA_LD", nbin, -2, 2 ); if (Use["MLP"]) histNn = new TH1F( "MVA_MLP", "MVA_MLP", nbin, -1.25, 1.5 ); if (Use["MLPBFGS"]) histNnbfgs = new TH1F( "MVA_MLPBFGS", "MVA_MLPBFGS", nbin, -1.25, 1.5 ); if (Use["MLPBNN"]) histNnbnn = new TH1F( "MVA_MLPBNN", "MVA_MLPBNN", nbin, -1.25, 1.5 ); if (Use["CFMlpANN"]) histNnC = new TH1F( "MVA_CFMlpANN", "MVA_CFMlpANN", nbin, 0, 1 ); if (Use["TMlpANN"]) histNnT = new TH1F( "MVA_TMlpANN", "MVA_TMlpANN", nbin, -1.3, 1.3 ); if (Use["BDT"]) histBdt = new TH1F( "MVA_BDT", "MVA_BDT", nbin, -0.8, 0.8 ); if (Use["BDTD"]) histBdtD = new TH1F( "MVA_BDTD", "MVA_BDTD", nbin, -0.8, 0.8 ); if (Use["BDTG"]) histBdtG = new TH1F( "MVA_BDTG", "MVA_BDTG", nbin, -1.0, 1.0 ); if (Use["RuleFit"]) histRf = new TH1F( "MVA_RuleFit", "MVA_RuleFit", nbin, -2.0, 2.0 ); if (Use["SVM_Gauss"]) histSVMG = new TH1F( "MVA_SVM_Gauss", "MVA_SVM_Gauss", nbin, 0.0, 1.0 ); if (Use["SVM_Poly"]) histSVMP = new TH1F( "MVA_SVM_Poly", "MVA_SVM_Poly", nbin, 0.0, 1.0 ); if (Use["SVM_Lin"]) histSVML = new TH1F( "MVA_SVM_Lin", "MVA_SVM_Lin", nbin, 0.0, 1.0 ); if (Use["FDA_MT"]) histFDAMT = new TH1F( "MVA_FDA_MT", "MVA_FDA_MT", nbin, -2.0, 3.0 ); if (Use["FDA_GA"]) histFDAGA = new TH1F( "MVA_FDA_GA", "MVA_FDA_GA", nbin, -2.0, 3.0 ); if (Use["Category"]) histCat = new TH1F( "MVA_Category", "MVA_Category", nbin, -2., 2. ); if (Use["Plugin"]) histPBdt = new TH1F( "MVA_PBDT", "MVA_BDT", nbin, -0.8, 0.8 ); // PDEFoam also returns per-event error, fill in histogram, and also fill significance if (Use["PDEFoam"]) { histPDEFoam = new TH1F( "MVA_PDEFoam", "MVA_PDEFoam", nbin, 0, 1 ); histPDEFoamErr = new TH1F( "MVA_PDEFoamErr", "MVA_PDEFoam error", nbin, 0, 1 ); histPDEFoamSig = new TH1F( "MVA_PDEFoamSig", "MVA_PDEFoam significance", nbin, 0, 10 ); } // Book example histogram for probability (the other methods are done similarly) TH1F *probHistFi(0), *rarityHistFi(0); if (Use["Fisher"]) { probHistFi = new TH1F( "MVA_Fisher_Proba", "MVA_Fisher_Proba", nbin, 0, 1 ); rarityHistFi = new TH1F( "MVA_Fisher_Rarity", "MVA_Fisher_Rarity", nbin, 0, 1 ); } //TFile * input = new TFile("../cloosepid.root"); // this is the signal //TFile * input_Background = new TFile("Z4430Files/merged_ntuple_jpsi_s17.root"); // this is the background //TFile * input = new TFile("../output/MCBsphif0_after_transform.root"); // this is the signal TFile * input_Background; input_Background = new TFile(filename.c_str()); //std::cout << "--- TMVAClassificationApp : Using input file: " << input->GetName() << std::endl; std::cout << "--- TMVAClassificationApp : Using input file: " << input_Background->GetName() << std::endl; // --- Event loop //save the results here /* TTree* results= new TTree("results", "results"); Float_t Method_Likelihood; Float_t bdt; results->Branch("Method_Likelihood",&Method_Likelihood ,"Method_Likelihood/D" ); results->Branch("BDTG method", &bdt, "BDTG method" ); */ std::cout << "--- Select signal sample" << std::endl; //TTree* theTree = (TTree*)input->Get("MCtree"); TTree* theTree = (TTree*)input_Background->Get("DecayTree"); //if(mode<3) TCut cut = TCut("time1>0. && abs(phi_mass-1019.455)<15"); // else TCut cut = TCut("time1>0. && abs(phi_mass-1019.455)<12 && abs(phi1_mass-1019.455)<12"); //else TCut cut = TCut("time1>0. && abs(phi_mass-1019.455)<15 && abs(phi1_mass-1019.455)<15"); //TFile* f_out =new TFile("../output/MCBsphif0_after_bdt.root","RECREATE"); TFile* f_out; string oldLabel="mvaVars_vetoes"; string newLabel="mva"; filename.replace(filename.find(oldLabel), oldLabel.length(), newLabel); f_out = new TFile(filename.c_str(),"RECREATE"); //TTree* smalltree = theTree->CopyTree(cut); TTree* newtree = theTree->CloneTree(-1); //TTree* smalltree = theTree->CloneTree(-1); //TTree* newtree = theTree->CloneTree(-1); float bdtg; TBranch* b_bdtg = newtree->Branch("bdtg", &bdtg,"bdtg/F"); float bdt; TBranch* b_bdt = newtree->Branch("bdt", &bdt,"bdt/F"); float bdtd; TBranch* b_bdtd = newtree->Branch("bdtd", &bdtd,"bdtd/F"); float mlp; TBranch* b_mlp = newtree->Branch("mlp", &mlp,"mlp/F"); // Float_t userptsum, userpionpt, userptj, userdmj , uservchi2dof; // Float_t usermaxdphi; Float_t userptAsym; theTree->SetBranchAddress("B_s0_ln_FDCHI2", &B_s0_ln_FDCHI2 ); theTree->SetBranchAddress("B_s0_ln_IPCHI2", &B_s0_ln_IPCHI2 ); theTree->SetBranchAddress("B_s0_ln_EVCHI2", &B_s0_ln_EVCHI2 ); theTree->SetBranchAddress("B_s0_PT_fiveGeV",&B_s0_PT_fiveGeV); theTree->SetBranchAddress("B_s0_Eta", &B_s0_Eta ); theTree->SetBranchAddress("minK_PT_GeV", &minK_PT_GeV ); theTree->SetBranchAddress("minK_ln_IPCHI2", &minK_ln_IPCHI2 ); // Efficiency calculator for cut method Int_t nSelCutsGA = 0; Double_t effS = 0.7; std::vector<Float_t> vecVar(4); // vector for EvaluateMVA tests Int_t num_entries = newtree->GetEntries(); std::cout << "--- Processing: " << num_entries << " events" << std::endl; TStopwatch sw; sw.Start(); for (Long64_t ievt=0; ievt<num_entries;ievt++) { // if (ievt%10000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl; newtree->GetEntry(ievt); // var1 = userVar1 + userVar2; // var2 = userVar1 - userVar2; // --- Return the MVA outputs and fill into histograms if (Use["CutsGA"]) { // Cuts is a special case: give the desired signal efficienciy Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS ); if (passed) nSelCutsGA++; } if (Use["Likelihood" ]) { histLk ->Fill( reader->EvaluateMVA( "Likelihood method" ) ); // Method_Likelihood = reader->EvaluateMVA( "Likelihood method" ) ; //std::cout << Method_Likelihood << std::endl; // results->Fill(); } if (Use["LikelihoodD" ]) histLkD ->Fill( reader->EvaluateMVA( "LikelihoodD method" ) ); if (Use["LikelihoodPCA"]) histLkPCA ->Fill( reader->EvaluateMVA( "LikelihoodPCA method" ) ); if (Use["LikelihoodKDE"]) histLkKDE ->Fill( reader->EvaluateMVA( "LikelihoodKDE method" ) ); if (Use["LikelihoodMIX"]) histLkMIX ->Fill( reader->EvaluateMVA( "LikelihoodMIX method" ) ); if (Use["PDERS" ]) histPD ->Fill( reader->EvaluateMVA( "PDERS method" ) ); if (Use["PDERSD" ]) histPDD ->Fill( reader->EvaluateMVA( "PDERSD method" ) ); if (Use["PDERSPCA" ]) histPDPCA ->Fill( reader->EvaluateMVA( "PDERSPCA method" ) ); if (Use["KNN" ]) histKNN ->Fill( reader->EvaluateMVA( "KNN method" ) ); if (Use["HMatrix" ]) histHm ->Fill( reader->EvaluateMVA( "HMatrix method" ) ); if (Use["Fisher" ]) histFi ->Fill( reader->EvaluateMVA( "Fisher method" ) ); if (Use["FisherG" ]) histFiG ->Fill( reader->EvaluateMVA( "FisherG method" ) ); if (Use["BoostedFisher"]) histFiB ->Fill( reader->EvaluateMVA( "BoostedFisher method" ) ); if (Use["LD" ]) histLD ->Fill( reader->EvaluateMVA( "LD method" ) ); if (Use["MLP" ]) { mlp = reader->EvaluateMVA( "MLP method" ) ; b_mlp->Fill(); histNn ->Fill( reader->EvaluateMVA( "MLP method" ) ); } if (Use["MLPBFGS" ]) histNnbfgs ->Fill( reader->EvaluateMVA( "MLPBFGS method" ) ); if (Use["MLPBNN" ]) histNnbnn ->Fill( reader->EvaluateMVA( "MLPBNN method" ) ); if (Use["CFMlpANN" ]) histNnC ->Fill( reader->EvaluateMVA( "CFMlpANN method" ) ); if (Use["TMlpANN" ]) histNnT ->Fill( reader->EvaluateMVA( "TMlpANN method" ) ); if (Use["BDT" ]) { histBdt ->Fill( reader->EvaluateMVA( "BDT method" ) ); bdt = reader->EvaluateMVA( "BDT method" ) ; b_bdt->Fill(); } if (Use["BDTD" ]) { histBdtD ->Fill( reader->EvaluateMVA( "BDTD method" ) ); bdtd = reader->EvaluateMVA( "BDTD method" ); b_bdtd->Fill(); } if (Use["BDTG" ]) { histBdtG ->Fill( reader->EvaluateMVA( "BDTG method" ) ); bdtg = reader->EvaluateMVA( "BDTG method" ); b_bdtg->Fill(); //cout << reader->EvaluateMVA( "BDTG method" ) <<endl; } if (Use["RuleFit" ]) histRf ->Fill( reader->EvaluateMVA( "RuleFit method" ) ); if (Use["SVM_Gauss" ]) histSVMG ->Fill( reader->EvaluateMVA( "SVM_Gauss method" ) ); if (Use["SVM_Poly" ]) histSVMP ->Fill( reader->EvaluateMVA( "SVM_Poly method" ) ); if (Use["SVM_Lin" ]) histSVML ->Fill( reader->EvaluateMVA( "SVM_Lin method" ) ); if (Use["FDA_MT" ]) histFDAMT ->Fill( reader->EvaluateMVA( "FDA_MT method" ) ); if (Use["FDA_GA" ]) histFDAGA ->Fill( reader->EvaluateMVA( "FDA_GA method" ) ); if (Use["Category" ]) histCat ->Fill( reader->EvaluateMVA( "Category method" ) ); if (Use["Plugin" ]) histPBdt ->Fill( reader->EvaluateMVA( "P_BDT method" ) ); // Retrieve also per-event error if (Use["PDEFoam"]) { Double_t val = reader->EvaluateMVA( "PDEFoam method" ); Double_t err = reader->GetMVAError(); histPDEFoam ->Fill( val ); histPDEFoamErr->Fill( err ); if (err>1.e-50) histPDEFoamSig->Fill( val/err ); } // Retrieve probability instead of MVA output if (Use["Fisher"]) { probHistFi ->Fill( reader->GetProba ( "Fisher method" ) ); rarityHistFi->Fill( reader->GetRarity( "Fisher method" ) ); } } // Get elapsed time sw.Stop(); std::cout << "--- End of event loop: "; sw.Print(); // Get efficiency for cuts classifier if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries() << " (for a required signal efficiency of " << effS << ")" << std::endl; if (Use["CutsGA"]) { // test: retrieve cuts for particular signal efficiency // CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ; if (mcuts) { std::vector<Double_t> cutsMin; std::vector<Double_t> cutsMax; mcuts->GetCuts( 0.7, cutsMin, cutsMax ); std::cout << "--- -------------------------------------------------------------" << std::endl; std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl; for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) { std::cout << "... Cut: " << cutsMin[ivar] << " < \"" << mcuts->GetInputVar(ivar) << "\" <= " << cutsMax[ivar] << std::endl; } std::cout << "--- -------------------------------------------------------------" << std::endl; } } newtree->Write(); f_out->Close(); // --- Write histograms TFile *target = new TFile( "TMVApp.root","RECREATE" ); if (Use["Likelihood" ]) histLk ->Write(); if (Use["LikelihoodD" ]) histLkD ->Write(); if (Use["LikelihoodPCA"]) histLkPCA ->Write(); if (Use["LikelihoodKDE"]) histLkKDE ->Write(); if (Use["LikelihoodMIX"]) histLkMIX ->Write(); if (Use["PDERS" ]) histPD ->Write(); if (Use["PDERSD" ]) histPDD ->Write(); if (Use["PDERSPCA" ]) histPDPCA ->Write(); if (Use["KNN" ]) histKNN ->Write(); if (Use["HMatrix" ]) histHm ->Write(); if (Use["Fisher" ]) histFi ->Write(); if (Use["FisherG" ]) histFiG ->Write(); if (Use["BoostedFisher"]) histFiB ->Write(); if (Use["LD" ]) histLD ->Write(); if (Use["MLP" ]) histNn ->Write(); if (Use["MLPBFGS" ]) histNnbfgs ->Write(); if (Use["MLPBNN" ]) histNnbnn ->Write(); if (Use["CFMlpANN" ]) histNnC ->Write(); if (Use["TMlpANN" ]) histNnT ->Write(); if (Use["BDT" ]) histBdt ->Write(); if (Use["BDTD" ]) histBdtD ->Write(); if (Use["BDTG" ]) histBdtG ->Write(); if (Use["RuleFit" ]) histRf ->Write(); if (Use["SVM_Gauss" ]) histSVMG ->Write(); if (Use["SVM_Poly" ]) histSVMP ->Write(); if (Use["SVM_Lin" ]) histSVML ->Write(); if (Use["FDA_MT" ]) histFDAMT ->Write(); if (Use["FDA_GA" ]) histFDAGA ->Write(); if (Use["Category" ]) histCat ->Write(); if (Use["Plugin" ]) histPBdt ->Write(); // results->Write(); // Write also error and significance histos if (Use["PDEFoam"]) { histPDEFoam->Write(); histPDEFoamErr->Write(); histPDEFoamSig->Write(); } // Write also probability hists if (Use["Fisher"]) { if (probHistFi != 0) probHistFi->Write(); if (rarityHistFi != 0) rarityHistFi->Write(); } target->Close(); std::cout << "--- Created_prob.root file: \"TMVApp.root\" containing the MVA output histograms" << std::endl; delete reader; std::cout << "==> TMVAClassificationApplication is done!" << endl << std::endl; }
void DYPtZ_HF_BDTCut( TString myMethodList = "" ) { #ifdef __CINT__ gROOT->ProcessLine( ".O0" ); // turn off optimization in CINT #endif //--------------------------------------------------------------- // This loads the library TMVA::Tools::Instance(); // Default MVA methods to be trained + tested std::map<std::string,int> Use; // --- Cut optimisation Use["Cuts"] = 0; Use["CutsD"] = 0; Use["CutsPCA"] = 0; Use["CutsGA"] = 0; Use["CutsSA"] = 0; // // --- 1-dimensional likelihood ("naive Bayes estimator") Use["Likelihood"] = 0; Use["LikelihoodD"] = 0; // the "D" extension indicates decorrelated input variables (see option strings) Use["LikelihoodPCA"] = 0; // the "PCA" extension indicates PCA-transformed input variables (see option strings) Use["LikelihoodKDE"] = 0; Use["LikelihoodMIX"] = 0; // // --- Mutidimensional likelihood and Nearest-Neighbour methods Use["PDERS"] = 0; Use["PDERSD"] = 0; Use["PDERSPCA"] = 0; Use["PDEFoam"] = 0; Use["PDEFoamBoost"] = 0; // uses generalised MVA method boosting Use["KNN"] = 0; // k-nearest neighbour method // // --- Linear Discriminant Analysis Use["LD"] = 0; // Linear Discriminant identical to Fisher Use["Fisher"] = 0; Use["FisherG"] = 0; Use["BoostedFisher"] = 0; // uses generalised MVA method boosting Use["HMatrix"] = 0; // // --- Function Discriminant analysis Use["FDA_GA"] = 0; // minimisation of user-defined function using Genetics Algorithm Use["FDA_SA"] = 0; Use["FDA_MC"] = 0; Use["FDA_MT"] = 0; Use["FDA_GAMT"] = 0; Use["FDA_MCMT"] = 0; // // --- Neural Networks (all are feed-forward Multilayer Perceptrons) Use["MLP"] = 0; // Recommended ANN Use["MLPBFGS"] = 0; // Recommended ANN with optional training method Use["MLPBNN"] = 0; // Recommended ANN with BFGS training method and bayesian regulator Use["CFMlpANN"] = 0; // Depreciated ANN from ALEPH Use["TMlpANN"] = 0; // ROOT's own ANN // // --- Support Vector Machine Use["SVM"] = 0; // // --- Boosted Decision Trees using this Use["BDT"] = 1; // uses Adaptive Boost Use["BDTG"] = 0; // uses Gradient Boost Use["BDTB"] = 0; // uses Bagging Use["BDTD"] = 0; // decorrelation + Adaptive Boost // // --- Friedman's RuleFit method, ie, an optimised series of cuts ("rules") Use["RuleFit"] = 0; // --------------------------------------------------------------- Use["Plugin"] = 0; Use["Category"] = 0; Use["SVM_Gauss"] = 0; Use["SVM_Poly"] = 0; Use["SVM_Lin"] = 0; std::cout << std::endl; std::cout << "==> Start DYPtZ_HF_BDTCut" << std::endl; // Select methods (don't look at this code - not of interest) if (myMethodList != "") { for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0; std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' ); for (UInt_t i=0; i<mlist.size(); i++) { std::string regMethod(mlist[i]); if (Use.find(regMethod) == Use.end()) { std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl; for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { std::cout << it->first << " "; } std::cout << std::endl; return; } Use[regMethod] = 1; } } // -------------------------------------------------------------------------------------------------- // --- Create the Reader object TMVA::Reader *reader = new TMVA::Reader( "!Color:!Silent" ); // Create a set of variables and declare them to the reader // - the variable names MUST corresponds in name and type to those given in the weight file(s) used Float_t Hmass, Emumass; Float_t Hpt, Zpt; Float_t CSV0, CSV1; Float_t DeltaPhiHV, DetaJJ; Int_t nJets, eventFlavor, Naj; Float_t BDTvalue, Trigweight, B2011PUweight, A2011PUweight, btag2CSF, MET; Float_t alpha_j, qtb1, jetPhi0, jetPhi1, jetEta0, jetEta1, Zphi, Hphi; Float_t Ht, EvntShpCircularity, jetCHF0, jetCHF1; Float_t EtaStandDev, lep_pfCombRelIso0, lep_pfCombRelIso1, EvntShpIsotropy; Float_t lep0pt, lep1pt, UnweightedEta, DphiJJ, RMS_eta, EvntShpSphericity; Float_t PtbalZH, EventPt, AngleEMU, Centrality, EvntShpAplanarity; Float_t UnweightedEta, lep0pt; Int_t naJets, nSV; Float_t Mte, Mtmu, dPhiHMET, Dphiemu, delRjj, delRemu, DphiZMET, DeltaPhijetMETmin; Float_t MassEleb0, DphiEleMET, PtbalMETH,dphiEleMET, dEtaJJ, dphiZMET, ScalarSumPt; Float_t ZmassSVD, AngleHemu, ProjVisT, topMass, topPt, ZmassSVDnegSol, Mt, Zmass, ZmassNegInclu; Float_t dphiEMU, dphiZMET; reader->AddVariable( "Hmass", &Hmass ); //reader->AddVariable( "Naj", &Naj ); reader->AddVariable( "CSV0", &CSV0 ); reader->AddVariable( "Emumass", &Emumass ); reader->AddVariable( "DeltaPhiHV", &DeltaPhiHV ); reader->AddVariable( "Mt", &Mt ); reader->AddVariable( "dPhiHMET", &dPhiHMET ); reader->AddVariable( "dphiEMU := abs(Dphiemu)", &dphiEMU ); reader->AddVariable( "dphiZMET:=abs(DphiZMET)", &dphiZMET ); reader->AddVariable( "PtbalMETH", &PtbalMETH ); reader->AddVariable( "EtaStandDev", &EtaStandDev ); reader->AddVariable( "jetCHF0", &jetCHF0 ); reader->AddVariable( "ProjVisT", &ProjVisT ); // Spectator variables declared in the training have to be added to the reader, too // reader->AddSpectator( "UnweightedEta", &UnweightedEta ); // reader->AddSpectator( "lep0pt", &lep0pt ); /* Float_t Category_cat1, Category_cat2, Category_cat3; if (Use["Category"]){ // Add artificial spectators for distinguishing categories reader->AddSpectator( "Category_cat1 := var3<=0", &Category_cat1 ); reader->AddSpectator( "Category_cat2 := (var3>0)&&(var4<0)", &Category_cat2 ); reader->AddSpectator( "Category_cat3 := (var3>0)&&(var4>=0)", &Category_cat3 ); } */ // --- Book the MVA methods TString dir = "weights/"; TString prefix = "TMVAClassification"; // Book method(s) for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { if (it->second) { TString methodName = TString(it->first) + TString(" method"); TString weightfile = dir + prefix + TString("_") + TString(it->first) + TString(".weights.xml"); reader->BookMVA( methodName, weightfile ); } } // Book output histograms TH1F* hCHFb0_OpenSelection= new TH1F ("hCHFb0_OpenSelection", "charged Hadron Energy Fraction b1", 40, 0.0, 1.2); TH1F* hCHFb1_OpenSelection= new TH1F ("hCHFb1_OpenSelection", "charged Hadron Energy Fraction b2", 40, 0.0, 1.2); TH1F* hPtjj_OpenSelection= new TH1F ("hPtjj_OpenSelection","Pt of two b jets with highest CSV ", 50, 0.0, 400); TH1F* hPtmumu_OpenSelection= new TH1F ("hPtmumu_OpenSelection","Pt of two muons with highest pt ", 50, 0.0, 400); TH1F* hPtbalZH_OpenSelection= new TH1F ("hPtbalZH_OpenSelection", "Pt balance of Z and H", 40, -80, 80); TH1F* hPtmu0_OpenSelection= new TH1F ("hPtmu0_OpenSelection","Pt of muon with highest pt ", 30, 0.0, 300); TH1F* hPtmu1_OpenSelection= new TH1F ("hPtmu1_OpenSelection","Pt of muon with second highest pt ", 30, 0.0, 300); TH1F* hPFRelIsomu0_OpenSelection= new TH1F ("hPFRelIsomu0_OpenSelection", "PF Rel Iso of muon with highest Pt", 40, 0., 0.2); TH1F* hPFRelIsomu1_OpenSelection= new TH1F ("hPFRelIsomu1_OpenSelection", "PF Rel Iso of muon with second highest Pt", 40, 0., 0.2); TH1F* hCSV0_OpenSelection= new TH1F ("hCSV0_OpenSelection","Jet with highest CSV ", 40, 0, 1.5); TH1F* hCSV1_OpenSelection= new TH1F ("hCSV1_OpenSelection","Jet with second highest CSV ", 40, 0, 1.5); TH1F* hdphiVH_OpenSelection= new TH1F ("hdphiVH_OpenSelection","Delta phi between Z and Higgs ", 50, -0.1, 4.5); TH1F* hdetaJJ_OpenSelection= new TH1F ("hdetaJJ_OpenSelection","Delta eta between two jets ", 60, -4, 4); TH1F* hNjets_OpenSelection= new TH1F ("hNjets_OpenSelection", "Number of Jets", 13, -2.5, 10.5); TH1F* hMjj_OpenSelection = new TH1F ("hMjj_OpenSelection", "Invariant Mass of two Jets ", 50, 0, 300); TH1F* hMmumu_OpenSelection = new TH1F ("hMmumu_OpenSelection", "Invariant Mass of two muons ", 75, 0, 200); TH1F* hRMSeta_OpenSelection= new TH1F ("hRMSeta_OpenSelection", "RMS Eta", 30, 0, 3); TH1F* hStaDeveta_OpenSelection= new TH1F ("hStaDeveta_OpenSelection", "Standard Deviation Eta", 30, 0, 3); TH1F* hUnweightedEta_OpenSelection= new TH1F ("hUnweightedEta_OpenSelection", "Unweighted Eta ", 50, 0, 15); TH1F* hdphiJJ_vect_OpenSelection= new TH1F ("hdphiJJ_vect_OpenSelection", "Delta phi between two jets", 30, -3.5, 4); TH1F* hCircularity_OpenSelection= new TH1F("hCircularity_OpenSelection","EventShapeVariables circularity", 30, 0.0, 1.2); TH1F* hHt_OpenSelection= new TH1F("hHt_OpenSelection","scalar sum of pt of four particles", 50, 0.0, 500); TH1F* hCentrality_OpenSelection= new TH1F ("hCentrality_OpenSelection", "Centrality", 40, 0.0, 0.8); TH1F* hEventPt_OpenSelection= new TH1F ("hEventPt_OpenSelection", "Pt of HV system", 50, 0.0, 100); TH1F* hAngleEMU_OpenSelection= new TH1F ("hAngleEMU_OpenSelection", "AngleEMU between H and Z", 45, 0, 4.5); TH1F* hSphericity_OpenSelection= new TH1F ("hSphericity_OpenSelection", "EventShapeVariables sphericity", 50, 0.0, 1); TH1F* hAplanarity_OpenSelection= new TH1F ("hAplanarity_OpenSelection", "EventShapeVariables Aplanarity", 50, -0.1, .4); TH1F* hIsotropy_OpenSelection= new TH1F ("hIsotropy_OpenSelection", "EventShapeVariables isotropy", 30, 0.0, 1.3); TH2F* hDphiDetajj_OpenSelection= new TH2F ("hDphiDetajj_OpenSelection", "#Delta#phi vs #Delta#eta JJ", 25, -5, 5, 25, -5, 5); TH1F* hMtmu_OpenSelection= new TH1F ("hMtmu_OpenSelection", "Mt with respect to Muon", 101, -0.1, 200); TH1F* hMte_OpenSelection= new TH1F ("hMte_OpenSelection", "Mt with respect to Electron", 101, -0.1, 200); TH1F* hdPhiHMET_OpenSelection= new TH1F ("hdPhiHMET_OpenSelection", "Delta phi between MET and Higgs", 50, -0.1, 4.5); TH1F* hDphiemu_OpenSelection= new TH1F ("hDphiemu_OpenSelection", "Delta phi between e and muon", 50, -3.5, 4.5); TH1F* hdelRjj_OpenSelection= new TH1F ("hdelRjj_OpenSelection", "Delta R jj", 55, 0, 5.5); TH1F* hdelRemu_OpenSelection= new TH1F ("hdelRemu_OpenSelection", "Delta R emu", 55, 0, 5.5); TH1F* hDphiZMET_OpenSelection= new TH1F ("hDphiZMET_OpenSelection", "Delta phi between Z and MET", 71, -3.5, 4); TH1F* hDeltaPhijetMETmin_OpenSelection= new TH1F ("hDeltaPhijetMETmin_OpenSelection", "Delta phi between MET and nearest jet", 50, -0.1, 4.5); TH1F* hAngleHemu_OpenSelection= new TH1F ("hAngleHemu_OpenSelection", "Angle between H and Z", 30, 0, 3.5); TH1F* hProjVisT_OpenSelection= new TH1F ("hProjVisT_OpenSelection", "Transverse componenet of Projection of Z onto bisector", 80, 0, 200); TH1F* htopMass_OpenSelection= new TH1F ("htopMass_OpenSelection", "Top Mass single lepton", 100, 75, 375); TH1F* htopPt_OpenSelection= new TH1F ("htopPt_OpenSelection", "Pt of Top", 125, 0, 250); TH1F* hVMt_OpenSelection= new TH1F ("hVMt_OpenSelection", "VMt", 75, 0, 150); TH1F* hZmassSVD_OpenSelection= new TH1F ("hZmassSVD_OpenSelection", "Invariant Mass of two Leptons corrected SVD", 75, 0, 150); TH1F* hZmassSVDnegSol_OpenSelection= new TH1F ("hZmassSVDnegSol_OpenSelection", "Invariant Mass of two Leptons corrected SVD", 100, -50, 200); TH1F* hZmass_OpenSelection= new TH1F ("hZmass_OpenSelection", "Zmass ", 5, 0, 150); TH1F* hZmassNegInclu_OpenSelection= new TH1F ("hZmassNegInclu_OpenSelection", "Invariant Mass of two Leptons corrected SVD", 100, -50, 200); TTree *treeWithBDT = new TTree("treeWithBDT","Tree wiht BDT output"); treeWithBDT->SetDirectory(0); treeWithBDT->Branch("nJets",&nJets, "nJets/I"); treeWithBDT->Branch("naJets",&naJets, "naJets/I"); treeWithBDT->Branch("eventFlavor",&eventFlavor, "eventFlavor/I"); treeWithBDT->Branch("CSV0",&CSV0, "CSV0/F"); treeWithBDT->Branch("CSV1",&CSV1, "CSV1/F"); treeWithBDT->Branch("Emumass",&Emumass, "Emumass/F"); treeWithBDT->Branch("Hmass",&Hmass, "Hmass/F"); treeWithBDT->Branch("DeltaPhiHV",&DeltaPhiHV, "DeltaPhiHV/F"); treeWithBDT->Branch("Hpt",&Hpt, "Hpt/F"); treeWithBDT->Branch("Zpt",&Zpt, "Zpt/F"); treeWithBDT->Branch("lep0pt",&lep0pt, "lep0pt/F"); treeWithBDT->Branch("Ht",&Ht, "Ht/F"); treeWithBDT->Branch("EtaStandDev",&EtaStandDev, "EtaStandDev/F"); treeWithBDT->Branch("UnweightedEta",&UnweightedEta, "UnweightedEta/F"); treeWithBDT->Branch("EvntShpCircularity",&EvntShpCircularity, "EvntShpCircularity/F"); treeWithBDT->Branch("alpha_j",&alpha_j, "alpha_j/F"); treeWithBDT->Branch("qtb1",&qtb1, "qtb1/F"); treeWithBDT->Branch("nSV",&nSV, "nSV/I"); treeWithBDT->Branch("Trigweight",&Trigweight, "Trigweight/F"); treeWithBDT->Branch("B2011PUweight",&B2011PUweight, "B2011PUweight/F"); treeWithBDT->Branch("A2011PUweight",&A2011PUweight, "A2011PUweight/F"); treeWithBDT->Branch("btag2CSF",&btag2CSF, "btag2CSF/F"); treeWithBDT->Branch("DetaJJ",&DetaJJ, "DetaJJ/F"); treeWithBDT->Branch("jetCHF0",&jetCHF0, "jetCHF0/F"); treeWithBDT->Branch("jetCHF1",&jetCHF1, "jetCHF1/F"); treeWithBDT->Branch("jetPhi0",&jetPhi0, "jetPhi0/F"); treeWithBDT->Branch("jetPhi1",&jetPhi1, "jetPhi1/F"); treeWithBDT->Branch("jetEta0",&jetEta0, "jetEta0/F"); treeWithBDT->Branch("jetEta1",&jetEta1, "jetEta1/F"); treeWithBDT->Branch("lep1pt",&lep1pt, "lep1pt/F"); treeWithBDT->Branch("lep_pfCombRelIso0",&lep_pfCombRelIso0, "lep_pfCombRelIso0/F"); treeWithBDT->Branch("lep_pfCombRelIso1",&lep_pfCombRelIso1, "lep_pfCombRelIso1/F"); treeWithBDT->Branch("DphiJJ",&DphiJJ, "DphiJJ/F"); treeWithBDT->Branch("RMS_eta",&RMS_eta, "RMS_eta/F"); treeWithBDT->Branch("PtbalZH",&PtbalZH, "PtbalZH/F"); treeWithBDT->Branch("EventPt",&EventPt, "EventPt/F"); treeWithBDT->Branch("AngleEMU",&AngleEMU, "AngleEMU/F"); treeWithBDT->Branch("Centrality",&Centrality, "Centrality/F"); treeWithBDT->Branch("MET",&MET, "MET/F"); treeWithBDT->Branch("EvntShpAplanarity",&EvntShpAplanarity, "EvntShpAplanarity/F"); treeWithBDT->Branch("EvntShpSphericity",&EvntShpSphericity, "EvntShpSphericity/F"); treeWithBDT->Branch("EvntShpIsotropy",&EvntShpIsotropy, "EvntShpIsotropy/F"); treeWithBDT->Branch("Zphi",&Zphi, "Zphi/F"); treeWithBDT->Branch("Hphi",&Hphi, "Hphi/F"); treeWithBDT->Branch("Mte",&Mte, "Mte/F"); treeWithBDT->Branch("Mtmu",&Mtmu, "Mtmu/F"); treeWithBDT->Branch("dPhiHMET",&dPhiHMET, "dPhiHMET/F"); treeWithBDT->Branch("Dphiemu",&Dphiemu, "Dphiemu/F"); treeWithBDT->Branch("delRjj",&delRjj, "delRjj/F"); treeWithBDT->Branch("delRemu",&delRemu, "delRemu/F"); treeWithBDT->Branch("DphiZMET",&DphiZMET, "DphiZMET/F"); treeWithBDT->Branch("DeltaPhijetMETmin",&DeltaPhijetMETmin, "DeltaPhijetMETmin/F"); treeWithBDT->Branch("BDTvalue",&BDTvalue, "BDTvalue/F"); treeWithBDT->Branch("AngleHemu",&AngleHemu, "AngleHemu/F"); treeWithBDT->Branch("ProjVisT",&ProjVisT, "ProjVisT/F"); treeWithBDT->Branch("topMass",&topMass, "topMass/F"); treeWithBDT->Branch("topPt",&topPt, "topPt/F"); treeWithBDT->Branch("ZmassSVD",&ZmassSVD, "ZmassSVD/F"); treeWithBDT->Branch("ZmassSVDnegSol",&ZmassSVDnegSol, "ZmassSVDnegSol/F"); treeWithBDT->Branch("Zmass",&Zmass, "Zmass/F"); treeWithBDT->Branch("ZmassNegInclu",&ZmassNegInclu, "ZmassNegInclu/F"); treeWithBDT->Branch("topMass",&topMass, "topMass/F"); treeWithBDT->Branch("Mt",&Mt, "Mt/F"); UInt_t nbin = 15; TH1F *histLk(0), *histLkD(0), *histLkPCA(0), *histLkKDE(0), *histLkMIX(0), *histPD(0), *histPDD(0); TH1F *histPDPCA(0), *histPDEFoam(0), *histPDEFoamErr(0), *histPDEFoamSig(0), *histKNN(0), *histHm(0); TH1F *histFi(0), *histFiG(0), *histFiB(0), *histLD(0), *histNn(0),*histNnbfgs(0),*histNnbnn(0); TH1F *histNnC(0), *histNnT(0), *histBdt(0), *histBdtG(0), *histBdtD(0), *histRf(0), *histSVMG(0); TH1F *histSVMP(0), *histSVML(0), *histFDAMT(0), *histFDAGA(0), *histCat(0), *histPBdt(0); if (Use["Likelihood"]) histLk = new TH1F( "MVA_Likelihood", "MVA_Likelihood", nbin, -1, 1 ); if (Use["LikelihoodD"]) histLkD = new TH1F( "MVA_LikelihoodD", "MVA_LikelihoodD", nbin, -1, 0.9999 ); if (Use["LikelihoodPCA"]) histLkPCA = new TH1F( "MVA_LikelihoodPCA", "MVA_LikelihoodPCA", nbin, -1, 1 ); if (Use["LikelihoodKDE"]) histLkKDE = new TH1F( "MVA_LikelihoodKDE", "MVA_LikelihoodKDE", nbin, -0.00001, 0.99999 ); if (Use["LikelihoodMIX"]) histLkMIX = new TH1F( "MVA_LikelihoodMIX", "MVA_LikelihoodMIX", nbin, 0, 1 ); if (Use["PDERS"]) histPD = new TH1F( "MVA_PDERS", "MVA_PDERS", nbin, 0, 1 ); if (Use["PDERSD"]) histPDD = new TH1F( "MVA_PDERSD", "MVA_PDERSD", nbin, 0, 1 ); if (Use["PDERSPCA"]) histPDPCA = new TH1F( "MVA_PDERSPCA", "MVA_PDERSPCA", nbin, 0, 1 ); if (Use["KNN"]) histKNN = new TH1F( "MVA_KNN", "MVA_KNN", nbin, 0, 1 ); if (Use["HMatrix"]) histHm = new TH1F( "MVA_HMatrix", "MVA_HMatrix", nbin, -0.95, 1.55 ); if (Use["Fisher"]) histFi = new TH1F( "MVA_Fisher", "MVA_Fisher", nbin, -4, 4 ); if (Use["FisherG"]) histFiG = new TH1F( "MVA_FisherG", "MVA_FisherG", nbin, -1, 1 ); if (Use["BoostedFisher"]) histFiB = new TH1F( "MVA_BoostedFisher", "MVA_BoostedFisher", nbin, -2, 2 ); if (Use["LD"]) histLD = new TH1F( "MVA_LD", "MVA_LD", nbin, -2, 2 ); if (Use["MLP"]) histNn = new TH1F( "MVA_MLP", "MVA_MLP", nbin, -1.25, 1.5 ); if (Use["MLPBFGS"]) histNnbfgs = new TH1F( "MVA_MLPBFGS", "MVA_MLPBFGS", nbin, -1.25, 1.5 ); if (Use["MLPBNN"]) histNnbnn = new TH1F( "MVA_MLPBNN", "MVA_MLPBNN", nbin, -1.25, 1.5 ); if (Use["CFMlpANN"]) histNnC = new TH1F( "MVA_CFMlpANN", "MVA_CFMlpANN", nbin, 0, 1 ); if (Use["TMlpANN"]) histNnT = new TH1F( "MVA_TMlpANN", "MVA_TMlpANN", nbin, -1.3, 1.3 ); if (Use["BDT"]) { histMattBdt = new TH1F( "Matt_BDT", "Matt_BDT", 15, -1.1, 0.35 ); histTMVABdt = new TH1F( "TMVA_BDT", "TMVA_BDT", 36, -1.0, -0.1 ); } if (Use["BDTD"]) histBdtD = new TH1F( "MVA_BDTD", "MVA_BDTD", nbin, -0.8, 0.8 ); if (Use["BDTG"]) histBdtG = new TH1F( "MVA_BDTG", "MVA_BDTG", nbin, -1.0, 1.0 ); if (Use["RuleFit"]) histRf = new TH1F( "MVA_RuleFit", "MVA_RuleFit", nbin, -2.0, 2.0 ); if (Use["SVM_Gauss"]) histSVMG = new TH1F( "MVA_SVM_Gauss", "MVA_SVM_Gauss", nbin, 0.0, 1.0 ); if (Use["SVM_Poly"]) histSVMP = new TH1F( "MVA_SVM_Poly", "MVA_SVM_Poly", nbin, 0.0, 1.0 ); if (Use["SVM_Lin"]) histSVML = new TH1F( "MVA_SVM_Lin", "MVA_SVM_Lin", nbin, 0.0, 1.0 ); if (Use["FDA_MT"]) histFDAMT = new TH1F( "MVA_FDA_MT", "MVA_FDA_MT", nbin, -2.0, 3.0 ); if (Use["FDA_GA"]) histFDAGA = new TH1F( "MVA_FDA_GA", "MVA_FDA_GA", nbin, -2.0, 3.0 ); if (Use["Category"]) histCat = new TH1F( "MVA_Category", "MVA_Category", nbin, -2., 2. ); if (Use["Plugin"]) histPBdt = new TH1F( "MVA_PBDT", "MVA_BDT", nbin, -0.8, 0.8 ); // PDEFoam also returns per-event error, fill in histogram, and also fill significance if (Use["PDEFoam"]) { histPDEFoam = new TH1F( "MVA_PDEFoam", "MVA_PDEFoam", nbin, 0, 1 ); histPDEFoamErr = new TH1F( "MVA_PDEFoamErr", "MVA_PDEFoam error", nbin, 0, 1 ); histPDEFoamSig = new TH1F( "MVA_PDEFoamSig", "MVA_PDEFoam significance", nbin, 0, 10 ); } // Book example histogram for probability (the other methods are done similarly) TH1F *probHistFi(0), *rarityHistFi(0); if (Use["Fisher"]) { probHistFi = new TH1F( "MVA_Fisher_Proba", "MVA_Fisher_Proba", nbin, 0, 1 ); rarityHistFi = new TH1F( "MVA_Fisher_Rarity", "MVA_Fisher_Rarity", nbin, 0, 1 ); } // Prepare input tree (this must be replaced by your data source) // in this example, there is a toy tree with signal and one with background events // we'll later on use only the "signal" events for the test in this example. // TFile *input(0); TString fname = "/home/hep/wilken/taus/CMSSW_4_4_2_patch8/src/UserCode/wilken/V21/DY_PtZ.root"; double lumi = 4.457; Double_t DY_PtZ_weight = lumi/(lumiZJH/2.0); //WW_TuneZ2_7TeV_pythia6_tauola if (!gSystem->AccessPathName( fname )) input = TFile::Open( fname ); // check if file in local directory exists else input = TFile::Open( "http://root.cern.ch/files/tmva_class_example.root" ); // if not: download from ROOT server if (!input) { std::cout << "ERROR: could not open data file" << std::endl; exit(1); } std::cout << "--- TMVAClassificationApp : Using input file: " << input->GetName() << std::endl; // --- Event loop // Prepare the event tree // - here the variable names have to corresponds to your tree // - you can use the same variables as above which is slightly faster, // but of course you can use different ones and copy the values inside the event loop // std::cout << "--- Select signal sample" << std::endl; TTree* theTree = (TTree*)input->Get("BDT_btree"); theTree->SetBranchAddress( "Hmass", &Hmass ); theTree->SetBranchAddress( "Emumass", &Emumass ); theTree->SetBranchAddress( "Hpt", &Hpt ); theTree->SetBranchAddress( "Zpt", &Zpt ); theTree->SetBranchAddress( "CSV0", &CSV0 ); theTree->SetBranchAddress( "CSV1", &CSV1 ); theTree->SetBranchAddress( "DeltaPhiHV", &DeltaPhiHV ); theTree->SetBranchAddress( "DetaJJ", &DetaJJ ); theTree->SetBranchAddress( "UnweightedEta", &UnweightedEta ); theTree->SetBranchAddress( "lep0pt", &lep0pt ); theTree->SetBranchAddress( "Ht", &Ht ); theTree->SetBranchAddress( "EvntShpCircularity", &EvntShpCircularity ); theTree->SetBranchAddress( "nJets", &nJets ); theTree->SetBranchAddress( "naJets",&naJets); theTree->SetBranchAddress( "nSV", &nSV ); theTree->SetBranchAddress( "lep1pt", &lep1pt ); theTree->SetBranchAddress( "lep0pt", &lep0pt ); theTree->SetBranchAddress( "EtaStandDev", &EtaStandDev ); theTree->SetBranchAddress( "UnweightedEta", &UnweightedEta ); theTree->SetBranchAddress( "jetCHF0", &jetCHF0 ); theTree->SetBranchAddress( "jetCHF1", &jetCHF1 ); theTree->SetBranchAddress( "lep_pfCombRelIso0", &lep_pfCombRelIso0 ); theTree->SetBranchAddress( "lep_pfCombRelIso1", &lep_pfCombRelIso1 ); theTree->SetBranchAddress( "DphiJJ", &DphiJJ ); theTree->SetBranchAddress( "RMS_eta", &RMS_eta ); theTree->SetBranchAddress( "PtbalZH", &PtbalZH ); theTree->SetBranchAddress( "EventPt", &EventPt ); theTree->SetBranchAddress( "AngleEMU", &AngleEMU ); theTree->SetBranchAddress( "Centrality", &Centrality ); theTree->SetBranchAddress( "EvntShpAplanarity", &EvntShpAplanarity ); theTree->SetBranchAddress( "EvntShpSphericity", &EvntShpSphericity ); theTree->SetBranchAddress( "EvntShpIsotropy", &EvntShpIsotropy ); theTree->SetBranchAddress( "Trigweight", &Trigweight ); theTree->SetBranchAddress( "B2011PUweight", &B2011PUweight ); theTree->SetBranchAddress( "A2011PUweight", &A2011PUweight ); theTree->SetBranchAddress( "btag2CSF", &btag2CSF ); theTree->SetBranchAddress( "MET", &MET ); theTree->SetBranchAddress( "Mte" , &Mte ); theTree->SetBranchAddress( "Mtmu" , &Mtmu ); theTree->SetBranchAddress( "dPhiHMET" , &dPhiHMET ); theTree->SetBranchAddress( "DeltaPhijetMETmin" , &DeltaPhijetMETmin ); theTree->SetBranchAddress( "delRjj" , &delRjj ); theTree->SetBranchAddress( "delRemu" , &delRemu ); theTree->SetBranchAddress( "DphiZMET" , &DphiZMET ); theTree->SetBranchAddress( "Dphiemu" , &Dphiemu ); theTree->SetBranchAddress( "DeltaPhijetMETmin" , &DeltaPhijetMETmin ); theTree->SetBranchAddress("AngleHemu",&AngleHemu); theTree->SetBranchAddress("ProjVisT",&ProjVisT); theTree->SetBranchAddress("topMass",&topMass); theTree->SetBranchAddress("topPt",&topPt); theTree->SetBranchAddress("ZmassSVD",&ZmassSVD); theTree->SetBranchAddress("ZmassSVDnegSol",&ZmassSVDnegSol); theTree->SetBranchAddress("Zmass",&Zmass); theTree->SetBranchAddress("ZmassNegInclu",&ZmassNegInclu); theTree->SetBranchAddress("topMass",&topMass); theTree->SetBranchAddress("Mt",&Mt); theTree->SetBranchAddress( "eventFlavor", &eventFlavor ); // Efficiency calculator for cut method Int_t nSelCutsGA = 0; Double_t effS = 0.7; TTree* TMVATree = (TTree*)input->Get("TMVA_tree"); int NumInTree = theTree->GetEntries(); int NumberTMVAtree = TMVATree->GetEntries(); DY_PtZ_weight = DY_PtZ_weight* ( NumInTree /float(NumberTMVAtree)) ; std::vector<Float_t> vecVar(4); // vector for EvaluateMVA tests std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl; TStopwatch sw; sw.Start(); int Nevents = 0, NpassBDT = 0; for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) { Nevents++; if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl; theTree->GetEntry(ievt); // var1 = userVar1 + userVar2; // var2 = userVar1 - userVar2; // --- Return the MVA outputs and fill into histograms if (Use["CutsGA"]) { // Cuts is a special case: give the desired signal efficienciy Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS ); if (passed) nSelCutsGA++; } if (Use["Likelihood" ]) histLk ->Fill( reader->EvaluateMVA( "Likelihood method" ) ); if (Use["LikelihoodD" ]) histLkD ->Fill( reader->EvaluateMVA( "LikelihoodD method" ) ); if (Use["LikelihoodPCA"]) histLkPCA ->Fill( reader->EvaluateMVA( "LikelihoodPCA method" ) ); if (Use["LikelihoodKDE"]) histLkKDE ->Fill( reader->EvaluateMVA( "LikelihoodKDE method" ) ); if (Use["LikelihoodMIX"]) histLkMIX ->Fill( reader->EvaluateMVA( "LikelihoodMIX method" ) ); if (Use["PDERS" ]) histPD ->Fill( reader->EvaluateMVA( "PDERS method" ) ); if (Use["PDERSD" ]) histPDD ->Fill( reader->EvaluateMVA( "PDERSD method" ) ); if (Use["PDERSPCA" ]) histPDPCA ->Fill( reader->EvaluateMVA( "PDERSPCA method" ) ); if (Use["KNN" ]) histKNN ->Fill( reader->EvaluateMVA( "KNN method" ) ); if (Use["HMatrix" ]) histHm ->Fill( reader->EvaluateMVA( "HMatrix method" ) ); if (Use["Fisher" ]) histFi ->Fill( reader->EvaluateMVA( "Fisher method" ) ); if (Use["FisherG" ]) histFiG ->Fill( reader->EvaluateMVA( "FisherG method" ) ); if (Use["BoostedFisher"]) histFiB ->Fill( reader->EvaluateMVA( "BoostedFisher method" ) ); if (Use["LD" ]) histLD ->Fill( reader->EvaluateMVA( "LD method" ) ); if (Use["MLP" ]) histNn ->Fill( reader->EvaluateMVA( "MLP method" ) ); if (Use["MLPBFGS" ]) histNnbfgs ->Fill( reader->EvaluateMVA( "MLPBFGS method" ) ); if (Use["MLPBNN" ]) histNnbnn ->Fill( reader->EvaluateMVA( "MLPBNN method" ) ); if (Use["CFMlpANN" ]) histNnC ->Fill( reader->EvaluateMVA( "CFMlpANN method" ) ); if (Use["TMlpANN" ]) histNnT ->Fill( reader->EvaluateMVA( "TMlpANN method" ) ); if (Use["BDT" ]) { BDTvalue = reader->EvaluateMVA( "BDT method" ); histMattBdt ->Fill( BDTvalue,DY_PtZ_weight*Trigweight*B2011PUweight ); histTMVABdt ->Fill( BDTvalue,DY_PtZ_weight*Trigweight*B2011PUweight ); } if (Use["BDTD" ]) histBdtD ->Fill( reader->EvaluateMVA( "BDTD method" ) ); if (Use["BDTG" ]) histBdtG ->Fill( reader->EvaluateMVA( "BDTG method" ) ); if (Use["RuleFit" ]) histRf ->Fill( reader->EvaluateMVA( "RuleFit method" ) ); if (Use["SVM_Gauss" ]) histSVMG ->Fill( reader->EvaluateMVA( "SVM_Gauss method" ) ); if (Use["SVM_Poly" ]) histSVMP ->Fill( reader->EvaluateMVA( "SVM_Poly method" ) ); if (Use["SVM_Lin" ]) histSVML ->Fill( reader->EvaluateMVA( "SVM_Lin method" ) ); if (Use["FDA_MT" ]) histFDAMT ->Fill( reader->EvaluateMVA( "FDA_MT method" ) ); if (Use["FDA_GA" ]) histFDAGA ->Fill( reader->EvaluateMVA( "FDA_GA method" ) ); if (Use["Category" ]) histCat ->Fill( reader->EvaluateMVA( "Category method" ) ); if (Use["Plugin" ]) histPBdt ->Fill( reader->EvaluateMVA( "P_BDT method" ) ); // Retrieve also per-event error if (Use["PDEFoam"]) { Double_t val = reader->EvaluateMVA( "PDEFoam method" ); Double_t err = reader->GetMVAError(); histPDEFoam ->Fill( val ); histPDEFoamErr->Fill( err ); if (err>1.e-50) histPDEFoamSig->Fill( val/err ); } // Retrieve probability instead of MVA output if (Use["Fisher"]) { probHistFi ->Fill( reader->GetProba ( "Fisher method" ) ); rarityHistFi->Fill( reader->GetRarity( "Fisher method" ) ); } // std::cout << "Ht is "<< Ht << endl; if(BDTvalue>-1.50){ NpassBDT++; hMjj_OpenSelection->Fill(Hmass,DY_PtZ_weight*Trigweight*B2011PUweight ); hMmumu_OpenSelection->Fill(Emumass,DY_PtZ_weight*Trigweight*B2011PUweight ); hPtjj_OpenSelection->Fill(Hpt,DY_PtZ_weight*Trigweight*B2011PUweight ); hPtmumu_OpenSelection->Fill(Zpt,DY_PtZ_weight*Trigweight*B2011PUweight ); hCSV0_OpenSelection->Fill(CSV0,DY_PtZ_weight*Trigweight*B2011PUweight ); hCSV1_OpenSelection->Fill(CSV1,DY_PtZ_weight*Trigweight*B2011PUweight ); hdphiVH_OpenSelection->Fill(DeltaPhiHV,DY_PtZ_weight*Trigweight*B2011PUweight ); hdetaJJ_OpenSelection->Fill(DetaJJ,DY_PtZ_weight*Trigweight*B2011PUweight ); hUnweightedEta_OpenSelection->Fill(UnweightedEta,DY_PtZ_weight*Trigweight*B2011PUweight ); hPtmu0_OpenSelection->Fill(lep0pt,DY_PtZ_weight*Trigweight*B2011PUweight ); hHt_OpenSelection->Fill(Ht,DY_PtZ_weight*Trigweight*B2011PUweight ); hCircularity_OpenSelection->Fill(EvntShpCircularity,DY_PtZ_weight*Trigweight*B2011PUweight ); hCHFb0_OpenSelection->Fill(jetCHF0, DY_PtZ_weight*Trigweight*B2011PUweight ); hCHFb1_OpenSelection->Fill(jetCHF1, DY_PtZ_weight*Trigweight*B2011PUweight ); hPtbalZH_OpenSelection->Fill(PtbalZH, DY_PtZ_weight*Trigweight*B2011PUweight ); hPtmu1_OpenSelection->Fill(lep1pt, DY_PtZ_weight*Trigweight*B2011PUweight ); hPFRelIsomu0_OpenSelection->Fill(lep_pfCombRelIso0, DY_PtZ_weight*Trigweight*B2011PUweight ); hPFRelIsomu1_OpenSelection->Fill(lep_pfCombRelIso1, DY_PtZ_weight*Trigweight*B2011PUweight ); hNjets_OpenSelection->Fill(nJets, DY_PtZ_weight*Trigweight*B2011PUweight ); hRMSeta_OpenSelection->Fill(RMS_eta, DY_PtZ_weight*Trigweight*B2011PUweight ); hStaDeveta_OpenSelection->Fill(EtaStandDev, DY_PtZ_weight*Trigweight*B2011PUweight ); hdphiJJ_vect_OpenSelection->Fill(DphiJJ, DY_PtZ_weight*Trigweight*B2011PUweight ); hCentrality_OpenSelection->Fill(Centrality, DY_PtZ_weight*Trigweight*B2011PUweight ); hEventPt_OpenSelection->Fill(EventPt, DY_PtZ_weight*Trigweight*B2011PUweight ); hAngleEMU_OpenSelection->Fill(AngleEMU, DY_PtZ_weight*Trigweight*B2011PUweight ); hSphericity_OpenSelection->Fill(EvntShpSphericity, DY_PtZ_weight*Trigweight*B2011PUweight ); hAplanarity_OpenSelection->Fill(EvntShpAplanarity, DY_PtZ_weight*Trigweight*B2011PUweight ); hIsotropy_OpenSelection->Fill(EvntShpIsotropy, DY_PtZ_weight*Trigweight*B2011PUweight ); hDphiDetajj_OpenSelection->Fill(DphiJJ, DetaJJ, DY_PtZ_weight*Trigweight*B2011PUweight ); hMte_OpenSelection->Fill(Mte, DY_PtZ_weight*Trigweight*B2011PUweight ); hMtmu_OpenSelection->Fill(Mtmu, DY_PtZ_weight*Trigweight*B2011PUweight ); hdPhiHMET_OpenSelection->Fill(dPhiHMET, DY_PtZ_weight*Trigweight*B2011PUweight ); hDphiemu_OpenSelection->Fill(DeltaPhijetMETmin, DY_PtZ_weight*Trigweight*B2011PUweight ); hdelRjj_OpenSelection->Fill(delRjj, DY_PtZ_weight*Trigweight*B2011PUweight ); hdelRemu_OpenSelection->Fill(delRemu, DY_PtZ_weight*Trigweight*B2011PUweight ); hDphiZMET_OpenSelection->Fill(DphiZMET, DY_PtZ_weight*Trigweight*B2011PUweight ); hDphiemu_OpenSelection->Fill(Dphiemu, DY_PtZ_weight*Trigweight*B2011PUweight ); hDeltaPhijetMETmin_OpenSelection->Fill(DeltaPhijetMETmin, DY_PtZ_weight*Trigweight*B2011PUweight ); hAngleHemu_OpenSelection->Fill(AngleHemu, DY_PtZ_weight*Trigweight*B2011PUweight ); hProjVisT_OpenSelection->Fill(ProjVisT, DY_PtZ_weight*Trigweight*B2011PUweight ); htopMass_OpenSelection->Fill(topMass, DY_PtZ_weight*Trigweight*B2011PUweight ); htopPt_OpenSelection->Fill(topPt, DY_PtZ_weight*Trigweight*B2011PUweight ); hVMt_OpenSelection->Fill(Mt, DY_PtZ_weight*Trigweight*B2011PUweight ); hZmassSVD_OpenSelection->Fill(ZmassSVD, DY_PtZ_weight*Trigweight*B2011PUweight ); hZmassSVDnegSol_OpenSelection->Fill(ZmassSVDnegSol, DY_PtZ_weight*Trigweight*B2011PUweight ); hZmass_OpenSelection->Fill(Zmass, DY_PtZ_weight*Trigweight*B2011PUweight ); hZmassNegInclu_OpenSelection->Fill(ZmassNegInclu, DY_PtZ_weight*Trigweight*B2011PUweight ); } treeWithBDT->Fill(); }//end event loop // Get elapsed time sw.Stop(); std::cout << "--- End of event loop: "; sw.Print(); std::cout << "Number of Events: "<< Nevents << " Events passed BDT " << NpassBDT<< endl; // Get efficiency for cuts classifier if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries() << " (for a required signal efficiency of " << effS << ")" << std::endl; if (Use["CutsGA"]) { // test: retrieve cuts for particular signal efficiency // CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ; if (mcuts) { std::vector<Double_t> cutsMin; std::vector<Double_t> cutsMax; mcuts->GetCuts( 0.7, cutsMin, cutsMax ); std::cout << "--- -------------------------------------------------------------" << std::endl; std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl; for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) { std::cout << "... Cut: " << cutsMin[ivar] << " < \"" << mcuts->GetInputVar(ivar) << "\" <= " << cutsMax[ivar] << std::endl; } std::cout << "--- -------------------------------------------------------------" << std::endl; } } // --- Write histograms TFile *target = new TFile( "BDTCut_DYPtZ_HF.root","RECREATE" ); if (Use["Likelihood" ]) histLk ->Write(); if (Use["LikelihoodD" ]) histLkD ->Write(); if (Use["LikelihoodPCA"]) histLkPCA ->Write(); if (Use["LikelihoodKDE"]) histLkKDE ->Write(); if (Use["LikelihoodMIX"]) histLkMIX ->Write(); if (Use["PDERS" ]) histPD ->Write(); if (Use["PDERSD" ]) histPDD ->Write(); if (Use["PDERSPCA" ]) histPDPCA ->Write(); if (Use["KNN" ]) histKNN ->Write(); if (Use["HMatrix" ]) histHm ->Write(); if (Use["Fisher" ]) histFi ->Write(); if (Use["FisherG" ]) histFiG ->Write(); if (Use["BoostedFisher"]) histFiB ->Write(); if (Use["LD" ]) histLD ->Write(); if (Use["MLP" ]) histNn ->Write(); if (Use["MLPBFGS" ]) histNnbfgs ->Write(); if (Use["MLPBNN" ]) histNnbnn ->Write(); if (Use["CFMlpANN" ]) histNnC ->Write(); if (Use["TMlpANN" ]) histNnT ->Write(); if (Use["BDT" ]) { histMattBdt ->Write(); histTMVABdt ->Write(); } if (Use["BDTD" ]) histBdtD ->Write(); if (Use["BDTG" ]) histBdtG ->Write(); if (Use["RuleFit" ]) histRf ->Write(); if (Use["SVM_Gauss" ]) histSVMG ->Write(); if (Use["SVM_Poly" ]) histSVMP ->Write(); if (Use["SVM_Lin" ]) histSVML ->Write(); if (Use["FDA_MT" ]) histFDAMT ->Write(); if (Use["FDA_GA" ]) histFDAGA ->Write(); if (Use["Category" ]) histCat ->Write(); if (Use["Plugin" ]) histPBdt ->Write(); // Write also error and significance histos if (Use["PDEFoam"]) { histPDEFoam->Write(); histPDEFoamErr->Write(); histPDEFoamSig->Write(); } // Write also probability hists if (Use["Fisher"]) { if (probHistFi != 0) probHistFi->Write(); if (rarityHistFi != 0) rarityHistFi->Write(); } hCHFb0_OpenSelection->Write(); hCHFb1_OpenSelection->Write(); hPtbalZH_OpenSelection->Write(); hPtmu1_OpenSelection->Write(); hPFRelIsomu0_OpenSelection->Write(); hPFRelIsomu1_OpenSelection->Write(); hMjj_OpenSelection->Write(); hMmumu_OpenSelection->Write(); hPtjj_OpenSelection->Write(); hPtmumu_OpenSelection->Write(); hCSV0_OpenSelection->Write(); hCSV1_OpenSelection->Write(); hdphiVH_OpenSelection->Write(); hdetaJJ_OpenSelection->Write(); hUnweightedEta_OpenSelection->Write(); hPtmu0_OpenSelection->Write(); hCircularity_OpenSelection->Write(); hHt_OpenSelection->Write(); hNjets_OpenSelection->Write(); hRMSeta_OpenSelection->Write(); hStaDeveta_OpenSelection->Write(); hdphiJJ_vect_OpenSelection->Write(); hCentrality_OpenSelection->Write(); hEventPt_OpenSelection->Write(); hAngleEMU_OpenSelection->Write(); hSphericity_OpenSelection->Write(); hAplanarity_OpenSelection->Write(); hIsotropy_OpenSelection->Write(); hDphiDetajj_OpenSelection->Write(); hMtmu_OpenSelection->Write(); hMte_OpenSelection->Write(); hdPhiHMET_OpenSelection->Write(); hDphiemu_OpenSelection->Write(); hdelRjj_OpenSelection->Write(); hdelRemu_OpenSelection->Write(); hDphiZMET_OpenSelection->Write(); hDeltaPhijetMETmin_OpenSelection->Write(); hAngleHemu_OpenSelection->Write(); hProjVisT_OpenSelection->Write(); htopMass_OpenSelection->Write(); htopPt_OpenSelection->Write(); hVMt_OpenSelection->Write(); hZmassSVD_OpenSelection->Write(); hZmassSVDnegSol_OpenSelection->Write(); hZmass_OpenSelection->Write(); hZmassNegInclu_OpenSelection->Write(); treeWithBDT->Write(); target->Close(); delete reader; hCHFb0_OpenSelection->Delete(); hCHFb1_OpenSelection->Delete(); hPtbalZH_OpenSelection->Delete(); hPtmu1_OpenSelection->Delete(); hPFRelIsomu0_OpenSelection->Delete(); hPFRelIsomu1_OpenSelection->Delete(); hMjj_OpenSelection->Delete(); hMmumu_OpenSelection->Delete(); hPtjj_OpenSelection->Delete(); hPtmumu_OpenSelection->Delete(); hCSV0_OpenSelection->Delete(); hCSV1_OpenSelection->Delete(); hdphiVH_OpenSelection->Delete(); hdetaJJ_OpenSelection->Delete(); hUnweightedEta_OpenSelection->Delete(); hPtmu0_OpenSelection->Delete(); hCircularity_OpenSelection->Delete(); hHt_OpenSelection->Delete(); hNjets_OpenSelection->Delete(); hRMSeta_OpenSelection->Delete(); hStaDeveta_OpenSelection->Delete(); hdphiJJ_vect_OpenSelection->Delete(); hCentrality_OpenSelection->Delete(); hEventPt_OpenSelection->Delete(); hAngleEMU_OpenSelection->Delete(); hSphericity_OpenSelection->Delete(); hAplanarity_OpenSelection->Delete(); hIsotropy_OpenSelection->Delete(); hDphiDetajj_OpenSelection->Delete(); hMtmu_OpenSelection->Delete(); hMte_OpenSelection->Delete(); hdPhiHMET_OpenSelection->Delete(); hDphiemu_OpenSelection->Delete(); hdelRjj_OpenSelection->Delete(); hdelRemu_OpenSelection->Delete(); hDphiZMET_OpenSelection->Delete(); hDeltaPhijetMETmin_OpenSelection->Delete(); hAngleHemu_OpenSelection->Delete(); hProjVisT_OpenSelection->Delete(); htopMass_OpenSelection->Delete(); htopPt_OpenSelection->Delete(); hVMt_OpenSelection->Delete(); hZmassSVD_OpenSelection->Delete(); hZmassSVDnegSol_OpenSelection->Delete(); hZmass_OpenSelection->Delete(); hZmassNegInclu_OpenSelection->Delete(); if (Use["BDT" ]) { histMattBdt ->Delete(); histTMVABdt ->Delete(); } treeWithBDT->Delete(); std::cout << "==> DYPtZ_HF_BDTCut is done!" << endl << std::endl; gROOT->ProcessLine(".q"); }
void TMVAClassificationApplicationLambda( TString myMethodList = "" ) { #ifdef __CINT__ gROOT->ProcessLine( ".O0" ); // turn off optimization in CINT #endif //--------------------------------------------------------------- // This loads the library TMVA::Tools::Instance(); // Default MVA methods to be trained + tested std::map<std::string,int> Use; // --- Cut optimisation Use["Cuts"] = 1; Use["CutsD"] = 1; Use["CutsPCA"] = 0; Use["CutsGA"] = 0; Use["CutsSA"] = 0; // // --- 1-dimensional likelihood ("naive Bayes estimator") Use["Likelihood"] = 1; Use["LikelihoodD"] = 0; // the "D" extension indicates decorrelated input variables (see option strings) Use["LikelihoodPCA"] = 1; // the "PCA" extension indicates PCA-transformed input variables (see option strings) Use["LikelihoodKDE"] = 0; Use["LikelihoodMIX"] = 0; // // --- Mutidimensional likelihood and Nearest-Neighbour methods Use["PDERS"] = 1; Use["PDERSD"] = 0; Use["PDERSPCA"] = 0; Use["PDEFoam"] = 1; Use["PDEFoamBoost"] = 0; // uses generalised MVA method boosting Use["KNN"] = 1; // k-nearest neighbour method // // --- Linear Discriminant Analysis Use["LD"] = 1; // Linear Discriminant identical to Fisher Use["Fisher"] = 0; Use["FisherG"] = 0; Use["BoostedFisher"] = 0; // uses generalised MVA method boosting Use["HMatrix"] = 0; // // --- Function Discriminant analysis Use["FDA_GA"] = 1; // minimisation of user-defined function using Genetics Algorithm Use["FDA_SA"] = 0; Use["FDA_MC"] = 0; Use["FDA_MT"] = 0; Use["FDA_GAMT"] = 0; Use["FDA_MCMT"] = 0; // // --- Neural Networks (all are feed-forward Multilayer Perceptrons) Use["MLP"] = 0; // Recommended ANN Use["MLPBFGS"] = 0; // Recommended ANN with optional training method Use["MLPBNN"] = 1; // Recommended ANN with BFGS training method and bayesian regulator Use["CFMlpANN"] = 0; // Depreciated ANN from ALEPH Use["TMlpANN"] = 0; // ROOT's own ANN // // --- Support Vector Machine Use["SVM"] = 1; // // --- Boosted Decision Trees Use["BDT"] = 1; // uses Adaptive Boost Use["BDTG"] = 0; // uses Gradient Boost Use["BDTB"] = 0; // uses Bagging Use["BDTD"] = 0; // decorrelation + Adaptive Boost // // --- Friedman's RuleFit method, ie, an optimised series of cuts ("rules") Use["RuleFit"] = 1; // --------------------------------------------------------------- Use["Plugin"] = 0; Use["Category"] = 0; Use["SVM_Gauss"] = 0; Use["SVM_Poly"] = 0; Use["SVM_Lin"] = 0; std::cout << std::endl; std::cout << "==> Start TMVAClassificationApplication" << std::endl; // Select methods (don't look at this code - not of interest) if (myMethodList != "") { for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0; std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' ); for (UInt_t i=0; i<mlist.size(); i++) { std::string regMethod(mlist[i]); if (Use.find(regMethod) == Use.end()) { std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl; for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { std::cout << it->first << " "; } std::cout << std::endl; return; } Use[regMethod] = 1; } } // -------------------------------------------------------------------------------------------------- // --- Create the Reader object TMVA::Reader *reader = new TMVA::Reader( "!Color:!Silent" ); // Create a set of variables and declare them to the reader // - the variable names MUST corresponds in name and type to those given in the weight file(s) used //Float_t var1, var2; //Float_t var3, var4; Float_t la_agl, la_dlos, la_dau1_dzos, la_dau1_dxyos, la_dau2_dzos, la_dau2_dxyos; Float_t la_vtxChi2, la_dau1_nhit, la_dau2_nhit; reader->AddVariable( "la_agl", &la_agl ); reader->AddVariable( "la_dlos", &la_dlos ); reader->AddVariable( "la_dau1_dzos", &la_dau1_dzos ); reader->AddVariable( "la_dau2_dzos",&la_dau2_dzos); reader->AddVariable( "la_dau1_dxyos", &la_dau1_dxyos ); reader->AddVariable( "la_dau2_dxyos",&la_dau2_dxyos); reader->AddVariable( "la_vtxChi2",&la_vtxChi2); reader->AddVariable( "la_dau1_nhit",&la_dau1_nhit); reader->AddVariable( "la_dau2_nhit",&la_dau2_nhit); // Spectator variables declared in the training have to be added to the reader, too Float_t la_mass; reader->AddSpectator( "la_mass", &la_mass ); //reader->AddSpectator( "spec2 := var1*3", &spec2 ); /* Float_t Category_cat1, Category_cat2, Category_cat3; if (Use["Category"]){ // Add artificial spectators for distinguishing categories reader->AddSpectator( "Category_cat1 := var3<=0", &Category_cat1 ); reader->AddSpectator( "Category_cat2 := (var3>0)&&(var4<0)", &Category_cat2 ); reader->AddSpectator( "Category_cat3 := (var3>0)&&(var4>=0)", &Category_cat3 ); } */ // --- Book the MVA methods TString dir = "weights/"; TString prefix = "TMVAClassification"; // Book method(s) for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { if (it->second) { TString methodName = TString(it->first) + TString(" method"); TString weightfile = dir + prefix + TString("_") + TString(it->first) + TString(".weights.xml"); reader->BookMVA( methodName, weightfile ); } } // Book output histograms UInt_t nbin = 100; TH1F *histLk(0), *histLkD(0), *histLkPCA(0), *histLkKDE(0), *histLkMIX(0), *histPD(0), *histPDD(0); TH1F *histPDPCA(0), *histPDEFoam(0), *histPDEFoamErr(0), *histPDEFoamSig(0), *histKNN(0), *histHm(0); TH1F *histFi(0), *histFiG(0), *histFiB(0), *histLD(0), *histNn(0),*histNnbfgs(0),*histNnbnn(0); TH1F *histNnC(0), *histNnT(0), *histBdt(0), *histBdtG(0), *histBdtD(0), *histRf(0), *histSVMG(0); TH1F *histSVMP(0), *histSVML(0), *histFDAMT(0), *histFDAGA(0), *histCat(0), *histPBdt(0); if (Use["Likelihood"]) histLk = new TH1F( "MVA_Likelihood", "MVA_Likelihood", nbin, -1, 1 ); if (Use["LikelihoodD"]) histLkD = new TH1F( "MVA_LikelihoodD", "MVA_LikelihoodD", nbin, -1, 0.9999 ); if (Use["LikelihoodPCA"]) histLkPCA = new TH1F( "MVA_LikelihoodPCA", "MVA_LikelihoodPCA", nbin, -1, 1 ); if (Use["LikelihoodKDE"]) histLkKDE = new TH1F( "MVA_LikelihoodKDE", "MVA_LikelihoodKDE", nbin, -0.00001, 0.99999 ); if (Use["LikelihoodMIX"]) histLkMIX = new TH1F( "MVA_LikelihoodMIX", "MVA_LikelihoodMIX", nbin, 0, 1 ); if (Use["PDERS"]) histPD = new TH1F( "MVA_PDERS", "MVA_PDERS", nbin, 0, 1 ); if (Use["PDERSD"]) histPDD = new TH1F( "MVA_PDERSD", "MVA_PDERSD", nbin, 0, 1 ); if (Use["PDERSPCA"]) histPDPCA = new TH1F( "MVA_PDERSPCA", "MVA_PDERSPCA", nbin, 0, 1 ); if (Use["KNN"]) histKNN = new TH1F( "MVA_KNN", "MVA_KNN", nbin, 0, 1 ); if (Use["HMatrix"]) histHm = new TH1F( "MVA_HMatrix", "MVA_HMatrix", nbin, -0.95, 1.55 ); if (Use["Fisher"]) histFi = new TH1F( "MVA_Fisher", "MVA_Fisher", nbin, -4, 4 ); if (Use["FisherG"]) histFiG = new TH1F( "MVA_FisherG", "MVA_FisherG", nbin, -1, 1 ); if (Use["BoostedFisher"]) histFiB = new TH1F( "MVA_BoostedFisher", "MVA_BoostedFisher", nbin, -2, 2 ); if (Use["LD"]) histLD = new TH1F( "MVA_LD", "MVA_LD", nbin, -2, 2 ); if (Use["MLP"]) histNn = new TH1F( "MVA_MLP", "MVA_MLP", nbin, -1.25, 1.5 ); if (Use["MLPBFGS"]) histNnbfgs = new TH1F( "MVA_MLPBFGS", "MVA_MLPBFGS", nbin, -1.25, 1.5 ); if (Use["MLPBNN"]) histNnbnn = new TH1F( "MVA_MLPBNN", "MVA_MLPBNN", nbin, -1.25, 1.5 ); if (Use["CFMlpANN"]) histNnC = new TH1F( "MVA_CFMlpANN", "MVA_CFMlpANN", nbin, 0, 1 ); if (Use["TMlpANN"]) histNnT = new TH1F( "MVA_TMlpANN", "MVA_TMlpANN", nbin, -1.3, 1.3 ); if (Use["BDT"]) histBdt = new TH1F( "MVA_BDT", "MVA_BDT", nbin, -0.8, 0.8 ); if (Use["BDTD"]) histBdtD = new TH1F( "MVA_BDTD", "MVA_BDTD", nbin, -0.8, 0.8 ); if (Use["BDTG"]) histBdtG = new TH1F( "MVA_BDTG", "MVA_BDTG", nbin, -1.0, 1.0 ); if (Use["RuleFit"]) histRf = new TH1F( "MVA_RuleFit", "MVA_RuleFit", nbin, -2.0, 2.0 ); if (Use["SVM_Gauss"]) histSVMG = new TH1F( "MVA_SVM_Gauss", "MVA_SVM_Gauss", nbin, 0.0, 1.0 ); if (Use["SVM_Poly"]) histSVMP = new TH1F( "MVA_SVM_Poly", "MVA_SVM_Poly", nbin, 0.0, 1.0 ); if (Use["SVM_Lin"]) histSVML = new TH1F( "MVA_SVM_Lin", "MVA_SVM_Lin", nbin, 0.0, 1.0 ); if (Use["FDA_MT"]) histFDAMT = new TH1F( "MVA_FDA_MT", "MVA_FDA_MT", nbin, -2.0, 3.0 ); if (Use["FDA_GA"]) histFDAGA = new TH1F( "MVA_FDA_GA", "MVA_FDA_GA", nbin, -2.0, 3.0 ); if (Use["Category"]) histCat = new TH1F( "MVA_Category", "MVA_Category", nbin, -2., 2. ); if (Use["Plugin"]) histPBdt = new TH1F( "MVA_PBDT", "MVA_BDT", nbin, -0.8, 0.8 ); // PDEFoam also returns per-event error, fill in histogram, and also fill significance if (Use["PDEFoam"]) { histPDEFoam = new TH1F( "MVA_PDEFoam", "MVA_PDEFoam", nbin, 0, 1 ); histPDEFoamErr = new TH1F( "MVA_PDEFoamErr", "MVA_PDEFoam error", nbin, 0, 1 ); histPDEFoamSig = new TH1F( "MVA_PDEFoamSig", "MVA_PDEFoam significance", nbin, 0, 10 ); } // Book example histogram for probability (the other methods are done similarly) TH1F *probHistFi(0), *rarityHistFi(0); if (Use["Fisher"]) { probHistFi = new TH1F( "MVA_Fisher_Proba", "MVA_Fisher_Proba", nbin, 0, 1 ); rarityHistFi = new TH1F( "MVA_Fisher_Rarity", "MVA_Fisher_Rarity", nbin, 0, 1 ); } // Prepare input tree (this must be replaced by your data source) // in this example, there is a toy tree with signal and one with background events // we'll later on use only the "signal" events for the test in this example. // TFile *input(0); TString fname = "./tmva_example.root"; if (!gSystem->AccessPathName( fname )) input = TFile::Open( fname ); // check if file in local directory exists else input = TFile::Open( "~/2014Research/ROOT_file/V0reco_PbPb/MCPbPb_central1.root" ); // if not: download from ROOT server if (!input) { std::cout << "ERROR: could not open data file" << std::endl; exit(1); } std::cout << "--- TMVAClassificationApp : Using input file: " << input->GetName() << std::endl; // --- Event loop // Prepare the event tree // - here the variable names have to corresponds to your tree // - you can use the same variables as above which is slightly faster, // but of course you can use different ones and copy the values inside the event loop // std::cout << "--- Select signal sample" << std::endl; TTree* theTree = (TTree*)input->Get("ana/v0_Lambda"); //Float_t userVar1, userVar2; theTree->SetBranchAddress( "la_agl", &la_agl ); theTree->SetBranchAddress( "la_dlos", &la_dlos ); theTree->SetBranchAddress( "la_dau1_dzos", &la_dau1_dzos ); theTree->SetBranchAddress( "la_dau1_dxyos", &la_dau1_dxyos ); theTree->SetBranchAddress( "la_dau2_dzos",&la_dau2_dzos); theTree->SetBranchAddress( "la_dau2_dxyos",&la_dau2_dxyos); theTree->SetBranchAddress( "la_vtxChi2",&la_vtxChi2); theTree->SetBranchAddress( "la_dau1_nhit",&la_dau1_nhit); theTree->SetBranchAddress( "la_dau2_nhit",&la_dau2_nhit); theTree->SetBranchAddress( "la_mass", &la_mass ); // Efficiency calculator for cut method Int_t nSelCutsGA = 0; Double_t effS = 0.7; std::vector<Float_t> vecVar(4); // vector for EvaluateMVA tests std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl; TStopwatch sw; sw.Start(); TFile *target = new TFile( "TMVAppLambda.root","RECREATE" ); TNtuple *n1 = new TNtuple( "n1","n1","Lam_mass:MVA"); for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) { if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl; theTree->GetEntry(ievt); // --- Return the MVA outputs and fill into histograms if (Use["CutsGA"]) { // Cuts is a special case: give the desired signal efficienciy Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS ); if (passed) nSelCutsGA++; } if (Use["Likelihood" ]) histLk ->Fill( reader->EvaluateMVA( "Likelihood method" ) ); if (Use["LikelihoodD" ]) histLkD ->Fill( reader->EvaluateMVA( "LikelihoodD method" ) ); if (Use["LikelihoodPCA"]) histLkPCA ->Fill( reader->EvaluateMVA( "LikelihoodPCA method" ) ); if (Use["LikelihoodKDE"]) histLkKDE ->Fill( reader->EvaluateMVA( "LikelihoodKDE method" ) ); if (Use["LikelihoodMIX"]) histLkMIX ->Fill( reader->EvaluateMVA( "LikelihoodMIX method" ) ); if (Use["PDERS" ]) histPD ->Fill( reader->EvaluateMVA( "PDERS method" ) ); if (Use["PDERSD" ]) histPDD ->Fill( reader->EvaluateMVA( "PDERSD method" ) ); if (Use["PDERSPCA" ]) histPDPCA ->Fill( reader->EvaluateMVA( "PDERSPCA method" ) ); if (Use["KNN" ]) histKNN ->Fill( reader->EvaluateMVA( "KNN method" ) ); if (Use["HMatrix" ]) histHm ->Fill( reader->EvaluateMVA( "HMatrix method" ) ); if (Use["Fisher" ]) histFi ->Fill( reader->EvaluateMVA( "Fisher method" ) ); if (Use["FisherG" ]) histFiG ->Fill( reader->EvaluateMVA( "FisherG method" ) ); if (Use["BoostedFisher"]) histFiB ->Fill( reader->EvaluateMVA( "BoostedFisher method" ) ); if (Use["LD" ]) histLD ->Fill( reader->EvaluateMVA( "LD method" ) ); if (Use["MLP" ]) histNn ->Fill( reader->EvaluateMVA( "MLP method" ) ); if (Use["MLPBFGS" ]) histNnbfgs ->Fill( reader->EvaluateMVA( "MLPBFGS method" ) ); if (Use["MLPBNN" ]) histNnbnn ->Fill( reader->EvaluateMVA( "MLPBNN method" ) ); if (Use["CFMlpANN" ]) histNnC ->Fill( reader->EvaluateMVA( "CFMlpANN method" ) ); if (Use["TMlpANN" ]) histNnT ->Fill( reader->EvaluateMVA( "TMlpANN method" ) ); if (Use["BDT" ]) { double Lam_mass = la_mass; histBdt ->Fill( reader->EvaluateMVA( "BDT method" ) ); double MVA = 0.0; MVA = reader->EvaluateMVA("BDT method"); n1->Fill(Lam_mass,MVA); // cout << "la mass: " << temp << endl } if (Use["BDTD" ]) { double Lam_mass = la_mass; histBdtD ->Fill( reader->EvaluateMVA( "BDTD method" ) ); double MVA = 0.0; MVA = reader->EvaluateMVA("BDTD method"); n1->Fill(Lam_mass,MVA); } if (Use["BDTG" ]) { double Lam_mass = la_mass; histBdtG ->Fill( reader->EvaluateMVA( "BDTG method" ) ); double MVA = 0.0; MVA = reader->EvaluateMVA("BDTG method"); n1->Fill(Lam_mass,MVA); } if (Use["RuleFit" ]) histRf ->Fill( reader->EvaluateMVA( "RuleFit method" ) ); if (Use["SVM_Gauss" ]) histSVMG ->Fill( reader->EvaluateMVA( "SVM_Gauss method" ) ); if (Use["SVM_Poly" ]) histSVMP ->Fill( reader->EvaluateMVA( "SVM_Poly method" ) ); if (Use["SVM_Lin" ]) histSVML ->Fill( reader->EvaluateMVA( "SVM_Lin method" ) ); if (Use["FDA_MT" ]) histFDAMT ->Fill( reader->EvaluateMVA( "FDA_MT method" ) ); if (Use["FDA_GA" ]) histFDAGA ->Fill( reader->EvaluateMVA( "FDA_GA method" ) ); if (Use["Category" ]) histCat ->Fill( reader->EvaluateMVA( "Category method" ) ); if (Use["Plugin" ]) histPBdt ->Fill( reader->EvaluateMVA( "P_BDT method" ) ); // Retrieve also per-event error if (Use["PDEFoam"]) { Double_t val = reader->EvaluateMVA( "PDEFoam method" ); Double_t err = reader->GetMVAError(); histPDEFoam ->Fill( val ); histPDEFoamErr->Fill( err ); if (err>1.e-50) histPDEFoamSig->Fill( val/err ); } // Retrieve probability instead of MVA output if (Use["Fisher"]) { probHistFi ->Fill( reader->GetProba ( "Fisher method" ) ); rarityHistFi->Fill( reader->GetRarity( "Fisher method" ) ); } } // Get elapsed time sw.Stop(); std::cout << "--- End of event loop: "; sw.Print(); // Get efficiency for cuts classifier if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries() << " (for a required signal efficiency of " << effS << ")" << std::endl; if (Use["CutsGA"]) { // test: retrieve cuts for particular signal efficiency // CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ; if (mcuts) { std::vector<Double_t> cutsMin; std::vector<Double_t> cutsMax; mcuts->GetCuts( 0.7, cutsMin, cutsMax ); std::cout << "--- -------------------------------------------------------------" << std::endl; std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl; for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) { std::cout << "... Cut: " << cutsMin[ivar] << " < \"" << mcuts->GetInputVar(ivar) << "\" <= " << cutsMax[ivar] << std::endl; } std::cout << "--- -------------------------------------------------------------" << std::endl; } } // --- Write histograms if (Use["Likelihood" ]) histLk ->Write(); if (Use["LikelihoodD" ]) histLkD ->Write(); if (Use["LikelihoodPCA"]) histLkPCA ->Write(); if (Use["LikelihoodKDE"]) histLkKDE ->Write(); if (Use["LikelihoodMIX"]) histLkMIX ->Write(); if (Use["PDERS" ]) histPD ->Write(); if (Use["PDERSD" ]) histPDD ->Write(); if (Use["PDERSPCA" ]) histPDPCA ->Write(); if (Use["KNN" ]) histKNN ->Write(); if (Use["HMatrix" ]) histHm ->Write(); if (Use["Fisher" ]) histFi ->Write(); if (Use["FisherG" ]) histFiG ->Write(); if (Use["BoostedFisher"]) histFiB ->Write(); if (Use["LD" ]) histLD ->Write(); if (Use["MLP" ]) histNn ->Write(); if (Use["MLPBFGS" ]) histNnbfgs ->Write(); if (Use["MLPBNN" ]) histNnbnn ->Write(); if (Use["CFMlpANN" ]) histNnC ->Write(); if (Use["TMlpANN" ]) histNnT ->Write(); if (Use["BDT" ]){ histBdt ->Write(); n1->Write(); } if (Use["BDTD" ]){ histBdtD ->Write(); n1->Write(); } if (Use["BDTG" ]) { histBdtG ->Write(); n1->Write(); } if (Use["RuleFit" ]) histRf ->Write(); if (Use["SVM_Gauss" ]) histSVMG ->Write(); if (Use["SVM_Poly" ]) histSVMP ->Write(); if (Use["SVM_Lin" ]) histSVML ->Write(); if (Use["FDA_MT" ]) histFDAMT ->Write(); if (Use["FDA_GA" ]) histFDAGA ->Write(); if (Use["Category" ]) histCat ->Write(); if (Use["Plugin" ]) histPBdt ->Write(); // Write also error and significance histos if (Use["PDEFoam"]) { histPDEFoam->Write(); histPDEFoamErr->Write(); histPDEFoamSig->Write(); } // Write also probability hists if (Use["Fisher"]) { if (probHistFi != 0) probHistFi->Write(); if (rarityHistFi != 0) rarityHistFi->Write(); } target->Close(); std::cout << "--- Created root file: \"TMVApp.root\" containing the MVA output histograms" << std::endl; delete reader; std::cout << "==> TMVAClassificationApplication is done!" << endl << std::endl; }
void rezamyTMVAClassificationApplication1systematic( TString myMethodList = "" ) { #ifdef __CINT__ gROOT->ProcessLine( ".O0" ); // turn off optimization in CINT #endif //--------------------------------------------------------------- // This loads the library TMVA::Tools::Instance(); // Default MVA methods to be trained + tested std::map<std::string,int> Use; // --- Cut optimisation Use["Cuts"] = 0; Use["CutsD"] = 0; Use["CutsPCA"] = 0; Use["CutsGA"] = 0; Use["CutsSA"] = 0; // // --- 1-dimensional likelihood ("naive Bayes estimator") Use["Likelihood"] = 0; Use["LikelihoodD"] = 0; // the "D" extension indicates decorrelated input variables (see option strings) Use["LikelihoodPCA"] = 0; // the "PCA" extension indicates PCA-transformed input variables (see option strings) Use["LikelihoodKDE"] = 0; Use["LikelihoodMIX"] = 0; // // --- Mutidimensional likelihood and Nearest-Neighbour methods Use["PDERS"] = 0; Use["PDERSD"] = 0; Use["PDERSPCA"] = 0; Use["PDEFoam"] = 0; Use["PDEFoamBoost"] = 0; // uses generalised MVA method boosting Use["KNN"] = 0; // k-nearest neighbour method // // --- Linear Discriminant Analysis Use["LD"] = 0; // Linear Discriminant identical to Fisher Use["Fisher"] = 0; Use["FisherG"] = 0; Use["BoostedFisher"] = 0; // uses generalised MVA method boosting Use["HMatrix"] = 0; // // --- Function Discriminant analysis Use["FDA_GA"] = 0; // minimisation of user-defined function using Genetics Algorithm Use["FDA_SA"] = 0; Use["FDA_MC"] = 0; Use["FDA_MT"] = 0; Use["FDA_GAMT"] = 0; Use["FDA_MCMT"] = 0; // // --- Neural Networks (all are feed-forward Multilayer Perceptrons) Use["MLP"] = 0; // Recommended ANN Use["MLPBFGS"] = 0; // Recommended ANN with optional training method Use["MLPBNN"] = 0; // Recommended ANN with BFGS training method and bayesian regulator Use["CFMlpANN"] = 0; // Depreciated ANN from ALEPH Use["TMlpANN"] = 0; // ROOT's own ANN // // --- Support Vector Machine Use["SVM"] = 0; // // --- Boosted Decision Trees Use["BDT"] = 1; // uses Adaptive Boost Use["BDTG"] = 0; // uses Gradient Boost Use["BDTB"] = 0; // uses Bagging Use["BDTD"] = 0; // decorrelation + Adaptive Boost // // --- Friedman's RuleFit method, ie, an optimised series of cuts ("rules") Use["RuleFit"] = 0; // --------------------------------------------------------------- Use["Plugin"] = 0; Use["Category"] = 0; Use["SVM_Gauss"] = 0; Use["SVM_Poly"] = 0; Use["SVM_Lin"] = 0; std::cout << std::endl; std::cout << "==> Start TMVAClassificationApplication" << std::endl; // Select methods (don't look at this code - not of interest) if (myMethodList != "") { for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0; std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' ); for (UInt_t i=0; i<mlist.size(); i++) { std::string regMethod(mlist[i]); if (Use.find(regMethod) == Use.end()) { std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl; for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { std::cout << it->first << " "; } std::cout << std::endl; return; } Use[regMethod] = 1; } } // -------------------------------------------------------------------------------------------------- // --- Create the Reader object TMVA::Reader *reader = new TMVA::Reader( "!Color:!Silent" ); Float_t ptphoton,etaphoton,ptmuon,etamuon,ptjet,etajet,masstop,mtw,deltaRphotonjet,deltaRphotonmuon,ht,costopphoton,deltaphiphotonmet,cvsdiscriminant; Float_t jetmultiplicity,bjetmultiplicity,leptoncharge; // Create a set of variables and declare them to the reader // - the variable names MUST corresponds in name and type to those given in the weight file(s) used reader->AddVariable ("ptphoton", &ptphoton); // reader->AddVariable ("etaphoton", &etaphoton); reader->AddVariable ("ptmuon", &ptmuon); // reader->AddVariable ("etamuon", &etamuon); reader->AddVariable ("ptjet", &ptjet); // reader->AddVariable ("etajet", &etajet); // reader->AddVariable ("masstop", &masstop); // reader->AddVariable ("mtw", &mtw); reader->AddVariable ("deltaRphotonjet", &deltaRphotonjet); reader->AddVariable ("deltaRphotonmuon", &deltaRphotonmuon); // reader->AddVariable ("ht", &ht); // reader->AddVariable ("photonmuonmass", &photonmuonmass); reader->AddVariable ("costopphoton", &costopphoton); // reader->AddVariable ("topphotonmass", &topphotonmass); //reader->AddVariable ("pttop", &pttop); //reader->AddVariable ("etatop", &etatop); reader->AddVariable ("jetmultiplicity", &jetmultiplicity); // reader->AddVariable ("bjetmultiplicity", &bjetmultiplicity); reader->AddVariable ("deltaphiphotonmet", &deltaphiphotonmet); reader->AddVariable ("cvsdiscriminant", &cvsdiscriminant); // reader->AddVariable ("leptoncharge", &leptoncharge); /* // Spectator variables declared in the training have to be added to the reader, too reader->AddSpectator( "spec1 := var1*2", &spec1 ); reader->AddSpectator( "spec2 := var1*3", &spec2 ); Float_t Category_cat1, Category_cat2, Category_cat3; if (Use["Category"]){ // Add artificial spectators for distinguishing categories reader->AddSpectator( "Category_cat1 := var3<=0", &Category_cat1 ); reader->AddSpectator( "Category_cat2 := (var3>0)&&(var4<0)", &Category_cat2 ); reader->AddSpectator( "Category_cat3 := (var3>0)&&(var4>=0)", &Category_cat3 ); } */ // --- Book the MVA methods TString dir = "weights/"; TString prefix = "TMVA"; // Book method(s) for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { if (it->second) { TString methodName = TString(it->first) + TString(" method"); TString weightfile = dir + prefix + TString("_") + TString(it->first) + TString(".weights.xml"); reader->BookMVA( methodName, weightfile ); } } // Book output histograms UInt_t nbin = 40; TH1F *histLk(0), *histLkD(0), *histLkPCA(0), *histLkKDE(0), *histLkMIX(0), *histPD(0), *histPDD(0); TH1F *histPDPCA(0), *histPDEFoam(0), *histPDEFoamErr(0), *histPDEFoamSig(0), *histKNN(0), *histHm(0); TH1F *histFi(0), *histFiG(0), *histFiB(0), *histLD(0), *histNn(0),*histNnbfgs(0),*histNnbnn(0); TH1F *histNnC(0), *histNnT(0), *histBdt(0), *histBdtG(0), *histBdtD(0), *histRf(0), *histSVMG(0); TH1F *histSVMP(0), *histSVML(0), *histFDAMT(0), *histFDAGA(0), *histCat(0), *histPBdt(0); if (Use["Likelihood"]) histLk = new TH1F( "MVA_Likelihood", "MVA_Likelihood", nbin, -1, 1 ); if (Use["LikelihoodD"]) histLkD = new TH1F( "MVA_LikelihoodD", "MVA_LikelihoodD", nbin, -1, 0.9999 ); if (Use["LikelihoodPCA"]) histLkPCA = new TH1F( "MVA_LikelihoodPCA", "MVA_LikelihoodPCA", nbin, -1, 1 ); if (Use["LikelihoodKDE"]) histLkKDE = new TH1F( "MVA_LikelihoodKDE", "MVA_LikelihoodKDE", nbin, -0.00001, 0.99999 ); if (Use["LikelihoodMIX"]) histLkMIX = new TH1F( "MVA_LikelihoodMIX", "MVA_LikelihoodMIX", nbin, 0, 1 ); if (Use["PDERS"]) histPD = new TH1F( "MVA_PDERS", "MVA_PDERS", nbin, 0, 1 ); if (Use["PDERSD"]) histPDD = new TH1F( "MVA_PDERSD", "MVA_PDERSD", nbin, 0, 1 ); if (Use["PDERSPCA"]) histPDPCA = new TH1F( "MVA_PDERSPCA", "MVA_PDERSPCA", nbin, 0, 1 ); if (Use["KNN"]) histKNN = new TH1F( "MVA_KNN", "MVA_KNN", nbin, 0, 1 ); if (Use["HMatrix"]) histHm = new TH1F( "MVA_HMatrix", "MVA_HMatrix", nbin, -0.95, 1.55 ); if (Use["Fisher"]) histFi = new TH1F( "MVA_Fisher", "MVA_Fisher", nbin, -4, 4 ); if (Use["FisherG"]) histFiG = new TH1F( "MVA_FisherG", "MVA_FisherG", nbin, -1, 1 ); if (Use["BoostedFisher"]) histFiB = new TH1F( "MVA_BoostedFisher", "MVA_BoostedFisher", nbin, -2, 2 ); if (Use["LD"]) histLD = new TH1F( "MVA_LD", "MVA_LD", nbin, -2, 2 ); if (Use["MLP"]) histNn = new TH1F( "MVA_MLP", "MVA_MLP", nbin, -1.25, 1.5 ); if (Use["MLPBFGS"]) histNnbfgs = new TH1F( "MVA_MLPBFGS", "MVA_MLPBFGS", nbin, -1.25, 1.5 ); if (Use["MLPBNN"]) histNnbnn = new TH1F( "MVA_MLPBNN", "MVA_MLPBNN", nbin, -1.25, 1.5 ); if (Use["CFMlpANN"]) histNnC = new TH1F( "MVA_CFMlpANN", "MVA_CFMlpANN", nbin, 0, 1 ); if (Use["TMlpANN"]) histNnT = new TH1F( "MVA_TMlpANN", "MVA_TMlpANN", nbin, -1.3, 1.3 ); if (Use["BDT"]) histBdt = new TH1F( "MVA_BDT", "MVA_BDT", nbin, -0.8, 0.8 ); if (Use["BDTD"]) histBdtD = new TH1F( "MVA_BDTD", "MVA_BDTD", nbin, -0.8, 0.8 ); if (Use["BDTG"]) histBdtG = new TH1F( "MVA_BDTG", "MVA_BDTG", nbin, -1.0, 1.0 ); if (Use["RuleFit"]) histRf = new TH1F( "MVA_RuleFit", "MVA_RuleFit", nbin, -2.0, 2.0 ); if (Use["SVM_Gauss"]) histSVMG = new TH1F( "MVA_SVM_Gauss", "MVA_SVM_Gauss", nbin, 0.0, 1.0 ); if (Use["SVM_Poly"]) histSVMP = new TH1F( "MVA_SVM_Poly", "MVA_SVM_Poly", nbin, 0.0, 1.0 ); if (Use["SVM_Lin"]) histSVML = new TH1F( "MVA_SVM_Lin", "MVA_SVM_Lin", nbin, 0.0, 1.0 ); if (Use["FDA_MT"]) histFDAMT = new TH1F( "MVA_FDA_MT", "MVA_FDA_MT", nbin, -2.0, 3.0 ); if (Use["FDA_GA"]) histFDAGA = new TH1F( "MVA_FDA_GA", "MVA_FDA_GA", nbin, -2.0, 3.0 ); if (Use["Category"]) histCat = new TH1F( "MVA_Category", "MVA_Category", nbin, -2., 2. ); if (Use["Plugin"]) histPBdt = new TH1F( "MVA_PBDT", "MVA_BDT", nbin, -0.8, 0.8 ); // PDEFoam also returns per-event error, fill in histogram, and also fill significance if (Use["PDEFoam"]) { histPDEFoam = new TH1F( "MVA_PDEFoam", "MVA_PDEFoam", nbin, 0, 1 ); histPDEFoamErr = new TH1F( "MVA_PDEFoamErr", "MVA_PDEFoam error", nbin, 0, 1 ); histPDEFoamSig = new TH1F( "MVA_PDEFoamSig", "MVA_PDEFoam significance", nbin, 0, 10 ); } // Book example histogram for probability (the other methods are done similarly) TH1F *probHistFi(0), *rarityHistFi(0); if (Use["Fisher"]) { probHistFi = new TH1F( "MVA_Fisher_Proba", "MVA_Fisher_Proba", nbin, 0, 1 ); rarityHistFi = new TH1F( "MVA_Fisher_Rarity", "MVA_Fisher_Rarity", nbin, 0, 1 ); } // Prepare input tree (this must be replaced by your data source) // in this example, there is a toy tree with signal and one with background events // we'll later on use only the "signal" events for the test in this example. // TFile *input(0); ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// std::vector<string> samples_; std::vector<string> datasamples_; std::vector<TH1F*> datahists; std::vector<TH1F*> revDATAhists; float scales[] = {0.0978,1.491,0.0961,0.0253,0.0224,0.0145,0.0125,0.0160,0.0158,0.0341,0.0341,0.0341,0.020,0.0017,0.0055,0.0032,0.00084,0.02,19.145*0.0169,19.145*0.0169,19.145*0.0169,19.145*0.0169,19.145*0.0169}; //samples_.push_back("WJET.root"); samples_.push_back("ZJET.root"); samples_.push_back("PHJET200400.root"); samples_.push_back("WPHJET.root"); samples_.push_back("T-W-CH.root"); samples_.push_back("TBAR-W-CH.root"); samples_.push_back("T-S-CH.root"); samples_.push_back("TBAR-S-CH.root"); samples_.push_back("T-T-CH.root"); samples_.push_back("TBAR-T-CH.root"); samples_.push_back("TTBAR1.root"); samples_.push_back("TTBAR2.root"); samples_.push_back("TTBAR3.root"); samples_.push_back("TTG.root"); samples_.push_back("WWG.root"); samples_.push_back("WW.root"); samples_.push_back("WZ.root"); samples_.push_back("ZZ.root"); samples_.push_back("ZGAMMA.root"); samples_.push_back("SIGNAL.root"); samples_.push_back("SIGNAL.root"); samples_.push_back("SIGNAL.root"); samples_.push_back("SIGNAL.root"); samples_.push_back("SIGNAL.root"); datasamples_.push_back("REALDATA1.root"); datasamples_.push_back("REALDATA2.root"); datasamples_.push_back("REALDATA3.root"); std::vector<string> datasamplesreverse_; datasamplesreverse_.push_back("etarev/REALDATA1.root"); datasamplesreverse_.push_back("etarev/REALDATA2.root"); datasamplesreverse_.push_back("etarev/REALDATA3.root"); std::vector<string> systematics; //systematics.push_back("__JES__plus"); //systematics.push_back("__JES__minus"); //systematics.push_back("__JER__plus"); //systematics.push_back("__JER__minus"); systematics.push_back("__PU__plus"); systematics.push_back("__PU__minus"); systematics.push_back("__TRIG__plus"); systematics.push_back("__TRIG__minus"); systematics.push_back("__BTAG__plus"); systematics.push_back("__BTAG__minus"); systematics.push_back("__MISSTAG__plus"); systematics.push_back("__MISSTAG__minus"); systematics.push_back("__MUON__plus"); systematics.push_back("__MUON__minus"); systematics.push_back("__PHOTON__plus"); systematics.push_back("__PHOTON__minus"); systematics.push_back(""); map<string, double> eventwight; TList* hList = new TList(); // list of histograms to store std::vector<TFile*> files; for(unsigned int idx=0; idx<samples_.size(); ++idx){ files.push_back(new TFile(samples_[idx].c_str())); } std::vector<TFile*> datafiles; for(unsigned int idx=0; idx<datasamples_.size(); ++idx){ datafiles.push_back(new TFile(datasamples_[idx].c_str())); } for(unsigned int phi=0; phi<systematics.size(); ++phi){ std::vector<TH1F*> hists; TH1F *wphjethist(0), *zjethist(0) , *phjethist(0), *wjethist(0), *twchhist(0), *tbarwhist(0), *tschhist(0), *tbarschhist(0), *ttchhist(0), *tbartchhist(0), *tt1hist(0) ,*tt2hist(0), *tt3hist(0), *ttphhist(0), *wwphhist(0), *wwhist(0), *wzhist(0), *zzhist(0), *zgammahist(0), *signalhist5(0) , *signalhist10(0), *signalhist20(0), *signalhist30(0), *signalhist40(0); TH1F *data1histrev(0), *data2histrev(0) ,*data3histrev(0); wphjethist = new TH1F( std::string("BDT__wphjethist").append(systematics[phi]).c_str(), std::string("BDT__wphjethist").append(systematics[phi]).c_str() , nbin, -1, 1 ); zjethist = new TH1F( std::string("BDT__zjethist").append(systematics[phi]).c_str(), std::string("BDT__zjethist").append(systematics[phi]).c_str(), nbin, -1, 1 ); phjethist = new TH1F( std::string("BDT__phjethist").append(systematics[phi]).c_str(),std::string("BDT__phjethist").append(systematics[phi]).c_str() , nbin, -1, 1 ); //wjethist = new TH1F( std::string("BDT__wjethist").append(systematics[phi]).c_str(),std::string("BDT__wjethist").append(systematics[phi]).c_str() , nbin, -0.8, 0.8 ); twchhist = new TH1F( std::string("BDT__twchhist").append(systematics[phi]).c_str(),std::string("BDT__twchhist").append(systematics[phi]).c_str() ,nbin, -1, 1 ); tbarwhist = new TH1F( std::string("BDT__tbarwhist").append(systematics[phi]).c_str(),std::string("BDT__tbarwhist").append(systematics[phi]).c_str() ,nbin, -1, 1 ); tschhist = new TH1F( std::string("BDT__tschhist").append(systematics[phi]).c_str(), std::string("BDT__tschhist").append(systematics[phi]).c_str(), nbin, -1, 1 ); tbarschhist = new TH1F( std::string("BDT__tbarschhist").append(systematics[phi]).c_str(),std::string("BDT__tbarschhist").append(systematics[phi]).c_str(), nbin, -1, 1 ); ttchhist = new TH1F( std::string("BDT__ttchhist").append(systematics[phi]).c_str(),std::string("BDT__ttchhist").append(systematics[phi]).c_str(), nbin, -1, 1 ); tbartchhist = new TH1F( std::string("BDT__tbartchhist").append(systematics[phi]).c_str(), std::string("BDT__tbartchhist").append(systematics[phi]).c_str(), nbin, -1, 1 ); tt1hist = new TH1F( std::string("BDT__tt1hist").append(systematics[phi]).c_str(), std::string("BDT__tt1hist").append(systematics[phi]).c_str(), nbin, -1, 1 ); tt2hist = new TH1F( std::string("BDT__tt2hist").append(systematics[phi]).c_str(), std::string("BDT__tt2hist").append(systematics[phi]).c_str(), nbin, -1, 1 ); tt3hist = new TH1F( std::string("BDT__tt3hist").append(systematics[phi]).c_str(),std::string("BDT__tt3hist").append(systematics[phi]).c_str() , nbin, -1, 1 ); ttphhist = new TH1F( std::string("BDT__ttphhist").append(systematics[phi]).c_str(),std::string("BDT__ttphhist").append(systematics[phi]).c_str() ,nbin, -1, 1 ); wwphhist = new TH1F( std::string("BDT__wwphhist").append(systematics[phi]).c_str(),std::string("BDT__wwphhist").append(systematics[phi]).c_str(), nbin, -1, 1 ); wwhist = new TH1F( std::string("BDT__wwhist").append(systematics[phi]).c_str(),std::string("BDT__wwhist").append(systematics[phi]).c_str() ,nbin, -1, 1 ); wzhist = new TH1F( std::string("BDT__wzhist").append(systematics[phi]).c_str(),std::string("BDT__wzhist").append(systematics[phi]).c_str(), nbin, -1, 1 ); zzhist = new TH1F( std::string("BDT__zzhist").append(systematics[phi]).c_str(),std::string("BDT__zzhist").append(systematics[phi]).c_str() ,nbin, -1, 1 ); zgammahist = new TH1F( std::string("BDT__zgammahist").append(systematics[phi]).c_str(),std::string("BDT__zgammahist").append(systematics[phi]).c_str() ,nbin, -1, 1 ); signalhist5 = new TH1F( std::string("BDT__signal5").append(systematics[phi]).c_str(),std::string("BDT__signal5").append(systematics[phi]).c_str() ,nbin, -1, 1 ); signalhist10 = new TH1F( std::string("BDT__signal10").append(systematics[phi]).c_str(),std::string("BDT__signal10").append(systematics[phi]).c_str() ,nbin, -1, 1 ); signalhist20 = new TH1F( std::string("BDT__signal20").append(systematics[phi]).c_str(),std::string("BDT__signal20").append(systematics[phi]).c_str() ,nbin, -1, 1 ); signalhist30 = new TH1F( std::string("BDT__signal30").append(systematics[phi]).c_str(),std::string("BDT__signal30").append(systematics[phi]).c_str() ,nbin, -1, 1 ); signalhist40 = new TH1F( std::string("BDT__signal40").append(systematics[phi]).c_str(),std::string("BDT__signal40").append(systematics[phi]).c_str() ,nbin, -1, 1 ); hists.push_back(zjethist); hists.push_back(phjethist); hists.push_back(wphjethist); //hists.push_back(wjethist); hists.push_back(twchhist); hists.push_back(tbarwhist); hists.push_back(tschhist); hists.push_back(tbarschhist); hists.push_back(ttchhist); hists.push_back(tbartchhist); hists.push_back(tt1hist); hists.push_back(tt2hist); hists.push_back(tt3hist); hists.push_back(ttphhist); hists.push_back(wwphhist); hists.push_back(wwhist); hists.push_back(wzhist); hists.push_back(zzhist); hists.push_back(zgammahist); hists.push_back(signalhist5); hists.push_back(signalhist10); hists.push_back(signalhist20); hists.push_back(signalhist30); hists.push_back(signalhist40); for(unsigned int idx=0; idx<samples_.size(); ++idx){ TFile *input(0); TString fname =samples_[idx]; if (!gSystem->AccessPathName( fname )) input = TFile::Open( fname ); // check if file in local directory exists else input = TFile::Open( "http://root.cern.ch/files/tmva_class_example.root" ); // if not: download from ROOT server if (!input) { std::cout << "ERROR: could not open data file" << std::endl; exit(1); } std::cout << "--- TMVAClassificationApp : Using input file: " << input->GetName() << std::endl; // --- Event loop // Prepare the event tree // - here the variable names have to corres[1]ponds to your tree // - you can use the same variables as above which is slightly faster, // but of course you can use different ones and copy the values inside the event loop // //Double_t myptphoton,myetaphoton,myptmuon,myetamuon,myptjet,myetajet,mymasstop,mymtw,mydeltaRphotonjet,mydeltaRphotonmuon,myht,mycostopphoton,mydeltaphiphotonmet,mycvsdiscriminant,myjetmultiplicity,mybjetmultiplicity,myleptoncharge; std::vector<double> *myptphoton=0; std::vector<double> *myetaphoton=0; std::vector<double> *myptmuon=0; std::vector<double> *myetamuon=0; std::vector<double> *myptjet=0; std::vector<double> *myetajet=0; std::vector<double> *mymasstop=0; //std::vector<double> *mymtw=0; std::vector<double> *mydeltaRphotonjet=0; std::vector<double> *mydeltaRphotonmuon=0; //std::vector<double> *myht=0; std::vector<double> *mycostopphoton=0; std::vector<double> *mydeltaphiphotonmet=0; std::vector<double> *mycvsdiscriminant=0; std::vector<double> *myjetmultiplicity=0; //std::vector<double> *mybjetmultiplicity=0; //std::vector<double> *myleptoncharge=0; std::vector<double> *myweight=0; std::vector<double> *mybtagSF=0; std::vector<double> *mybtagSFup=0; std::vector<double> *mybtagSFdown=0; std::vector<double> *mymistagSFup=0; std::vector<double> *mymistagSFdown=0; std::vector<double> *mytriggerSF=0; std::vector<double> *mytriggerSFup=0; std::vector<double> *mytriggerSFdown=0; std::vector<double> *myphotonSF=0; std::vector<double> *myphotonSFup=0; std::vector<double> *myphotonSFdown=0; std::vector<double> *mypileupSF=0; std::vector<double> *mypileupSFup=0; std::vector<double> *mypileupSFdown=0; std::vector<double> *mymuonSFup=0; std::vector<double> *mymuonSFdown=0; std::vector<double> *mymuonSF=0; std::cout << "--- Select signal sample" << std::endl; TTree* theTree = (TTree*)input->Get("analyzestep2/atq"); // Int_t myjetmultiplicity, mybjetmultiplicity , myleptoncharge; // Float_t userVar1, userVar2; theTree->SetBranchAddress("ptphoton", &myptphoton ); theTree->SetBranchAddress( "etaphoton", &myetaphoton ); theTree->SetBranchAddress( "ptmuon", &myptmuon ); theTree->SetBranchAddress( "etamuon", &myetamuon ); theTree->SetBranchAddress( "ptjet", &myptjet ); theTree->SetBranchAddress( "etajet", &myetajet ); theTree->SetBranchAddress( "masstop", &mymasstop ); // theTree->SetBranchAddress( "mtw", &mymtw ); theTree->SetBranchAddress( "deltaRphotonjet", &mydeltaRphotonjet ); theTree->SetBranchAddress( "deltaRphotonmuon", &mydeltaRphotonmuon ); // theTree->SetBranchAddress( "ht", &myht ); theTree->SetBranchAddress( "costopphoton", &mycostopphoton ); theTree->SetBranchAddress( "jetmultiplicity", &myjetmultiplicity ); // theTree->SetBranchAddress( "bjetmultiplicity", &mybjetmultiplicity ); theTree->SetBranchAddress( "deltaphiphotonmet", &mydeltaphiphotonmet ); theTree->SetBranchAddress( "cvsdiscriminant", &mycvsdiscriminant ); // theTree->SetBranchAddress( "leptoncharge", &myleptoncharge ); theTree->SetBranchAddress( "weight", &myweight); theTree->SetBranchAddress( "btagSF", &mybtagSF); theTree->SetBranchAddress( "btagSFup", &mybtagSFup); theTree->SetBranchAddress( "btagSFdown", &mybtagSFdown); theTree->SetBranchAddress( "mistagSFup", &mymistagSFup); theTree->SetBranchAddress( "mistagSFdown", &mymistagSFdown); theTree->SetBranchAddress( "triggerSF", &mytriggerSF); theTree->SetBranchAddress( "triggerSFup", &mytriggerSFup); theTree->SetBranchAddress( "triggerSFdown", &mytriggerSFdown); theTree->SetBranchAddress( "photonSF", &myphotonSF); theTree->SetBranchAddress( "photonSFup", &myphotonSFup); theTree->SetBranchAddress( "photonSFdown", &myphotonSFdown); theTree->SetBranchAddress( "muonSF", &mymuonSF); theTree->SetBranchAddress( "muonSFup", &mymuonSFup); theTree->SetBranchAddress( "muonSFdown", &mymuonSFdown); theTree->SetBranchAddress( "pileupSF", &mypileupSF); theTree->SetBranchAddress( "pileupSFup", &mypileupSFup); theTree->SetBranchAddress( "pileupSFdown", &mypileupSFdown); // Efficiency calculator for cut method Int_t nSelCutsGA = 0; Double_t effS = 0.7; std::vector<Float_t> vecVar(4); // vector for EvaluateMVA tests // std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl; TStopwatch sw; sw.Start(); for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) { // std::cout << "--- ... Processing event: " << ievt << std::endl; double finalweight; if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl; theTree->GetEntry(ievt); //for (int l=0;l<sizeof(myptphoton);l++){ //std::cout << "--- ... reza: " << myptphoton[l] <<std::endl; //} //std::cout << "--- ......................."<< (*mycvsdiscriminant)[0]<<std::endl; // --- Return the MVA outputs and fill into histograms ptphoton=(float)(*myptphoton)[0]; etaphoton=(float)(*myetaphoton )[0]; ptmuon=(float)(*myptmuon )[0]; etamuon=(float)(*myetamuon )[0]; ptjet=(float)(*myptjet )[0]; etajet=(float)(*myetajet )[0]; masstop=(float)(*mymasstop )[0]; //mtw=(float)(*mymtw )[0]; deltaRphotonjet=(float)(*mydeltaRphotonjet )[0]; deltaRphotonmuon=(float)(*mydeltaRphotonmuon )[0]; //ht=(float)(*myht )[0]; costopphoton=(float)(*mycostopphoton )[0]; jetmultiplicity=(float)(*myjetmultiplicity )[0]; //bjetmultiplicity=(float)(*mybjetmultiplicity )[0]; deltaphiphotonmet=(float)(*mydeltaphiphotonmet )[0]; cvsdiscriminant=(float)(*mycvsdiscriminant)[0]; //leptoncharge=(float)(*myleptoncharge )[0]; finalweight=(*myweight)[0]; //cout<<(*myweight)[0]<<endl; eventwight["__PU__plus"]=(*myweight)[0]*(*mypileupSFup)[0]/(*mypileupSF)[0]; eventwight["__PU__minus"]=(*myweight)[0]*(*mypileupSFdown)[0]/(*mypileupSF)[0]; eventwight["__TRIG__plus"]=(*myweight)[0]*(*mytriggerSFup)[0]/(*mytriggerSF)[0]; eventwight["__TRIG__minus"]=(*myweight)[0]*(*mytriggerSFdown)[0]/(*mytriggerSF)[0]; eventwight["__BTAG__plus"]=(*myweight)[0]*(*mybtagSFup)[0]/(*mybtagSF)[0]; eventwight["__BTAG__minus"]=(*myweight)[0]*(*mybtagSFdown)[0]/(*mybtagSF)[0]; eventwight["__MISSTAG__plus"]=(*myweight)[0]*(*mymistagSFup)[0]/(*mybtagSF)[0]; eventwight["__MISSTAG__minus"]=(*myweight)[0]*(*mymistagSFdown)[0]/(*mybtagSF)[0]; eventwight["__MUON__plus"]=(*myweight)[0]*(*mymuonSFup)[0]/(*mymuonSF)[0]; eventwight["__MUON__minus"]=(*myweight)[0]*(*mymuonSFdown)[0]/(*mymuonSF)[0]; eventwight["__PHOTON__plus"]=(*myweight)[0]*(*myphotonSFup)[0]/(*myphotonSF)[0]; eventwight["__PHOTON__minus"]=(*myweight)[0]*(*myphotonSFdown)[0]/(*myphotonSF)[0]; eventwight[""]=(*myweight)[0]; finalweight=eventwight[systematics[phi].c_str()]; if (samples_[idx]=="SIGNAL.root") finalweight=(*myweight)[0]; //if (samples_[idx]=="WPHJET") finalweight=(*mypileupSF)[0]*(*mytriggerSF)[0]*(*mybtagSF)[0]*(*mymuonSF)[0]*(*myphotonSF)[0]; //if (finalweight<0) finalweight=30; //cout<<"negative event weight"<<finalweight<<" "<<ptphoton<<endl; if (Use["CutsGA"]) { // Cuts is a special case: give the desired signal efficienciy Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS ); if (passed) nSelCutsGA++; } hists[idx] ->Fill( reader->EvaluateMVA( "BDT method" ),finalweight* scales[idx] ); //cout<<reader->EvaluateMVA( "BDT method")<<" "<<finalweight<<endl; //cout<<(*myweight)[0]<<endl; // Retrieve also per-event error if (Use["PDEFoam"]) { Double_t val = reader->EvaluateMVA( "PDEFoam method" ); Double_t err = reader->GetMVAError(); histPDEFoam ->Fill( val ); histPDEFoamErr->Fill( err ); if (err>1.e-50) histPDEFoamSig->Fill( val/err ); } // Retrieve probability instead of MVA output if (Use["Fisher"]) { probHistFi ->Fill( reader->GetProba ( "Fisher method" ) ); rarityHistFi->Fill( reader->GetRarity( "Fisher method" ) ); } //delete finalweight; } // Get elapsed time sw.Stop(); std::cout << "--- End of event loop: "; sw.Print(); // Get efficiency for cuts classifier if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries() << " (for a required signal efficiency of " << effS << ")" << std::endl; if (Use["CutsGA"]) { // test: retrieve cuts for particular signal efficiency // CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ; if (mcuts) { std::vector<Double_t> cutsMin; std::vector<Double_t> cutsMax; mcuts->GetCuts( 0.7, cutsMin, cutsMax ); std::cout << "--- -------------------------------------------------------------" << std::endl; std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl; for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) { std::cout << "... Cut: " << cutsMin[ivar] << " < \"" << mcuts->GetInputVar(ivar) << "\" <= " << cutsMax[ivar] << std::endl; } std::cout << "--- -------------------------------------------------------------" << std::endl; } } delete myptphoton; delete myetaphoton; delete myptmuon; delete myetamuon; delete myptjet; delete myetajet; delete mymasstop; //delete mymtw; delete mydeltaRphotonjet; delete mydeltaRphotonmuon; //delete myht; delete mycostopphoton; delete mydeltaphiphotonmet; delete mycvsdiscriminant; delete myjetmultiplicity; //delete mybjetmultiplicity; //delete myleptoncharge; //delete myplot; delete mybtagSF; delete mybtagSFup; delete mybtagSFdown; delete mymistagSFup; delete mytriggerSF; delete mytriggerSFup; delete mytriggerSFdown; delete myphotonSF; delete myphotonSFup; delete myphotonSFdown; delete mypileupSF; delete mypileupSFup; delete mypileupSFdown; delete input; if (idx==samples_.size()-5) hists[idx]->Scale(5/hists[idx]->Integral()); if (idx==samples_.size()-4) hists[idx]->Scale(10/hists[idx]->Integral()); if (idx==samples_.size()-3) hists[idx]->Scale(20/hists[idx]->Integral()); if (idx==samples_.size()-2) hists[idx]->Scale(30/hists[idx]->Integral()); if (idx==samples_.size()-1) hists[idx]->Scale(40/hists[idx]->Integral()); if (samples_[idx]=="WPHJET.root") hists[idx]->Scale(3173/hists[idx]->Integral()); if (samples_[idx]=="TTBAR2.root") hists[idx]->Add(hists[idx-1]); if (samples_[idx]=="TTBAR3.root") hists[idx]->Add(hists[idx-1]); if (!(samples_[idx]=="TTBAR1.root" || samples_[idx]=="TTBAR2.root")) hList->Add(hists[idx]); } } TH1F *data1hist(0), *data2hist(0) ,*data3hist(0); data1hist = new TH1F( "mu_BDT__data1hist", "mu_BDT__data1hist", nbin, -1, 1 ); data2hist = new TH1F( "mu_BDT__data2hist", "mu_BDT__data2hist", nbin, -1, 1 ); data3hist = new TH1F( "BDT__DATA", "BDT__DATA", nbin, -1, 1 ); datahists.push_back(data1hist); datahists.push_back(data2hist); datahists.push_back(data3hist); for(unsigned int idx=0; idx<datasamples_.size(); ++idx){ TFile *input(0); TString fname =datasamples_[idx]; if (!gSystem->AccessPathName( fname )) input = TFile::Open( fname ); // check if file in local directory exists else input = TFile::Open( "http://root.cern.ch/files/tmva_class_example.root" ); // if not: download from ROOT server if (!input) { std::cout << "ERROR: could not open data file" << std::endl; exit(1); } std::cout << "--- TMVAClassificationApp : Using input file: " << input->GetName() << std::endl; // --- Event loop // Prepare the event tree // - here the variable names have to corres[1]ponds to your tree // - you can use the same variables as above which is slightly faster, // but of course you can use different ones and copy the values inside the event loop // std::vector<double> *myptphoton=0; std::vector<double> *myetaphoton=0; std::vector<double> *myptmuon=0; std::vector<double> *myetamuon=0; std::vector<double> *myptjet=0; std::vector<double> *myetajet=0; std::vector<double> *mymasstop=0; //std::vector<double> *mymtw=0; std::vector<double> *mydeltaRphotonjet=0; std::vector<double> *mydeltaRphotonmuon=0; //std::vector<double> *myht=0; std::vector<double> *mycostopphoton=0; std::vector<double> *mydeltaphiphotonmet=0; std::vector<double> *mycvsdiscriminant=0; std::vector<double> *myjetmultiplicity=0; //std::vector<double> *mybjetmultiplicity=0; //std::vector<double> *myleptoncharge=0; std::cout << "--- Select signal sample" << std::endl; TTree* theTree = (TTree*)input->Get("analyzestep2/atq"); // Int_t myjetmultiplicity, mybjetmultiplicity , myleptoncharge; // Float_t userVar1, userVar2; theTree->SetBranchAddress("ptphoton", &myptphoton ); theTree->SetBranchAddress( "etaphoton", &myetaphoton ); theTree->SetBranchAddress( "ptmuon", &myptmuon ); theTree->SetBranchAddress( "etamuon", &myetamuon ); theTree->SetBranchAddress( "ptjet", &myptjet ); theTree->SetBranchAddress( "etajet", &myetajet ); theTree->SetBranchAddress( "masstop", &mymasstop ); // theTree->SetBranchAddress( "mtw", &mymtw ); theTree->SetBranchAddress( "deltaRphotonjet", &mydeltaRphotonjet ); theTree->SetBranchAddress( "deltaRphotonmuon", &mydeltaRphotonmuon ); // theTree->SetBranchAddress( "ht", &myht ); theTree->SetBranchAddress( "costopphoton", &mycostopphoton ); theTree->SetBranchAddress( "jetmultiplicity", &myjetmultiplicity ); // theTree->SetBranchAddress( "bjetmultiplicity", &mybjetmultiplicity ); theTree->SetBranchAddress( "deltaphiphotonmet", &mydeltaphiphotonmet ); theTree->SetBranchAddress( "cvsdiscriminant", &mycvsdiscriminant ); // theTree->SetBranchAddress( "leptoncharge", &myleptoncharge ); // Efficiency calculator for cut method Int_t nSelCutsGA = 0; Double_t effS = 0.7; std::vector<Float_t> vecVar(4); // vector for EvaluateMVA tests std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl; TStopwatch sw; sw.Start(); for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) { // std::cout << "--- ... Processing event: " << ievt << std::endl; if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl; theTree->GetEntry(ievt); //for (int l=0;l<sizeof(myptphoton);l++){ //std::cout << "--- ... reza: " << myptphoton[l] <<std::endl; //} //std::cout << "--- ......................."<< (*mycvsdiscriminant)[0]<<std::endl; // --- Return the MVA outputs and fill into histograms ptphoton=(float)(*myptphoton)[0]; etaphoton=(float)(*myetaphoton )[0]; ptmuon=(float)(*myptmuon )[0]; etamuon=(float)(*myetamuon )[0]; ptjet=(float)(*myptjet )[0]; etajet=(float)(*myetajet )[0]; masstop=(float)(*mymasstop )[0]; //mtw=(float)(*mymtw )[0]; deltaRphotonjet=(float)(*mydeltaRphotonjet )[0]; deltaRphotonmuon=(float)(*mydeltaRphotonmuon )[0]; //ht=(float)(*myht )[0]; costopphoton=(float)(*mycostopphoton )[0]; jetmultiplicity=(float)(*myjetmultiplicity )[0]; //bjetmultiplicity=(float)(*mybjetmultiplicity )[0]; deltaphiphotonmet=(float)(*mydeltaphiphotonmet )[0]; cvsdiscriminant=(float)(*mycvsdiscriminant)[0]; //leptoncharge=(float)(*myleptoncharge )[0]; if (Use["CutsGA"]) { // Cuts is a special case: give the desired signal efficienciy Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS ); if (passed) nSelCutsGA++; } if (Use["Likelihood" ]) histLk ->Fill( reader->EvaluateMVA( "Likelihood method" ) ); if (Use["LikelihoodD" ]) histLkD ->Fill( reader->EvaluateMVA( "LikelihoodD method" ) ); if (Use["LikelihoodPCA"]) histLkPCA ->Fill( reader->EvaluateMVA( "LikelihoodPCA method" ) ); if (Use["LikelihoodKDE"]) histLkKDE ->Fill( reader->EvaluateMVA( "LikelihoodKDE method" ) ); if (Use["LikelihoodMIX"]) histLkMIX ->Fill( reader->EvaluateMVA( "LikelihoodMIX method" ) ); if (Use["PDERS" ]) histPD ->Fill( reader->EvaluateMVA( "PDERS method" ) ); if (Use["PDERSD" ]) histPDD ->Fill( reader->EvaluateMVA( "PDERSD method" ) ); if (Use["PDERSPCA" ]) histPDPCA ->Fill( reader->EvaluateMVA( "PDERSPCA method" ) ); if (Use["KNN" ]) histKNN ->Fill( reader->EvaluateMVA( "KNN method" ) ); if (Use["HMatrix" ]) histHm ->Fill( reader->EvaluateMVA( "HMatrix method" ) ); if (Use["Fisher" ]) histFi ->Fill( reader->EvaluateMVA( "Fisher method" ) ); if (Use["FisherG" ]) histFiG ->Fill( reader->EvaluateMVA( "FisherG method" ) ); if (Use["BoostedFisher"]) histFiB ->Fill( reader->EvaluateMVA( "BoostedFisher method" ) ); if (Use["LD" ]) histLD ->Fill( reader->EvaluateMVA( "LD method" ) ); if (Use["MLP" ]) histNn ->Fill( reader->EvaluateMVA( "MLP method" ) ); if (Use["MLPBFGS" ]) histNnbfgs ->Fill( reader->EvaluateMVA( "MLPBFGS method" ) ); if (Use["MLPBNN" ]) histNnbnn ->Fill( reader->EvaluateMVA( "MLPBNN method" ) ); if (Use["CFMlpANN" ]) histNnC ->Fill( reader->EvaluateMVA( "CFMlpANN method" ) ); if (Use["TMlpANN" ]) histNnT ->Fill( reader->EvaluateMVA( "TMlpANN method" ) ); if (Use["BDT" ]) histBdt ->Fill( reader->EvaluateMVA( "BDT method" ) ); if (Use["BDTD" ]) histBdtD ->Fill( reader->EvaluateMVA( "BDTD method" ) ); if (Use["BDTG" ]) histBdtG ->Fill( reader->EvaluateMVA( "BDTG method" ) ); if (Use["RuleFit" ]) histRf ->Fill( reader->EvaluateMVA( "RuleFit method" ) ); if (Use["SVM_Gauss" ]) histSVMG ->Fill( reader->EvaluateMVA( "SVM_Gauss method" ) ); if (Use["SVM_Poly" ]) histSVMP ->Fill( reader->EvaluateMVA( "SVM_Poly method" ) ); if (Use["SVM_Lin" ]) histSVML ->Fill( reader->EvaluateMVA( "SVM_Lin method" ) ); if (Use["FDA_MT" ]) histFDAMT ->Fill( reader->EvaluateMVA( "FDA_MT method" ) ); if (Use["FDA_GA" ]) histFDAGA ->Fill( reader->EvaluateMVA( "FDA_GA method" ) ); if (Use["Category" ]) histCat ->Fill( reader->EvaluateMVA( "Category method" ) ); if (Use["Plugin" ]) histPBdt ->Fill( reader->EvaluateMVA( "P_BDT method" ) ); datahists[idx] ->Fill( reader->EvaluateMVA( "BDT method" ) ); } // Get elapsed time sw.Stop(); std::cout << "--- End of event loop: "; sw.Print(); delete myptphoton; delete myetaphoton; delete myptmuon; delete myetamuon; delete myptjet; delete myetajet; delete mymasstop; //delete mymtw; delete mydeltaRphotonjet; delete mydeltaRphotonmuon; //delete myht; delete mycostopphoton; delete mydeltaphiphotonmet; delete mycvsdiscriminant; delete myjetmultiplicity; //delete mybjetmultiplicity; //delete myleptoncharge; //delete myplot; delete input; } for(unsigned int idx=1; idx<datasamples_.size(); ++idx){ datahists[idx]->Add(datahists[idx-1]); } hList->Add(datahists[2]); TH1F *data1histrev(0), *data2histrev(0) ,*data3histrev(0); data1histrev = new TH1F( "BDT__data1histrev", "BDT__data1histrev", nbin, -1, 1 ); data2histrev = new TH1F( "BDT__data2histrev", "BDT__data2histrev", nbin, -1, 1 ); data3histrev = new TH1F( "BDT__wjet", "BDT__wjet", nbin, -1, 1 ); revDATAhists.push_back(data1histrev); revDATAhists.push_back(data2histrev); revDATAhists.push_back(data3histrev); for(unsigned int idx=0; idx<datasamplesreverse_.size(); ++idx){ TFile *input(0); TString fname =datasamplesreverse_[idx]; if (!gSystem->AccessPathName( fname )) input = TFile::Open( fname ); // check if file in local directory exists else input = TFile::Open( "http://root.cern.ch/files/tmva_class_example.root" ); // if not: download from ROOT server if (!input) { std::cout << "ERROR: could not open data file" << std::endl; exit(1); } std::cout << "--- TMVAClassificationApp : Using input file: " << input->GetName() << std::endl; // --- Event loop // // // Prepare the event tree // // - here the variable names have to corres[1]ponds to your tree // // - you can use the same variables as above which is slightly faster, // // but of course you can use different ones and copy the values inside the event loop // // // Double_t myptphoton,myetaphoton,myptmuon,myetamuon,myptjet,myetajet,mymasstop,mymtw,mydeltaRphotonjet,mydeltaRphotonmuon,myht,mycostopphoton,mydeltaphiphotonmet,mycvsdiscriminant,myjetmultiplicity,mybjetmultiplicity,myleptoncharge; std::vector<double> *myptphoton=0; std::vector<double> *myetaphoton=0; std::vector<double> *myptmuon=0; std::vector<double> *myetamuon=0; std::vector<double> *myptjet=0; std::vector<double> *myetajet=0; std::vector<double> *mymasstop=0; //std::vector<double> *mymtw=0; std::vector<double> *mydeltaRphotonjet=0; std::vector<double> *mydeltaRphotonmuon=0; //std::vector<double> *myht=0; std::vector<double> *mycostopphoton=0; std::vector<double> *mydeltaphiphotonmet=0; std::vector<double> *mycvsdiscriminant=0; std::vector<double> *myjetmultiplicity=0; //std::vector<double> *mybjetmultiplicity=0; //std::vector<double> *myleptoncharge=0; TTree* theTree = (TTree*)input->Get("analyzestep2/atq"); theTree->SetBranchAddress("ptphoton", &myptphoton ); theTree->SetBranchAddress( "etaphoton", &myetaphoton ); theTree->SetBranchAddress( "ptmuon", &myptmuon ); theTree->SetBranchAddress( "etamuon", &myetamuon ); theTree->SetBranchAddress( "ptjet", &myptjet ); theTree->SetBranchAddress( "etajet", &myetajet ); theTree->SetBranchAddress( "masstop", &mymasstop ); // theTree->SetBranchAddress( "mtw", &mymtw ); theTree->SetBranchAddress( "deltaRphotonjet", &mydeltaRphotonjet ); theTree->SetBranchAddress( "deltaRphotonmuon", &mydeltaRphotonmuon ); // theTree->SetBranchAddress( "ht", &myht ); theTree->SetBranchAddress( "costopphoton", &mycostopphoton ); theTree->SetBranchAddress( "jetmultiplicity", &myjetmultiplicity ); // theTree->SetBranchAddress( "bjetmultiplicity", &mybjetmultiplicity ); theTree->SetBranchAddress( "deltaphiphotonmet", &mydeltaphiphotonmet ); theTree->SetBranchAddress( "cvsdiscriminant", &mycvsdiscriminant ); // theTree->SetBranchAddress( "leptoncharge", &myleptoncharge ); // Efficiency calculator for cut method Int_t nSelCutsGA = 0; Double_t effS = 0.7; std::vector<Float_t> vecVar(4); // vector for EvaluateMVA tests std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl; TStopwatch sw; sw.Start(); for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) { // std::cout << "--- ... Processing event: " << ievt << std::endl; if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl; theTree->GetEntry(ievt); //for (int l=0;l<sizeof(myptphoton);l++){ //std::cout << "--- ... reza: " << myptphoton[l] <<std::endl; //} // std::cout << "--- ......................."<< (*mycvsdiscriminant)[0]<<std::endl; // --- Return the MVA outputs and fill into histograms ptphoton=(float)(*myptphoton)[0]; etaphoton=(float)(*myetaphoton )[0]; ptmuon=(float)(*myptmuon )[0]; etamuon=(float)(*myetamuon )[0]; ptjet=(float)(*myptjet )[0]; etajet=(float)(*myetajet )[0]; masstop=(float)(*mymasstop )[0]; //mtw=(float)(*mymtw )[0]; deltaRphotonjet=(float)(*mydeltaRphotonjet )[0]; deltaRphotonmuon=(float)(*mydeltaRphotonmuon )[0]; //ht=(float)(*myht )[0]; costopphoton=(float)(*mycostopphoton )[0]; jetmultiplicity=(float)(*myjetmultiplicity )[0]; //bjetmultiplicity=(float)(*mybjetmultiplicity )[0]; deltaphiphotonmet=(float)(*mydeltaphiphotonmet )[0]; cvsdiscriminant=(float)(*mycvsdiscriminant)[0]; //leptoncharge=(float)(*myleptoncharge )[0]; if (Use["Likelihood" ]) histLk ->Fill( reader->EvaluateMVA( "Likelihood method" ) ); if (Use["LikelihoodD" ]) histLkD ->Fill( reader->EvaluateMVA( "LikelihoodD method" ) ); if (Use["LikelihoodPCA"]) histLkPCA ->Fill( reader->EvaluateMVA( "LikelihoodPCA method" ) ); if (Use["LikelihoodKDE"]) histLkKDE ->Fill( reader->EvaluateMVA( "LikelihoodKDE method" ) ); if (Use["LikelihoodMIX"]) histLkMIX ->Fill( reader->EvaluateMVA( "LikelihoodMIX method" ) ); if (Use["PDERS" ]) histPD ->Fill( reader->EvaluateMVA( "PDERS method" ) ); if (Use["PDERSD" ]) histPDD ->Fill( reader->EvaluateMVA( "PDERSD method" ) ); if (Use["PDERSPCA" ]) histPDPCA ->Fill( reader->EvaluateMVA( "PDERSPCA method" ) ); if (Use["KNN" ]) histKNN ->Fill( reader->EvaluateMVA( "KNN method" ) ); if (Use["HMatrix" ]) histHm ->Fill( reader->EvaluateMVA( "HMatrix method" ) ); if (Use["Fisher" ]) histFi ->Fill( reader->EvaluateMVA( "Fisher method" ) ); if (Use["FisherG" ]) histFiG ->Fill( reader->EvaluateMVA( "FisherG method" ) ); if (Use["BoostedFisher"]) histFiB ->Fill( reader->EvaluateMVA( "BoostedFisher method" ) ); if (Use["LD" ]) histLD ->Fill( reader->EvaluateMVA( "LD method" ) ); if (Use["MLP" ]) histNn ->Fill( reader->EvaluateMVA( "MLP method" ) ); if (Use["MLPBFGS" ]) histNnbfgs ->Fill( reader->EvaluateMVA( "MLPBFGS method" ) ); if (Use["MLPBNN" ]) histNnbnn ->Fill( reader->EvaluateMVA( "MLPBNN method" ) ); if (Use["CFMlpANN" ]) histNnC ->Fill( reader->EvaluateMVA( "CFMlpANN method" ) ); if (Use["TMlpANN" ]) histNnT ->Fill( reader->EvaluateMVA( "TMlpANN method" ) ); if (Use["BDT" ]) histBdt ->Fill( reader->EvaluateMVA( "BDT method" ) ); if (Use["BDTD" ]) histBdtD ->Fill( reader->EvaluateMVA( "BDTD method" ) ); if (Use["BDTG" ]) histBdtG ->Fill( reader->EvaluateMVA( "BDTG method" ) ); if (Use["RuleFit" ]) histRf ->Fill( reader->EvaluateMVA( "RuleFit method" ) ); if (Use["SVM_Gauss" ]) histSVMG ->Fill( reader->EvaluateMVA( "SVM_Gauss method" ) ); if (Use["SVM_Poly" ]) histSVMP ->Fill( reader->EvaluateMVA( "SVM_Poly method" ) ); if (Use["SVM_Lin" ]) histSVML ->Fill( reader->EvaluateMVA( "SVM_Lin method" ) ); if (Use["FDA_MT" ]) histFDAMT ->Fill( reader->EvaluateMVA( "FDA_MT method" ) ); if (Use["FDA_GA" ]) histFDAGA ->Fill( reader->EvaluateMVA( "FDA_GA method" ) ); if (Use["Category" ]) histCat ->Fill( reader->EvaluateMVA( "Category method" ) ); if (Use["Plugin" ]) histPBdt ->Fill( reader->EvaluateMVA( "P_BDT method" ) ); revDATAhists[idx]->Fill( reader->EvaluateMVA( "BDT method" ) );} sw.Stop(); std::cout << "--- End of event loop: "; sw.Print(); delete myptphoton; delete myetaphoton; delete myptmuon; delete myetamuon; delete myptjet; delete myetajet; delete mymasstop; //delete mymtw; delete mydeltaRphotonjet; delete mydeltaRphotonmuon; //delete myht; delete mycostopphoton; delete mydeltaphiphotonmet; delete mycvsdiscriminant; delete myjetmultiplicity; ////delete mybjetmultiplicity; ////delete myleptoncharge; ////delete myplot; // delete input; } for(unsigned int idx=1; idx<datasamplesreverse_.size(); ++idx){ revDATAhists[idx]->Add(revDATAhists[idx-1]); } revDATAhists[2]->Scale(620.32/revDATAhists[2]->Integral()); hList->Add(revDATAhists[2]); cout<<revDATAhists[2]->Integral()<<endl; TFile *target = new TFile( "MVApp.root","RECREATE" ); hList->Write(); target->Close(); }
void TMVAClassification( std::string selectionName, std::string charge, TString myMethodList = "" ) { // The explicit loading of the shared libTMVA is done in TMVAlogon.C, defined in .rootrc // if you use your private .rootrc, or run from a different directory, please copy the // corresponding lines from .rootrc // methods to be processed can be given as an argument; use format: // // mylinux~> root -l TMVAClassification.C\(\"myMethod1,myMethod2,myMethod3\"\) // // if you like to use a method via the plugin mechanism, we recommend using // // mylinux~> root -l TMVAClassification.C\(\"P_myMethod\"\) // (an example is given for using the BDT as plugin (see below), // but of course the real application is when you write your own // method based) // this loads the library TMVA::Tools::Instance(); //--------------------------------------------------------------- // default MVA methods to be trained + tested std::map<std::string,int> Use; Use["Cuts"] = 1; Use["CutsD"] = 0; Use["CutsPCA"] = 0; Use["CutsGA"] = 0; Use["CutsSA"] = 0; // --- Use["Likelihood"] = 0; Use["LikelihoodD"] = 0; // the "D" extension indicates decorrelated input variables (see option strings) Use["LikelihoodPCA"] = 0; // the "PCA" extension indicates PCA-transformed input variables (see option strings) Use["LikelihoodKDE"] = 0; Use["LikelihoodMIX"] = 0; // --- Use["PDERS"] = 0; Use["PDERSD"] = 0; Use["PDERSPCA"] = 0; Use["PDERSkNN"] = 0; // depreciated until further notice Use["PDEFoam"] = 0; // -- Use["KNN"] = 0; // --- Use["HMatrix"] = 0; Use["Fisher"] = 0; Use["FisherG"] = 0; Use["BoostedFisher"] = 0; Use["LD"] = 0; // --- Use["FDA_GA"] = 0; Use["FDA_SA"] = 0; Use["FDA_MC"] = 0; Use["FDA_MT"] = 0; Use["FDA_GAMT"] = 0; Use["FDA_MCMT"] = 0; // --- Use["MLP"] = 0; // this is the recommended ANN Use["MLPBFGS"] = 0; // recommended ANN with optional training method Use["CFMlpANN"] = 0; // *** missing Use["TMlpANN"] = 0; // --- Use["SVM"] = 0; // --- Use["BDT"] = 0; Use["BDTD"] = 0; Use["BDTG"] = 0; Use["BDTB"] = 0; // --- Use["RuleFit"] = 0; // --- Use["Plugin"] = 0; // --------------------------------------------------------------- std::cout << std::endl; std::cout << "==> Start TMVAClassification" << std::endl; if (myMethodList != "") { for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0; std::vector<TString> mlist = TMVA::gTools().SplitString( myMethodList, ',' ); for (UInt_t i=0; i<mlist.size(); i++) { std::string regMethod(mlist[i]); if (Use.find(regMethod) == Use.end()) { std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl; for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first << " "; std::cout << std::endl; return; } Use[regMethod] = 1; } } // Create a new root output file. TString outfileName( "TMVA.root" ); TFile* outputFile = TFile::Open( outfileName, "RECREATE" ); // Create the factory object. Later you can choose the methods // whose performance you'd like to investigate. The factory will // then run the performance analysis for you. // // The first argument is the base of the name of all the // weightfiles in the directory weight/ // // The second argument is the output file for the training results // All TMVA output can be suppressed by removing the "!" (not) in // front of the "Silent" argument in the option string TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile, "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D" ); // If you wish to modify default settings // (please check "src/Config.h" to see all available global options) // (TMVA::gConfig().GetVariablePlotting()).fTimesRMS = 8.0; // (TMVA::gConfig().GetIONames()).fWeightFileDir = "myWeightDirectory"; // Define the input variables that shall be used for the MVA training // note that you may also use variable expressions, such as: "3*var1/var2*abs(var3)" // [all types of expressions that can also be parsed by TTree::Draw( "expression" )] //factory->AddVariable( "MET" , "ME_{T}", "GeV", 'F'); //factory->AddVariable( "TMath::Max(pT1,pT2)" , "Lead Lepton p_{T}", "GeV", 'F'); factory->AddVariable( "HT" , "H_{T}", "GeV", 'F'); //factory->AddVariable( "M3" , "M_{3}", "GeV", 'F'); factory->AddVariable( "TMath::Min(pT1,pT2)" , "Sublead Lepton p_{T}", "GeV", 'F'); //factory->AddVariable( "NbJ" , "N B Jets", "", 'I'); //factory->AddVariable( "NbJmed" , "N B Jets (medium)", "", 'I'); //factory->AddVariable( "NJ" , "N Jets", "", 'I'); // You can add so-called "Spectator variables", which are not used in the MVA training, // but will appear in the final "TestTree" produced by TMVA. This TestTree will contain the // input variables, the response values of all trained MVAs, and the spectator variables //factory->AddSpectator( "spec1:=var1*2", "Spectator 1", "units", 'F' ); //factory->AddSpectator( "spec2:=var1*3", "Spectator 2", "units", 'F' ); // read training and test data if (ReadDataFromAsciiIFormat) { // load the signal and background event samples from ascii files // format in file must be: // var1/F:var2/F:var3/F:var4/F // 0.04551 0.59923 0.32400 -0.19170 // ... TString datFileS = "tmva_example_sig.dat"; TString datFileB = "tmva_example_bkg.dat"; factory->SetInputTrees( datFileS, datFileB ); } else { // load the signal and background event samples from ROOT trees TFile *input(0); //TString fname = "../macros/tmva_example.root"; //TString fname = "opt_ttW_Apr10_Iso005_NoZVeto_jet20.root"; TString fname = "opt_ttW_Nov20_muDetIso0p05_elDetIso0p05_jet20_withZveto_optimization.root"; //TString fname = "opt_ttW_" + selectionName + ".root"; if (!gSystem->AccessPathName( fname )) { input = TFile::Open( fname ); // check if file in local directory exists } else { input = TFile::Open( "http://root.cern.ch/files/tmva_class_example.root" ); // if not: download from ROOT server } if (!input) { std::cout << "ERROR: could not open data file" << std::endl; exit(1); } std::cout << "--- TMVAClassification : Using input file: " << input->GetName() << std::endl; TTree* opt_tree = (TTree*)input->Get("tree_opt"); TFile* signalFile = TFile::Open("/shome/mdunser/workspace/CMSSW_5_2_5/src/DiLeptonAnalysis/NTupleProducer/macros/plots/Nov26_muPFIso0p05_elPFIso0p05_jet20_withZveto/TTbarW_Yields.root"); TTree *signal = (TTree*)signalFile->Get("SigEvents"); TChain* background = new TChain("SigEvents"); background->Add("/shome/mdunser/workspace/CMSSW_5_2_5/src/DiLeptonAnalysis/NTupleProducer/macros/plots/Nov26_muPFIso0p05_elPFIso0p05_jet20_withZveto/TTJets_Yields.root"); background->Add("/shome/mdunser/workspace/CMSSW_5_2_5/src/DiLeptonAnalysis/NTupleProducer/macros/plots/Nov26_muPFIso0p05_elPFIso0p05_jet20_withZveto/WZTo3LNu_Yields.root"); //TTree *background = (TTree*)opt_tree->CopyTree("SName==\"TTJets\" || SName==\"DYJets\" || SName==\"WZTo3LNu\""); //TTree *background = (TTree*)opt_tree->CopyTree("SName==\"DYJets\""); // global event weights per tree (see below for setting event-wise weights) Double_t signalWeight = 1.0; Double_t backgroundWeight = 1.0; // ====== register trees ==================================================== // // the following method is the prefered one: // you can add an arbitrary number of signal or background trees factory->AddSignalTree ( signal, signalWeight ); factory->AddBackgroundTree( background, backgroundWeight ); // To give different trees for training and testing, do as follows: // factory->AddSignalTree( signalTrainingTree, signalTrainWeight, "Training" ); // factory->AddSignalTree( signalTestTree, signalTestWeight, "Test" ); // Use the following code instead of the above two or four lines to add signal and background // training and test events "by hand" // NOTE that in this case one should not give expressions (such as "var1+var2") in the input // variable definition, but simply compute the expression before adding the event // // // --- begin ---------------------------------------------------------- // std::vector<Double_t> vars( 4 ); // vector has size of number of input variables // Float_t treevars[4]; // for (Int_t ivar=0; ivar<4; ivar++) signal->SetBranchAddress( Form( "var%i", ivar+1 ), &(treevars[ivar]) ); // for (Int_t i=0; i<signal->GetEntries(); i++) { // signal->GetEntry(i); // for (Int_t ivar=0; ivar<4; ivar++) vars[ivar] = treevars[ivar]; // // add training and test events; here: first half is training, second is testing // // note that the weight can also be event-wise // if (i < signal->GetEntries()/2) factory->AddSignalTrainingEvent( vars, signalWeight ); // else factory->AddSignalTestEvent ( vars, signalWeight ); // } // // for (Int_t ivar=0; ivar<4; ivar++) background->SetBranchAddress( Form( "var%i", ivar+1 ), &(treevars[ivar]) ); // for (Int_t i=0; i<background->GetEntries(); i++) { // background->GetEntry(i); // for (Int_t ivar=0; ivar<4; ivar++) vars[ivar] = treevars[ivar]; // // add training and test events; here: first half is training, second is testing // // note that the weight can also be event-wise // if (i < background->GetEntries()/2) factory->AddBackgroundTrainingEvent( vars, backgroundWeight ); // else factory->AddBackgroundTestEvent ( vars, backgroundWeight ); // } // // --- end ------------------------------------------------------------ // // ====== end of register trees ============================================== } // This would set individual event weights (the variables defined in the // expression need to exist in the original TTree) // for signal : factory->SetSignalWeightExpression("weight1*weight2"); // for background: factory->SetBackgroundWeightExpression("weight1*weight2"); //factory->SetSignalWeightExpression("eventWeight"); factory->SetBackgroundWeightExpression("1./SLumi"); // Apply additional cuts on the signal and background samples (can be different) TCut mycuts; TCut mycutb; if( charge == "plus" ) { mycuts = "Charge==1 && SystFlag==0 && NJ>=3 && pT1>20. && pT2>20. && NbJmed>0 && TLCat==0 && Flavor<3 && PassZVeto==1"; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1"; mycutb = "Charge==1 && SystFlag==0 && NJ>=3 && pT1>20. && pT2>20. && NbJmed>0 && TLCat==0 && Flavor<3 && PassZVeto==1"; // for example: TCut mycutb = "abs(var1)<0.5"; } else if( charge == "minus" ) { mycuts = "Charge==-1 && SystFlag==0 && NJ>=3 && pT1>20. && pT2>20. && NbJmed>0 && TLCat==0 && Flavor<3 && PassZVeto==1"; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1"; mycutb = "Charge==-1 && SystFlag==0 && NJ>=3 && pT1>20. && pT2>20. && NbJmed>0 && TLCat==0 && Flavor<3 && PassZVeto==1"; // for example: TCut mycutb = "abs(var1)<0.5"; } else if( charge == "all" ) { mycuts = " SystFlag==0 && NJ>=3 && pT1>20. && pT2>20. && NbJmed>0 && TLCat==0 && Flavor<3 && PassZVeto==1"; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1"; mycutb = " SystFlag==0 && NJ>=3 && pT1>20. && pT2>20. && NbJmed>0 && TLCat==0 && Flavor<3 && PassZVeto==1"; // for example: TCut mycutb = "abs(var1)<0.5"; } else { std::cout << "only 'plus' and 'minus' and 'all' are allowed for charge." <<std::endl; return; } //if( btagMed_presel_ ) { // mycuts += "NbJmed>0"; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1"; // mycutb += "NbJmed>0"; // for example: TCut mycutb = "abs(var1)<0.5"; //} // tell the factory to use all remaining events in the trees after training for testing: factory->PrepareTrainingAndTestTree( mycuts, mycutb, "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" ); // If no numbers of events are given, half of the events in the tree are used for training, and // the other half for testing: // factory->PrepareTrainingAndTestTree( mycut, "SplitMode=random:!V" ); // To also specify the number of testing events, use: // factory->PrepareTrainingAndTestTree( mycut, // "NSigTrain=3000:NBkgTrain=3000:NSigTest=3000:NBkgTest=3000:SplitMode=Random:!V" ); // ---- Book MVA methods // // please lookup the various method configuration options in the corresponding cxx files, eg: // src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html // it is possible to preset ranges in the option string in which the cut optimisation should be done: // "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable // Cut optimisation if (Use["Cuts"]) { std::string bookConditions; bookConditions = "H:!V:FitMethod=MC"; bookConditions += ":VarProp[0]=FMax"; //HT bookConditions += ":VarProp[1]=FMax"; //pt2 bookConditions += ":EffSel:SampleSize=500000000"; //bookConditions += ":EffSel:SampleSize=50000"; factory->BookMethod( TMVA::Types::kCuts, "Cuts", bookConditions.c_str() ); //factory->BookMethod( TMVA::Types::kCuts, "Cuts", // "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart" ); } if (Use["CutsD"]) factory->BookMethod( TMVA::Types::kCuts, "CutsD", "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=Decorrelate" ); if (Use["CutsPCA"]) factory->BookMethod( TMVA::Types::kCuts, "CutsPCA", "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=PCA" ); if (Use["CutsGA"]) factory->BookMethod( TMVA::Types::kCuts, "CutsGA", "H:!V:FitMethod=GA:CutRangeMin[0]=-10:CutRangeMax[0]=10:VarProp[1]=FMax:EffSel:Steps=30:Cycles=3:PopSize=400:SC_steps=10:SC_rate=5:SC_factor=0.95" ); if (Use["CutsSA"]) factory->BookMethod( TMVA::Types::kCuts, "CutsSA", "!H:!V:FitMethod=SA:EffSel:MaxCalls=150000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" ); // Likelihood if (Use["Likelihood"]) factory->BookMethod( TMVA::Types::kLikelihood, "Likelihood", "H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50" ); // test the decorrelated likelihood if (Use["LikelihoodD"]) factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodD", "!H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=Decorrelate" ); if (Use["LikelihoodPCA"]) factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodPCA", "!H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=PCA" ); // test the new kernel density estimator if (Use["LikelihoodKDE"]) factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodKDE", "!H:!V:!TransformOutput:PDFInterpol=KDE:KDEtype=Gauss:KDEiter=Adaptive:KDEFineFactor=0.3:KDEborder=None:NAvEvtPerBin=50" ); // test the mixed splines and kernel density estimator (depending on which variable) if (Use["LikelihoodMIX"]) factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodMIX", "!H:!V:!TransformOutput:PDFInterpolSig[0]=KDE:PDFInterpolBkg[0]=KDE:PDFInterpolSig[1]=KDE:PDFInterpolBkg[1]=KDE:PDFInterpolSig[2]=Spline2:PDFInterpolBkg[2]=Spline2:PDFInterpolSig[3]=Spline2:PDFInterpolBkg[3]=Spline2:KDEtype=Gauss:KDEiter=Nonadaptive:KDEborder=None:NAvEvtPerBin=50" ); // test the multi-dimensional probability density estimator // here are the options strings for the MinMax and RMS methods, respectively: // "!H:!V:VolumeRangeMode=MinMax:DeltaFrac=0.2:KernelEstimator=Gauss:GaussSigma=0.3" ); // "!H:!V:VolumeRangeMode=RMS:DeltaFrac=3:KernelEstimator=Gauss:GaussSigma=0.3" ); if (Use["PDERS"]) factory->BookMethod( TMVA::Types::kPDERS, "PDERS", "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600" ); if (Use["PDERSkNN"]) factory->BookMethod( TMVA::Types::kPDERS, "PDERSkNN", "!H:!V:VolumeRangeMode=kNN:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600" ); if (Use["PDERSD"]) factory->BookMethod( TMVA::Types::kPDERS, "PDERSD", "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=Decorrelate" ); if (Use["PDERSPCA"]) factory->BookMethod( TMVA::Types::kPDERS, "PDERSPCA", "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=PCA" ); // Multi-dimensional likelihood estimator using self-adapting phase-space binning if (Use["PDEFoam"]) factory->BookMethod( TMVA::Types::kPDEFoam, "PDEFoam", "H:!V:SigBgSeparate=F:TailCut=0.001:VolFrac=0.0333:nActiveCells=500:nSampl=2000:nBin=5:CutNmin=T:Nmin=100:Kernel=None:Compress=T" ); // K-Nearest Neighbour classifier (KNN) if (Use["KNN"]) factory->BookMethod( TMVA::Types::kKNN, "KNN", "H:nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim" ); // H-Matrix (chi2-squared) method if (Use["HMatrix"]) factory->BookMethod( TMVA::Types::kHMatrix, "HMatrix", "!H:!V" ); // Fisher discriminant if (Use["Fisher"]) factory->BookMethod( TMVA::Types::kFisher, "Fisher", "H:!V:Fisher:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=60:NsmoothMVAPdf=10" ); // Fisher with Gauss-transformed input variables if (Use["FisherG"]) factory->BookMethod( TMVA::Types::kFisher, "FisherG", "H:!V:VarTransform=Gauss" ); // Composite classifier: ensemble (tree) of boosted Fisher classifiers if (Use["BoostedFisher"]) factory->BookMethod( TMVA::Types::kFisher, "BoostedFisher", "H:!V:Boost_Num=20:Boost_Transform=log:Boost_Type=AdaBoost:Boost_AdaBoostBeta=0.2"); // Linear discriminant (same as Fisher) if (Use["LD"]) factory->BookMethod( TMVA::Types::kLD, "LD", "H:!V:VarTransform=None" ); // Function discrimination analysis (FDA) -- test of various fitters - the recommended one is Minuit (or GA or SA) if (Use["FDA_MC"]) factory->BookMethod( TMVA::Types::kFDA, "FDA_MC", "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:SampleSize=100000:Sigma=0.1" ); if (Use["FDA_GA"]) // can also use Simulated Annealing (SA) algorithm (see Cuts_SA options]) factory->BookMethod( TMVA::Types::kFDA, "FDA_GA", "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:PopSize=300:Cycles=3:Steps=20:Trim=True:SaveBestGen=1" ); if (Use["FDA_SA"]) // can also use Simulated Annealing (SA) algorithm (see Cuts_SA options]) factory->BookMethod( TMVA::Types::kFDA, "FDA_SA", "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=SA:MaxCalls=15000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" ); if (Use["FDA_MT"]) factory->BookMethod( TMVA::Types::kFDA, "FDA_MT", "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" ); if (Use["FDA_GAMT"]) factory->BookMethod( TMVA::Types::kFDA, "FDA_GAMT", "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" ); if (Use["FDA_MCMT"]) factory->BookMethod( TMVA::Types::kFDA, "FDA_MCMT", "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:SampleSize=20" ); // TMVA ANN: MLP (recommended ANN) -- all ANNs in TMVA are Multilayer Perceptrons if (Use["MLP"]) factory->BookMethod( TMVA::Types::kMLP, "MLP", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=500:HiddenLayers=N+5:TestRate=10:EpochMonitoring" ); if (Use["MLPBFGS"]) factory->BookMethod( TMVA::Types::kMLP, "MLPBFGS", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=500:HiddenLayers=N+5:TestRate=10:TrainingMethod=BFGS:!EpochMonitoring" ); // CF(Clermont-Ferrand)ANN if (Use["CFMlpANN"]) factory->BookMethod( TMVA::Types::kCFMlpANN, "CFMlpANN", "!H:!V:NCycles=2000:HiddenLayers=N+1,N" ); // n_cycles:#nodes:#nodes:... // Tmlp(Root)ANN if (Use["TMlpANN"]) factory->BookMethod( TMVA::Types::kTMlpANN, "TMlpANN", "!H:!V:NCycles=200:HiddenLayers=N+1,N:LearningMethod=BFGS:ValidationFraction=0.3" ); // n_cycles:#nodes:#nodes:... // Support Vector Machine if (Use["SVM"]) factory->BookMethod( TMVA::Types::kSVM, "SVM", "Gamma=0.25:Tol=0.001:VarTransform=Norm" ); // Boosted Decision Trees if (Use["BDTG"]) // Gradient Boost factory->BookMethod( TMVA::Types::kBDT, "BDTG", "!H:!V:NTrees=1000:BoostType=Grad:Shrinkage=0.30:UseBaggedGrad:GradBaggingFraction=0.6:SeparationType=GiniIndex:nCuts=20:NNodesMax=5" ); if (Use["BDT"]) // Adaptive Boost factory->BookMethod( TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:nEventsMin=400:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning" ); if (Use["BDTB"]) // Bagging factory->BookMethod( TMVA::Types::kBDT, "BDTB", "!H:!V:NTrees=400:BoostType=Bagging:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning" ); if (Use["BDTD"]) // Decorrelation + Adaptive Boost factory->BookMethod( TMVA::Types::kBDT, "BDTD", "!H:!V:NTrees=400:nEventsMin=400:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning:VarTransform=Decorrelate" ); // RuleFit -- TMVA implementation of Friedman's method if (Use["RuleFit"]) factory->BookMethod( TMVA::Types::kRuleFit, "RuleFit", "H:!V:RuleFitModule=RFTMVA:Model=ModRuleLinear:MinImp=0.001:RuleMinDist=0.001:NTrees=20:fEventsMin=0.01:fEventsMax=0.5:GDTau=-1.0:GDTauPrec=0.01:GDStep=0.01:GDNSteps=10000:GDErrScale=1.02" ); // For an example of the category classifier, see: TMVAClassificationCategory // -------------------------------------------------------------------------------------------------- // As an example how to use the ROOT plugin mechanism, book BDT via // plugin mechanism if (Use["Plugin"]) { // // first the plugin has to be defined, which can happen either through the following line in the local or global .rootrc: // // # plugin handler plugin name(regexp) class to be instanciated library constructor format // Plugin.TMVA@@MethodBase: ^BDT TMVA::MethodBDT TMVA.1 "MethodBDT(TString,TString,DataSet&,TString)" // // or by telling the global plugin manager directly gPluginMgr->AddHandler("TMVA@@MethodBase", "BDT", "TMVA::MethodBDT", "TMVA.1", "MethodBDT(TString,TString,DataSet&,TString)"); factory->BookMethod( TMVA::Types::kPlugins, "BDT", "!H:!V:NTrees=400:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=CostComplexity:PruneStrength=50" ); } // -------------------------------------------------------------------------------------------------- // ---- Now you can tell the factory to train, test, and evaluate the MVAs // Train MVAs using the set of training events factory->TrainAllMethods(); // ---- Evaluate all MVAs using the set of test events factory->TestAllMethods(); // ----- Evaluate and compare performance of all configured MVAs factory->EvaluateAllMethods(); if (Use["Cuts"]) { for( unsigned iEff=1; iEff<11; ++iEff ) { TMVA::IMethod* method = (TMVA::IMethod*)factory->GetMethod("Cuts"); TMVA::MethodCuts* cuts = dynamic_cast<TMVA::MethodCuts*>(method); std::string optcutsdir = "optcuts_" + selectionName + "_" + charge; std::string mkdir_command = "mkdir -p " + optcutsdir; system(mkdir_command.c_str()); char cutsFileName[500]; sprintf( cutsFileName, "%s/cuts_Seff%d.txt", optcutsdir.c_str(), 10*iEff ); ofstream ofs(cutsFileName); std::vector<Double_t> cutsMin, cutsMax; cuts->GetCuts((float)iEff*0.10, cutsMin, cutsMax); bool found_pT1 = false; bool found_pT2 = false; bool found_NJ = false; bool found_NbJ = false; bool found_NbJmed = false; for( unsigned iCut=0; iCut<cutsMin.size(); ++iCut) { TString varName = factory->DefaultDataSetInfo().GetVariableInfo(iCut).GetInternalName(); if( varName=="TMath_Min_pT1,pT2_") { ofs << "pT1 " << cutsMin[iCut] << " " << cutsMax[iCut] << std::endl; ofs << "pT2 " << cutsMin[iCut] << " " << cutsMax[iCut] << std::endl; found_pT1 = true; found_pT2 = true; } else { ofs << varName << " " << cutsMin[iCut] << " " << cutsMax[iCut] << std::endl; } if( varName=="pT1" ) found_pT1 = true; if( varName=="pT2" ) found_pT2 = true; if( varName=="NJ" ) found_NJ = true; if( varName=="NbJ" ) found_NbJ = true; if( varName=="NbJmed" ) found_NbJmed = true; } // preselection cuts (if not optimized): if( !found_pT1 ) ofs << "pT1 20. 100000." << std::endl; if( !found_pT2 ) ofs << "pT2 20. 100000." << std::endl; if( !found_NJ ) ofs << "NJ 3 100000." << std::endl; if( !found_NbJ ) ofs << "NbJ 1 100000." << std::endl; if( !found_NbJmed && btagMed_presel_ ) ofs << "NbJmed 1 100000." << std::endl; if( charge=="plus" ) ofs << "Charge 1 10" << std::endl; else if( charge=="minus" ) ofs << "Charge -10 0" << std::endl; ofs.close(); } // for eff } // if cuts // -------------------------------------------------------------- // Save the output outputFile->Close(); std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl; std::cout << "==> TMVAClassification is done!" << std::endl; delete factory; // Launch the GUI for the root macros if (!gROOT->IsBatch()) TMVAGui( outfileName ); }
void TMVAClassificationApplication( TString myMethodList = "" , TString decay_mode) { #ifdef __CINT__ gROOT->ProcessLine( ".O0" ); // turn off optimization in CINT #endif //--------------------------------------------------------------- // This loads the library TMVA::Tools::Instance(); // Default MVA methods to be trained + tested std::map<std::string,int> Use; // --- Cut optimisation Use["Cuts"] = 1; Use["CutsD"] = 1; Use["CutsPCA"] = 0; Use["CutsGA"] = 0; Use["CutsSA"] = 0; // // --- 1-dimensional likelihood ("naive Bayes estimator") Use["Likelihood"] = 1; Use["LikelihoodD"] = 0; // the "D" extension indicates decorrelated input variables (see option strings) Use["LikelihoodPCA"] = 1; // the "PCA" extension indicates PCA-transformed input variables (see option strings) Use["LikelihoodKDE"] = 0; Use["LikelihoodMIX"] = 0; // // --- Mutidimensional likelihood and Nearest-Neighbour methods Use["PDERS"] = 1; Use["PDERSD"] = 0; Use["PDERSPCA"] = 0; Use["PDEFoam"] = 1; Use["PDEFoamBoost"] = 0; // uses generalised MVA method boosting Use["KNN"] = 1; // k-nearest neighbour method // // --- Linear Discriminant Analysis Use["LD"] = 1; // Linear Discriminant identical to Fisher Use["Fisher"] = 0; Use["FisherG"] = 0; Use["BoostedFisher"] = 0; // uses generalised MVA method boosting Use["HMatrix"] = 0; // // --- Function Discriminant analysis Use["FDA_GA"] = 1; // minimisation of user-defined function using Genetics Algorithm Use["FDA_SA"] = 0; Use["FDA_MC"] = 0; Use["FDA_MT"] = 0; Use["FDA_GAMT"] = 0; Use["FDA_MCMT"] = 0; // // --- Neural Networks (all are feed-forward Multilayer Perceptrons) Use["MLP"] = 0; // Recommended ANN Use["MLPBFGS"] = 0; // Recommended ANN with optional training method Use["MLPBNN"] = 1; // Recommended ANN with BFGS training method and bayesian regulator Use["CFMlpANN"] = 0; // Depreciated ANN from ALEPH Use["TMlpANN"] = 0; // ROOT's own ANN // // --- Support Vector Machine Use["SVM"] = 1; // // --- Boosted Decision Trees Use["BDT"] = 1; // uses Adaptive Boost Use["BDTG"] = 0; // uses Gradient Boost Use["BDTB"] = 0; // uses Bagging Use["BDTD"] = 0; // decorrelation + Adaptive Boost // // --- Friedman's RuleFit method, ie, an optimised series of cuts ("rules") Use["RuleFit"] = 1; // --------------------------------------------------------------- Use["Plugin"] = 0; Use["Category"] = 0; Use["SVM_Gauss"] = 0; Use["SVM_Poly"] = 0; Use["SVM_Lin"] = 0; std::cout << std::endl; std::cout << "==> Start TMVAClassificationApplication" << std::endl; // Select methods (don't look at this code - not of interest) if (myMethodList != "") { for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0; std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' ); for (UInt_t i=0; i<mlist.size(); i++) { std::string regMethod(mlist[i]); if (Use.find(regMethod) == Use.end()) { std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl; for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { std::cout << it->first << " "; } std::cout << std::endl; return; } Use[regMethod] = 1; } } // -------------------------------------------------------------------------------------------------- // --- Create the Reader object TMVA::Reader *reader = new TMVA::Reader( "!Color:!Silent" ); // Create a set of variables and declare them to the reader // - the variable names MUST corresponds in name and type to those given in the weight file(s) used Float_t met, mT, mT2W; reader->AddVariable("met", &met); reader->AddVariable("mT", &mT); reader->AddVariable("mT2W",&mT2W); // Spectator variables declared in the training have to be added to the reader, too /* Float_t spec1,spec2; reader->AddSpectator( "spec1 := var1*2", &spec1 ); reader->AddSpectator( "spec2 := var1*3", &spec2 ); Float_t Category_cat1, Category_cat2, Category_cat3; if (Use["Category"]){ // Add artificial spectators for distinguishing categories reader->AddSpectator( "Category_cat1 := var3<=0", &Category_cat1 ); reader->AddSpectator( "Category_cat2 := (var3>0)&&(var4<0)", &Category_cat2 ); reader->AddSpectator( "Category_cat3 := (var3>0)&&(var4>=0)", &Category_cat3 ); } */ // --- Book the MVA methods TString dir = "weights/"; TString prefix = "TMVAClassification"; // Book method(s) for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { if (it->second) { TString methodName = TString(it->first) + TString(" method"); TString weightfile = dir + prefix + TString("_") + TString(it->first) + TString(".weights.xml"); reader->BookMVA( methodName, weightfile ); } } // Book output histograms UInt_t nbin = 100; TH1F *histLk(0), *histLkD(0), *histLkPCA(0), *histLkKDE(0), *histLkMIX(0), *histPD(0), *histPDD(0); TH1F *histPDPCA(0), *histPDEFoam(0), *histPDEFoamErr(0), *histPDEFoamSig(0), *histKNN(0), *histHm(0); TH1F *histFi(0), *histFiG(0), *histFiB(0), *histLD(0), *histNn(0),*histNnbfgs(0),*histNnbnn(0); TH1F *histNnC(0), *histNnT(0), *histBdt(0), *histBdtG(0), *histBdtD(0), *histRf(0), *histSVMG(0); TH1F *histSVMP(0), *histSVML(0), *histFDAMT(0), *histFDAGA(0), *histCat(0), *histPBdt(0); if (Use["Likelihood"]) histLk = new TH1F( "MVA_Likelihood", "MVA_Likelihood", nbin, -1, 1 ); if (Use["LikelihoodD"]) histLkD = new TH1F( "MVA_LikelihoodD", "MVA_LikelihoodD", nbin, -1, 0.9999 ); if (Use["LikelihoodPCA"]) histLkPCA = new TH1F( "MVA_LikelihoodPCA", "MVA_LikelihoodPCA", nbin, -1, 1 ); if (Use["LikelihoodKDE"]) histLkKDE = new TH1F( "MVA_LikelihoodKDE", "MVA_LikelihoodKDE", nbin, -0.00001, 0.99999 ); if (Use["LikelihoodMIX"]) histLkMIX = new TH1F( "MVA_LikelihoodMIX", "MVA_LikelihoodMIX", nbin, 0, 1 ); if (Use["PDERS"]) histPD = new TH1F( "MVA_PDERS", "MVA_PDERS", nbin, 0, 1 ); if (Use["PDERSD"]) histPDD = new TH1F( "MVA_PDERSD", "MVA_PDERSD", nbin, 0, 1 ); if (Use["PDERSPCA"]) histPDPCA = new TH1F( "MVA_PDERSPCA", "MVA_PDERSPCA", nbin, 0, 1 ); if (Use["KNN"]) histKNN = new TH1F( "MVA_KNN", "MVA_KNN", nbin, 0, 1 ); if (Use["HMatrix"]) histHm = new TH1F( "MVA_HMatrix", "MVA_HMatrix", nbin, -0.95, 1.55 ); if (Use["Fisher"]) histFi = new TH1F( "MVA_Fisher", "MVA_Fisher", nbin, -4, 4 ); if (Use["FisherG"]) histFiG = new TH1F( "MVA_FisherG", "MVA_FisherG", nbin, -1, 1 ); if (Use["BoostedFisher"]) histFiB = new TH1F( "MVA_BoostedFisher", "MVA_BoostedFisher", nbin, -2, 2 ); if (Use["LD"]) histLD = new TH1F( "MVA_LD", "MVA_LD", nbin, -2, 2 ); if (Use["MLP"]) histNn = new TH1F( "MVA_MLP", "MVA_MLP", nbin, -1.25, 1.5 ); if (Use["MLPBFGS"]) histNnbfgs = new TH1F( "MVA_MLPBFGS", "MVA_MLPBFGS", nbin, -1.25, 1.5 ); if (Use["MLPBNN"]) histNnbnn = new TH1F( "MVA_MLPBNN", "MVA_MLPBNN", nbin, -1.25, 1.5 ); if (Use["CFMlpANN"]) histNnC = new TH1F( "MVA_CFMlpANN", "MVA_CFMlpANN", nbin, 0, 1 ); if (Use["TMlpANN"]) histNnT = new TH1F( "MVA_TMlpANN", "MVA_TMlpANN", nbin, -1.3, 1.3 ); if (Use["BDT"]) histBdt = new TH1F( "MVA_BDT", "MVA_BDT", nbin, -0.8, 0.8 ); if (Use["BDTD"]) histBdtD = new TH1F( "MVA_BDTD", "MVA_BDTD", nbin, -0.8, 0.8 ); if (Use["BDTG"]) histBdtG = new TH1F( "MVA_BDTG", "MVA_BDTG", nbin, -1.0, 1.0 ); if (Use["RuleFit"]) histRf = new TH1F( "MVA_RuleFit", "MVA_RuleFit", nbin, -2.0, 2.0 ); if (Use["SVM_Gauss"]) histSVMG = new TH1F( "MVA_SVM_Gauss", "MVA_SVM_Gauss", nbin, 0.0, 1.0 ); if (Use["SVM_Poly"]) histSVMP = new TH1F( "MVA_SVM_Poly", "MVA_SVM_Poly", nbin, 0.0, 1.0 ); if (Use["SVM_Lin"]) histSVML = new TH1F( "MVA_SVM_Lin", "MVA_SVM_Lin", nbin, 0.0, 1.0 ); if (Use["FDA_MT"]) histFDAMT = new TH1F( "MVA_FDA_MT", "MVA_FDA_MT", nbin, -2.0, 3.0 ); if (Use["FDA_GA"]) histFDAGA = new TH1F( "MVA_FDA_GA", "MVA_FDA_GA", nbin, -2.0, 3.0 ); if (Use["Category"]) histCat = new TH1F( "MVA_Category", "MVA_Category", nbin, -2., 2. ); if (Use["Plugin"]) histPBdt = new TH1F( "MVA_PBDT", "MVA_BDT", nbin, -0.8, 0.8 ); // PDEFoam also returns per-event error, fill in histogram, and also fill significance if (Use["PDEFoam"]) { histPDEFoam = new TH1F( "MVA_PDEFoam", "MVA_PDEFoam", nbin, 0, 1 ); histPDEFoamErr = new TH1F( "MVA_PDEFoamErr", "MVA_PDEFoam error", nbin, 0, 1 ); histPDEFoamSig = new TH1F( "MVA_PDEFoamSig", "MVA_PDEFoam significance", nbin, 0, 10 ); } // Book example histogram for probability (the other methods are done similarly) TH1F *probHistFi(0), *rarityHistFi(0); if (Use["Fisher"]) { probHistFi = new TH1F( "MVA_Fisher_Proba", "MVA_Fisher_Proba", nbin, 0, 1 ); rarityHistFi = new TH1F( "MVA_Fisher_Rarity", "MVA_Fisher_Rarity", nbin, 0, 1 ); } TString fname; Double_t event_weight; // events weights are: xsection * efficiency (preselection) if (decay_mode == "TT_1Lep") {fname = "Example_Rootfiles/ttbar_1l/output/ttbar_1l.root"; event_weight = 0.153;} if (decay_mode == "TT_2Lep") {fname = "Example_Rootfiles/ttbar_2l/output/ttbar_2l.root"; event_weight = 0.129;} if (decay_mode == "WJets") {fname = "Example_Rootfiles/wjets_all/output/wjets_all.root"; event_weight = 0.67;} if (decay_mode == "Others") {fname = "Example_Rootfiles/others_all/output/others_all.root"; event_weight = 0.106;} if (decay_mode == "T2tt_R1") { fname = "Example_Rootfiles/t2tt_all/R1/output/t2tt_all_R1.root"; event_weight = 1592./24845.;} if (decay_mode == "T2tt_R2") { fname = "Example_Rootfiles/t2tt_all/R2/output/t2tt_all_R2.root"; event_weight = 1018./24994.;} if (decay_mode == "T2tt_R3") { fname = "Example_Rootfiles/t2tt_all/R3/output/t2tt_all_R3.root"; event_weight = 306./25006.;} if (decay_mode == "T2tt_R4") { fname = "Example_Rootfiles/t2tt_all/R4/output/t2tt_all_R4.root"; event_weight = 87./25094.;} if (decay_mode == "T2tt_R5") { fname = "Example_Rootfiles/t2tt_all/R5/output/t2tt_all_R5.root"; event_weight = 28./25075.;} if (decay_mode == "T2tt_R6") { fname = "Example_Rootfiles/t2tt_all/R6/output/t2tt_all_R6.root"; event_weight = 9./24863.;} TFile *input = TFile::Open( fname ); std::cout << "--- TMVAClassification : Using input file: " << input->GetName() << std::endl; // --- //Event loop // Prepare the event tree // - here the variable names have to corresponds to your tree // - you can use the same variables as above which is slightly faster, // but of course you can use different ones and copy the values inside the event loop // std::cout << "--- Select signal sample" << std::endl; TTree *theTree = (TTree*)input->Get("BDTtree"); Float_t met, mT, mT2W; Int_t event; theTree->SetBranchAddress("met", &met); theTree->SetBranchAddress("mT", &mT); theTree->SetBranchAddress("mT2W", &mT2W); theTree->SetBranchAddress("event", &event); // Efficiency calculator for cut method Int_t nSelCutsGA = 0; Double_t effS = 0.7; std::vector<Float_t> vecVar(4); // vector for EvaluateMVA tests Int_t totevt; if (string(decay_mode).find("T2tt") != std::string::npos) totevt = 50000; // Takes too long (for exercise) to run over all the signal events else totevt = theTree->GetEntries(); std::cout << "--- Processing: " << totevt << " events" << std::endl; TStopwatch sw; sw.Start(); for (Long64_t ievt=0; ievt<totevt; ievt++) { theTree->GetEntry(ievt); if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl; if ( event%2 == 1 ) continue; // remove all odd numbers from our actual analysis // --- Return the MVA outputs and fill into histograms // this gives you the mva value per event // cout << reader->EvaluateMVA("BDT method") << endl; if (Use["CutsGA"]) { // Cuts is a special case: give the desired signal efficienciy Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS ); if (passed) nSelCutsGA++; } if (Use["Likelihood" ]) histLk ->Fill( reader->EvaluateMVA( "Likelihood method" ) ); if (Use["LikelihoodD" ]) histLkD ->Fill( reader->EvaluateMVA( "LikelihoodD method" ) ); if (Use["LikelihoodPCA"]) histLkPCA ->Fill( reader->EvaluateMVA( "LikelihoodPCA method" ) ); if (Use["LikelihoodKDE"]) histLkKDE ->Fill( reader->EvaluateMVA( "LikelihoodKDE method" ) ); if (Use["LikelihoodMIX"]) histLkMIX ->Fill( reader->EvaluateMVA( "LikelihoodMIX method" ) ); if (Use["PDERS" ]) histPD ->Fill( reader->EvaluateMVA( "PDERS method" ) ); if (Use["PDERSD" ]) histPDD ->Fill( reader->EvaluateMVA( "PDERSD method" ) ); if (Use["PDERSPCA" ]) histPDPCA ->Fill( reader->EvaluateMVA( "PDERSPCA method" ) ); if (Use["KNN" ]) histKNN ->Fill( reader->EvaluateMVA( "KNN method" ) ); if (Use["HMatrix" ]) histHm ->Fill( reader->EvaluateMVA( "HMatrix method" ) ); if (Use["Fisher" ]) histFi ->Fill( reader->EvaluateMVA( "Fisher method" ) ); if (Use["FisherG" ]) histFiG ->Fill( reader->EvaluateMVA( "FisherG method" ) ); if (Use["BoostedFisher"]) histFiB ->Fill( reader->EvaluateMVA( "BoostedFisher method" ) ); if (Use["LD" ]) histLD ->Fill( reader->EvaluateMVA( "LD method" ) ); if (Use["MLP" ]) histNn ->Fill( reader->EvaluateMVA( "MLP method" ) ); if (Use["MLPBFGS" ]) histNnbfgs ->Fill( reader->EvaluateMVA( "MLPBFGS method" ) ); if (Use["MLPBNN" ]) histNnbnn ->Fill( reader->EvaluateMVA( "MLPBNN method" ) ); if (Use["CFMlpANN" ]) histNnC ->Fill( reader->EvaluateMVA( "CFMlpANN method" ) ); if (Use["TMlpANN" ]) histNnT ->Fill( reader->EvaluateMVA( "TMlpANN method" ) ); if (Use["BDT" ]) histBdt ->Fill( reader->EvaluateMVA( "BDT method" ), event_weight ); //if (Use["BDT" ]) histBdt ->Fill( reader->EvaluateMVA( "BDT method" )); if (Use["BDTD" ]) histBdtD ->Fill( reader->EvaluateMVA( "BDTD method" ) ); if (Use["BDTG" ]) histBdtG ->Fill( reader->EvaluateMVA( "BDTG method" ) ); if (Use["RuleFit" ]) histRf ->Fill( reader->EvaluateMVA( "RuleFit method" ) ); if (Use["SVM_Gauss" ]) histSVMG ->Fill( reader->EvaluateMVA( "SVM_Gauss method" ) ); if (Use["SVM_Poly" ]) histSVMP ->Fill( reader->EvaluateMVA( "SVM_Poly method" ) ); if (Use["SVM_Lin" ]) histSVML ->Fill( reader->EvaluateMVA( "SVM_Lin method" ) ); if (Use["FDA_MT" ]) histFDAMT ->Fill( reader->EvaluateMVA( "FDA_MT method" ) ); if (Use["FDA_GA" ]) histFDAGA ->Fill( reader->EvaluateMVA( "FDA_GA method" ) ); if (Use["Category" ]) histCat ->Fill( reader->EvaluateMVA( "Category method" ) ); if (Use["Plugin" ]) histPBdt ->Fill( reader->EvaluateMVA( "P_BDT method" ) ); // Retrieve also per-event error if (Use["PDEFoam"]) { Double_t val = reader->EvaluateMVA( "PDEFoam method" ); Double_t err = reader->GetMVAError(); histPDEFoam ->Fill( val ); histPDEFoamErr->Fill( err ); if (err>1.e-50) histPDEFoamSig->Fill( val/err ); } // Retrieve probability instead of MVA output if (Use["Fisher"]) { probHistFi ->Fill( reader->GetProba ( "Fisher method" ) ); rarityHistFi->Fill( reader->GetRarity( "Fisher method" ) ); } } // Get elapsed time sw.Stop(); std::cout << "--- End of event loop: "; sw.Print(); // Get efficiency for cuts classifier if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries() << " (for a required signal efficiency of " << effS << ")" << std::endl; if (Use["CutsGA"]) { // test: retrieve cuts for particular signal efficiency // CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ; if (mcuts) { std::vector<Double_t> cutsMin; std::vector<Double_t> cutsMax; mcuts->GetCuts( 0.7, cutsMin, cutsMax ); std::cout << "--- -------------------------------------------------------------" << std::endl; std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl; for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) { std::cout << "... Cut: " << cutsMin[ivar] << " < \"" << mcuts->GetInputVar(ivar) << "\" <= " << cutsMax[ivar] << std::endl; } std::cout << "--- -------------------------------------------------------------" << std::endl; } } // --- Write histograms TFile *target = new TFile( "results_"+decay_mode+".root","RECREATE" ); if (Use["Likelihood" ]) histLk ->Write(); if (Use["LikelihoodD" ]) histLkD ->Write(); if (Use["LikelihoodPCA"]) histLkPCA ->Write(); if (Use["LikelihoodKDE"]) histLkKDE ->Write(); if (Use["LikelihoodMIX"]) histLkMIX ->Write(); if (Use["PDERS" ]) histPD ->Write(); if (Use["PDERSD" ]) histPDD ->Write(); if (Use["PDERSPCA" ]) histPDPCA ->Write(); if (Use["KNN" ]) histKNN ->Write(); if (Use["HMatrix" ]) histHm ->Write(); if (Use["Fisher" ]) histFi ->Write(); if (Use["FisherG" ]) histFiG ->Write(); if (Use["BoostedFisher"]) histFiB ->Write(); if (Use["LD" ]) histLD ->Write(); if (Use["MLP" ]) histNn ->Write(); if (Use["MLPBFGS" ]) histNnbfgs ->Write(); if (Use["MLPBNN" ]) histNnbnn ->Write(); if (Use["CFMlpANN" ]) histNnC ->Write(); if (Use["TMlpANN" ]) histNnT ->Write(); if (Use["BDT" ]) histBdt ->Write(); if (Use["BDTD" ]) histBdtD ->Write(); if (Use["BDTG" ]) histBdtG ->Write(); if (Use["RuleFit" ]) histRf ->Write(); if (Use["SVM_Gauss" ]) histSVMG ->Write(); if (Use["SVM_Poly" ]) histSVMP ->Write(); if (Use["SVM_Lin" ]) histSVML ->Write(); if (Use["FDA_MT" ]) histFDAMT ->Write(); if (Use["FDA_GA" ]) histFDAGA ->Write(); if (Use["Category" ]) histCat ->Write(); if (Use["Plugin" ]) histPBdt ->Write(); // Write also error and significance histos if (Use["PDEFoam"]) { histPDEFoam->Write(); histPDEFoamErr->Write(); histPDEFoamSig->Write(); } // Write also probability hists if (Use["Fisher"]) { if (probHistFi != 0) probHistFi->Write(); if (rarityHistFi != 0) rarityHistFi->Write(); } target->Close(); std::cout << "--- Created root file: \"results_"+decay_mode+".root\" containing the MVA output histograms" << std::endl; delete reader; std::cout << "==> TMVAClassificationApplication is done!" << endl << std::endl; }
void TMVAClassificationApplication( TString myMethodList = "", TString filename="" ) { //--------------------------------------------------------------- // default MVA methods to be trained + tested // this loads the library TMVA::Tools::Instance(); std::map<std::string,int> Use; Use["CutsGA"] = 1; // other "Cuts" methods work identically // --- Use["Likelihood"] = 1; Use["LikelihoodD"] = 1; // the "D" extension indicates decorrelated input variables (see option strings) Use["LikelihoodPCA"] = 0; // the "PCA" extension indicates PCA-transformed input variables (see option strings) Use["LikelihoodKDE"] = 0; Use["LikelihoodMIX"] = 0; // --- Use["PDERS"] = 1; Use["PDERSD"] = 0; Use["PDERSPCA"] = 0; Use["PDERSkNN"] = 0; // depreciated until further notice Use["PDEFoam"] = 1; // -- Use["KNN"] = 1; // --- Use["HMatrix"] = 0; Use["Fisher"] = 1; Use["FisherG"] = 0; Use["BoostedFisher"] = 0; Use["LD"] = 1; // --- Use["FDA_GA"] = 0; Use["FDA_SA"] = 0; Use["FDA_MC"] = 0; Use["FDA_MT"] = 1; Use["FDA_GAMT"] = 0; Use["FDA_MCMT"] = 0; // --- Use["MLP"] = 1; // this is the recommended ANN Use["MLPBFGS"] = 0; // recommended ANN with optional training method Use["CFMlpANN"] = 0; // *** missing Use["TMlpANN"] = 0; // --- Use["SVM"] = 1; // --- Use["BDT"] = 1; Use["BDTD"] = 0; Use["BDTG"] = 1; Use["BDTB"] = 0; // --- Use["RuleFit"] = 0; // --- Use["Plugin"] = 0; // --------------------------------------------------------------- std::cout << std::endl; std::cout << "==> Start TMVAClassificationApplication" << std::endl; if (myMethodList != "") { for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0; std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' ); for (UInt_t i=0; i<mlist.size(); i++) { std::string regMethod(mlist[i]); if (Use.find(regMethod) == Use.end()) { std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl; for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first << " "; std::cout << std::endl; return; } Use[regMethod] = 1; } } // // create the Reader object // TMVA::Reader *reader = new TMVA::Reader( "!Color:!Silent" ); // create a set of variables and declare them to the reader // - the variable names must corresponds in name and type to // those given in the weight file(s) that you use ///Our variables here: /************************************************************************************************************ * Row * nEvt * sumEt * Et1 * lepeta * MET * dphiMETle * detajet2j * detajet3j * ************************************************************************************************************ mindijetmass maxdijetmass */ Float_t sumEt; Float_t Et1; Float_t lepeta; Float_t MET; Float_t dphiMETlepton; Float_t detajet2jet3; Float_t detajet3jet4; Float_t mindijetmass; Float_t maxdijetmass; reader->AddVariable( "sumEt", &sumEt ); reader->AddVariable( "Et1", &Et1 ); reader->AddVariable( "lepeta", &lepeta ); reader->AddVariable( "MET", &MET ); reader->AddVariable( "dphiMETlepton", &dphiMETlepton ); reader->AddVariable( "detajet2jet3", &detajet2jet3 ); reader->AddVariable( "detajet3jet4", &detajet3jet4 ); reader->AddVariable( "mindijetmass", &mindijetmass ); reader->AddVariable( "maxdijetmass", &maxdijetmass ); TString TreeName = "KinVars"; TFile * input = TFile::Open(filename+".root"); TTree* theTree = (TTree*)input->Get(TreeName); Float_t userVar1, userVar2; theTree->SetBranchAddress( "MassOfJets", &MassOfJets ); theTree->SetBranchAddress( "DeltaPhiOfJets", &DeltaPhiOfJets ); theTree->SetBranchAddress( "DeltaPhiLeadingJet", &DeltaPhiLeadingJet ); theTree->SetBranchAddress( "Pbalance", &Pbalance ); theTree->SetBranchAddress( "Sphericity", &Sphericity ); Double_t _Weight=1.0; if (filename.Contains("hbb_120GeV")) _Weight = 5.09999999999999967e-02; if (filename.Contains("qcd_15to30Gev")) _Weight = 3.54815799999999990e+03; if (filename.Contains("qcd_30to50Gev")) _Weight = 3.36987000000000023e+02; if (filename.Contains("qcd_50to150Gev")) _Weight = 1.08418000000000006e+02; if (filename.Contains("qcd_150toInfGev")) _Weight = 4.70999999999999996e+00; if (filename.Contains("data")) _Weight = -1e0; // // book the MVA methods // TString dir = "weights/"; TString prefix = "TMVAClassification"; // book method(s) for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) { if (it->second) { TString methodName = it->first + " method"; TString weightfile = dir + prefix + "_" + TString(it->first) + ".weights.xml"; reader->BookMVA( methodName, weightfile ); } } // example how to use your own method as plugin if (Use["Plugin"]) { // the weight file contains a line // Method : MethodName::InstanceName // if MethodName is not a known TMVA method, it is assumed to be // a user implemented method which has to be loaded via the // plugin mechanism // for user implemented methods the line in the weight file can be // Method : PluginName::InstanceName // where PluginName can be anything // before usage the plugin has to be defined, which can happen // either through the following line in .rootrc: // # plugin handler plugin class library constructor format // Plugin.TMVA@@MethodBase: PluginName MethodClassName UserPackage "MethodName(DataSet&,TString)" // // or by telling the global plugin manager directly gPluginMgr->AddHandler("TMVA@@MethodBase", "PluginName", "MethodClassName", "UserPackage", "MethodName(DataSet&,TString)"); // the class is then looked for in libUserPackage.so // now the method can be booked like any other reader->BookMVA( "User method", dir + prefix + "_User.weights.txt" ); } // book output histograms UInt_t nbin = 100; TH1F *histLk(0), *histLkD(0), *histLkPCA(0), *histLkKDE(0), *histLkMIX(0), *histPD(0), *histPDD(0); TH1F *histPDPCA(0), *histPDEFoam(0), *histPDEFoamErr(0), *histPDEFoamSig(0), *histKNN(0), *histHm(0); TH1F *histFi(0), *histFiG(0), *histFiB(0), *histLD(0), *histNn(0), *histNnC(0), *histNnT(0), *histBdt(0), *histBdtG(0), *histBdtD(0); TH1F *histRf(0), *histSVMG(0), *histSVMP(0), *histSVML(0), *histFDAMT(0), *histFDAGA(0), *histPBdt(0); if (Use["Likelihood"]) histLk = new TH1F( "MVA_Likelihood", "MVA_Likelihood", nbin, -1, 1 ); if (Use["LikelihoodD"]) histLkD = new TH1F( "MVA_LikelihoodD", "MVA_LikelihoodD", nbin, -1, 0.9999 ); if (Use["LikelihoodPCA"]) histLkPCA = new TH1F( "MVA_LikelihoodPCA", "MVA_LikelihoodPCA", nbin, -1, 1 ); if (Use["LikelihoodKDE"]) histLkKDE = new TH1F( "MVA_LikelihoodKDE", "MVA_LikelihoodKDE", nbin, -0.00001, 0.99999 ); if (Use["LikelihoodMIX"]) histLkMIX = new TH1F( "MVA_LikelihoodMIX", "MVA_LikelihoodMIX", nbin, 0, 1 ); if (Use["PDERS"]) histPD = new TH1F( "MVA_PDERS", "MVA_PDERS", nbin, 0, 1 ); if (Use["PDERSD"]) histPDD = new TH1F( "MVA_PDERSD", "MVA_PDERSD", nbin, 0, 1 ); if (Use["PDERSPCA"]) histPDPCA = new TH1F( "MVA_PDERSPCA", "MVA_PDERSPCA", nbin, 0, 1 ); if (Use["KNN"]) histKNN = new TH1F( "MVA_KNN", "MVA_KNN", nbin, 0, 1 ); if (Use["HMatrix"]) histHm = new TH1F( "MVA_HMatrix", "MVA_HMatrix", nbin, -0.95, 1.55 ); if (Use["Fisher"]) histFi = new TH1F( "MVA_Fisher", "MVA_Fisher", nbin, -4, 4 ); if (Use["FisherG"]) histFiG = new TH1F( "MVA_FisherG", "MVA_FisherG", nbin, -1, 1 ); if (Use["BoostedFisher"]) histFiB = new TH1F( "MVA_BoostedFisher", "MVA_BoostedFisher", nbin, -2, 2 ); if (Use["LD"]) histLD = new TH1F( "MVA_LD", "MVA_LD", nbin, -2, 2 ); if (Use["MLP"]) histNn = new TH1F( "MVA_MLP", "MVA_MLP", nbin, -1.25, 1.5 ); if (Use["CFMlpANN"]) histNnC = new TH1F( "MVA_CFMlpANN", "MVA_CFMlpANN", nbin, 0, 1 ); if (Use["TMlpANN"]) histNnT = new TH1F( "MVA_TMlpANN", "MVA_TMlpANN", nbin, -1.3, 1.3 ); if (Use["BDT"]) histBdt = new TH1F( "MVA_BDT", "MVA_BDT", nbin, -0.8, 0.8 ); if (Use["BDTD"]) histBdtD = new TH1F( "MVA_BDTD", "MVA_BDTD", nbin, -0.8, 0.8 ); if (Use["BDTG"]) histBdtG = new TH1F( "MVA_BDTG", "MVA_BDTG", nbin, -1.0, 1.0 ); if (Use["RuleFit"]) histRf = new TH1F( "MVA_RuleFit", "MVA_RuleFit", nbin, -2.0, 2.0 ); if (Use["SVM_Gauss"]) histSVMG = new TH1F( "MVA_SVM_Gauss", "MVA_SVM_Gauss", nbin, 0.0, 1.0 ); if (Use["SVM_Poly"]) histSVMP = new TH1F( "MVA_SVM_Poly", "MVA_SVM_Poly", nbin, 0.0, 1.0 ); if (Use["SVM_Lin"]) histSVML = new TH1F( "MVA_SVM_Lin", "MVA_SVM_Lin", nbin, 0.0, 1.0 ); if (Use["FDA_MT"]) histFDAMT = new TH1F( "MVA_FDA_MT", "MVA_FDA_MT", nbin, -2.0, 3.0 ); if (Use["FDA_GA"]) histFDAGA = new TH1F( "MVA_FDA_GA", "MVA_FDA_GA", nbin, -2.0, 3.0 ); if (Use["Plugin"]) histPBdt = new TH1F( "MVA_PBDT", "MVA_BDT", nbin, -0.8, 0.8 ); // PDEFoam also returns per-event error, fill in histogram, and also fill significance if (Use["PDEFoam"]) { histPDEFoam = new TH1F( "MVA_PDEFoam", "MVA_PDEFoam", nbin, 0, 1 ); histPDEFoamErr = new TH1F( "MVA_PDEFoamErr", "MVA_PDEFoam error", nbin, 0, 1 ); histPDEFoamSig = new TH1F( "MVA_PDEFoamSig", "MVA_PDEFoam significance", nbin, 0, 10 ); } // book example histogram for probability (the other methods are done similarly) TH1F *probHistFi(0), *rarityHistFi(0); if (Use["Fisher"]) { probHistFi = new TH1F( "MVA_Fisher_Proba", "MVA_Fisher_Proba", nbin, 0, 1 ); rarityHistFi = new TH1F( "MVA_Fisher_Rarity", "MVA_Fisher_Rarity", nbin, 0, 1 ); } // Prepare input tree (this must be replaced by your data source) // in this example, there is a toy tree with signal and one with background events // we'll later on use only the "signal" events for the test in this example. // /*TFile *input(0); TString fname = "./tmva_example.root"; if (!gSystem->AccessPathName( fname )) { input = TFile::Open( fname ); // check if file in local directory exists } else { input = TFile::Open( "http://root.cern.ch/files/tmva_class_example.root" ); // if not: download from ROOT server } if (!input) { std::cout << "ERROR: could not open data file" << std::endl; exit(1); } std::cout << "--- TMVAClassificationApp : Using input file: " << input->GetName() << std::endl; */ // // prepare the tree // - here the variable names have to corresponds to your tree // - you can use the same variables as above which is slightly faster, // but of course you can use different ones and copy the values inside the event loop // // efficiency calculator for cut method Int_t nSelCutsGA = 0; Double_t effS = 0.7; std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl; TStopwatch sw; sw.Start(); for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) { cout<<"Entry # "<<ievt<<endl; if (ievt%1000 == 0){ std::cout << "--- ... Processing event: " << ievt << std::endl; } theTree->GetEntry(ievt); // // return the MVAs and fill to histograms // /* if (Use["CutsGA"]) { // Cuts is a special case: give the desired signal efficienciy Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS ); if (passed) nSelCutsGA++; } */ if (Use["Likelihood" ]) histLk ->Fill( reader->EvaluateMVA( "Likelihood method" ) ); if (Use["Likelihood" ]) cout<<"MVA value: "<<reader->EvaluateMVA( "Likelihood method" )<<endl; continue; /* if (Use["LikelihoodD" ]) histLkD ->Fill( reader->EvaluateMVA( "LikelihoodD method" ) ); if (Use["LikelihoodPCA"]) histLkPCA ->Fill( reader->EvaluateMVA( "LikelihoodPCA method" ) ); if (Use["LikelihoodKDE"]) histLkKDE ->Fill( reader->EvaluateMVA( "LikelihoodKDE method" ) ); if (Use["LikelihoodMIX"]) histLkMIX ->Fill( reader->EvaluateMVA( "LikelihoodMIX method" ) ); if (Use["PDERS" ]) histPD ->Fill( reader->EvaluateMVA( "PDERS method" ) ); if (Use["PDERSD" ]) histPDD ->Fill( reader->EvaluateMVA( "PDERSD method" ) ); if (Use["PDERSPCA" ]) histPDPCA ->Fill( reader->EvaluateMVA( "PDERSPCA method" ) ); if (Use["KNN" ]) histKNN ->Fill( reader->EvaluateMVA( "KNN method" ) ); if (Use["HMatrix" ]) histHm ->Fill( reader->EvaluateMVA( "HMatrix method" ) ); if (Use["Fisher" ]) histFi ->Fill( reader->EvaluateMVA( "Fisher method" ) ); if (Use["FisherG" ]) histFiG ->Fill( reader->EvaluateMVA( "FisherG method" ) ); if (Use["BoostedFisher"]) histFiB ->Fill( reader->EvaluateMVA( "BoostedFisher method" ) ); if (Use["LD" ]) histLD ->Fill( reader->EvaluateMVA( "LD method" ) ); if (Use["MLP" ]) histNn ->Fill( reader->EvaluateMVA( "MLP method" ) ); if (Use["CFMlpANN" ]) histNnC ->Fill( reader->EvaluateMVA( "CFMlpANN method" ) ); if (Use["TMlpANN" ]) histNnT ->Fill( reader->EvaluateMVA( "TMlpANN method" ) ); if (Use["BDT" ]) histBdt ->Fill( reader->EvaluateMVA( "BDT method" ) ); if (Use["BDTD" ]) histBdtD ->Fill( reader->EvaluateMVA( "BDTD method" ) ); if (Use["BDTG" ]) histBdtG ->Fill( reader->EvaluateMVA( "BDTG method" ) ); if (Use["RuleFit" ]) histRf ->Fill( reader->EvaluateMVA( "RuleFit method" ) ); if (Use["SVM_Gauss" ]) histSVMG ->Fill( reader->EvaluateMVA( "SVM_Gauss method" ) ); if (Use["SVM_Poly" ]) histSVMP ->Fill( reader->EvaluateMVA( "SVM_Poly method" ) ); if (Use["SVM_Lin" ]) histSVML ->Fill( reader->EvaluateMVA( "SVM_Lin method" ) ); if (Use["FDA_MT" ]) histFDAMT ->Fill( reader->EvaluateMVA( "FDA_MT method" ) ); if (Use["FDA_GA" ]) histFDAGA ->Fill( reader->EvaluateMVA( "FDA_GA method" ) ); if (Use["Plugin" ]) histPBdt ->Fill( reader->EvaluateMVA( "P_BDT method" ) ); // retrieve also per-event error if (Use["PDEFoam"]) { Double_t val = reader->EvaluateMVA( "PDEFoam method" ); Double_t err = reader->GetMVAError(); histPDEFoam ->Fill( val ); histPDEFoamErr->Fill( err ); histPDEFoamSig->Fill( val/err ); } // retrieve probability instead of MVA output if (Use["Fisher"]) { probHistFi ->Fill( reader->GetProba ( "Fisher method" ) ); rarityHistFi->Fill( reader->GetRarity( "Fisher method" ) ); } */ cout<<"End of processing"<<endl; } // get elapsed time sw.Stop(); std::cout << "--- End of event loop: "; sw.Print(); // get efficiency for cuts classifier if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries() << " (for a required signal efficiency of " << effS << ")" << std::endl; if (Use["CutsGA"]) { // test: retrieve cuts for particular signal efficiency // CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ; if (mcuts) { std::vector<Double_t> cutsMin; std::vector<Double_t> cutsMax; mcuts->GetCuts( 0.7, cutsMin, cutsMax ); std::cout << "--- -------------------------------------------------------------" << std::endl; std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl; for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) { std::cout << "... Cut: " << cutsMin[ivar] << " < \"" << mcuts->GetInputVar(ivar) << "\" <= " << cutsMax[ivar] << std::endl; } std::cout << "--- -------------------------------------------------------------" << std::endl; } } // // write histograms // TFile *target = new TFile( filename+"_out"+".root","RECREATE" ); if (Use["Likelihood" ]) {if (_Weight>0)histLk->Scale(_Weight);histLk ->Write();} if (Use["LikelihoodD" ]) {if (_Weight>0)histLkD->Scale(_Weight);histLkD ->Write();} if (Use["LikelihoodPCA"]) {if (_Weight>0)histLkPCA->Scale(_Weight);histLkPCA ->Write();} if (Use["LikelihoodKDE"]) {if (_Weight>0)histLkKDE->Scale(_Weight);histLkKDE ->Write();} if (Use["LikelihoodMIX"]) {if (_Weight>0)histLkMIX->Scale(_Weight);histLkMIX ->Write();} if (Use["PDERS" ]) histPD ->Write(); if (Use["PDERSD" ]) histPDD ->Write(); if (Use["PDERSPCA" ]) histPDPCA ->Write(); if (Use["KNN" ]) histKNN ->Write(); if (Use["HMatrix" ]) histHm ->Write(); if (Use["Fisher" ]) histFi ->Write(); if (Use["FisherG" ]) histFiG ->Write(); if (Use["BoostedFisher"]) histFiB ->Write(); if (Use["LD" ]) histLD ->Write(); if (Use["MLP" ]) histNn ->Write(); if (Use["CFMlpANN" ]) histNnC ->Write(); if (Use["TMlpANN" ]) histNnT ->Write(); if (Use["BDT" ]) histBdt ->Write(); if (Use["BDTD" ]) histBdtD ->Write(); if (Use["BDTG" ]) histBdtG ->Write(); if (Use["RuleFit" ]) histRf ->Write(); if (Use["SVM_Gauss" ]) histSVMG ->Write(); if (Use["SVM_Poly" ]) histSVMP ->Write(); if (Use["SVM_Lin" ]) histSVML ->Write(); if (Use["FDA_MT" ]) histFDAMT ->Write(); if (Use["FDA_GA" ]) histFDAGA ->Write(); if (Use["Plugin" ]) histPBdt ->Write(); // write also error and significance histos if (Use["PDEFoam"]) { histPDEFoam->Write(); histPDEFoamErr->Write(); histPDEFoamSig->Write(); } // write also probability hists if (Use["Fisher"]) { if (probHistFi != 0) probHistFi->Write(); if (rarityHistFi != 0) rarityHistFi->Write(); } target->Close(); std::cout << "--- Created root file: \"TMVApp.root\" containing the MVA output histograms" << std::endl; delete reader; std::cout << "==> TMVAClassificationApplication is done!" << endl << std::endl; }