int32_t TR_AsyncCheckInsertion::insertReturnAsyncChecks(TR::Optimization *opt, const char *counterPrefix) { TR::Compilation * const comp = opt->comp(); if (opt->trace()) traceMsg(comp, "Inserting return asyncchecks (%s)\n", counterPrefix); int numAsyncChecksInserted = 0; for (TR::TreeTop *treeTop = comp->getStartTree(); treeTop; /* nothing */ ) { TR::Block *block = treeTop->getNode()->getBlock(); if (block->getLastRealTreeTop()->getNode()->getOpCode().isReturn() && performTransformation(comp, "%sInserting return asynccheck (%s) in block_%d\n", opt->optDetailString(), counterPrefix, block->getNumber())) { insertAsyncCheck(block, comp, counterPrefix); numAsyncChecksInserted++; } treeTop = block->getExit()->getNextRealTreeTop(); } return numAsyncChecksInserted; }
void TR::RegDepCopyRemoval::makeFreshCopy(TR_GlobalRegisterNumber reg) { RegDepInfo &dep = getRegDepInfo(reg); if (!performTransformation(comp(), "%schange %s in GlRegDeps n%un to an explicit copy of n%un\n", optDetailString(), registerName(reg), _regDeps->getGlobalIndex(), dep.value->getGlobalIndex())) return; // Split the block at fallthrough if necessary to avoid putting copies // between branches and BBEnd. TR::Node *curNode = _treetop->getNode(); if (curNode->getOpCodeValue() == TR::BBEnd) { TR::Block *curBlock = curNode->getBlock(); if (curBlock->getLastRealTreeTop() != curBlock->getLastNonControlFlowTreeTop()) { TR::Block *fallthrough = curBlock->getNextBlock(); fallthrough = curBlock->splitEdge(curBlock, fallthrough, comp()); TR_ASSERT(curBlock->getNextBlock() == fallthrough, "bad block placement from splitEdge\n"); fallthrough->setIsExtensionOfPreviousBlock(); _treetop = fallthrough->getExit(); TR::Node *newNode = _treetop->getNode(); newNode->setChild(0, _regDeps); newNode->setNumChildren(1); curNode->setNumChildren(0); if (trace()) traceMsg(comp(), "\tsplit fallthrough edge to insert copy, created block_%d\n", fallthrough->getNumber()); } } // Make and insert the copy TR::Node *copyNode = NULL; if (dep.value->getOpCode().isLoadConst()) { // No need to depend on the other register. // TODO heuristic for whether this is really better than a reg-reg move? generateRegcopyDebugCounter("const-remat"); copyNode = TR::Node::create(dep.value->getOpCodeValue(), 0); copyNode->setConstValue(dep.value->getConstValue()); } else { generateRegcopyDebugCounter("fresh-copy"); copyNode = TR::Node::create(TR::PassThrough, 1, dep.value); copyNode->setCopyToNewVirtualRegister(); } TR::Node *copyTreetopNode = TR::Node::create(TR::treetop, 1, copyNode); _treetop->insertBefore(TR::TreeTop::create(comp(), copyTreetopNode)); if (trace()) traceMsg(comp(), "\tcopy is n%un\n", copyNode->getGlobalIndex()); updateSingleRegDep(reg, copyNode); }
// This function splits a single succeesor block following an guard and is used to // do the following transform // block - cold1 block - cold1 // \ / => | | // nextBlock nextBlock nextBlock' (called tailSplitBlock below) // | \ / // ... ... void TR_VirtualGuardHeadMerger::tailSplitBlock(TR::Block * block, TR::Block * cold1) { TR::CFG *cfg = comp()->getFlowGraph(); cfg->setStructure(NULL); TR_BlockCloner cloner(cfg); TR::Block *tailSplitBlock = cloner.cloneBlocks(block->getNextBlock(), block->getNextBlock()); tailSplitBlock->setFrequency(cold1->getFrequency()); if (cold1->isCold()) tailSplitBlock->setIsCold(); // physically put the block after cold1 since we want cold1 to fall through tailSplitBlock->getExit()->join(cold1->getExit()->getNextTreeTop()); cold1->getExit()->join(tailSplitBlock->getEntry()); // remove cold1's goto TR::TransformUtil::removeTree(comp(), cold1->getExit()->getPrevRealTreeTop()); // copy the exception edges for (auto e = block->getNextBlock()->getExceptionSuccessors().begin(); e != block->getNextBlock()->getExceptionSuccessors().end(); ++e) cfg->addExceptionEdge(tailSplitBlock, (*e)->getTo()); cfg->addEdge(cold1, tailSplitBlock); // lastly fix up the exit of tailSplitBlock TR::Node *tailSplitEnd = tailSplitBlock->getExit()->getPrevRealTreeTop()->getNode(); if (tailSplitEnd->getOpCode().isGoto()) { tailSplitEnd->setBranchDestination(block->getNextBlock()->getLastRealTreeTop()->getNode()->getBranchDestination()); cfg->addEdge(tailSplitBlock, block->getNextBlock()->getSuccessors().front()->getTo()); } else if (tailSplitEnd->getOpCode().isBranch()) { TR::Block *gotoBlock = TR::Block::createEmptyBlock(tailSplitEnd, comp(), cold1->getFrequency()); if (cold1->isCold()) gotoBlock->setIsCold(true); gotoBlock->getExit()->join(tailSplitBlock->getExit()->getNextTreeTop()); tailSplitBlock->getExit()->join(gotoBlock->getEntry()); cfg->addNode(gotoBlock); gotoBlock->append(TR::TreeTop::create(comp(), TR::Node::create(tailSplitEnd, TR::Goto, 0, block->getNextBlock()->getExit()->getNextTreeTop()))); cfg->addEdge(tailSplitBlock, gotoBlock); cfg->addEdge(tailSplitBlock, tailSplitBlock->getLastRealTreeTop()->getNode()->getBranchDestination()->getEnclosingBlock()); cfg->addEdge(gotoBlock, block->getNextBlock()->getNextBlock()); } else if ( !tailSplitEnd->getOpCode().isReturn() && !tailSplitEnd->getOpCode().isJumpWithMultipleTargets() && tailSplitEnd->getOpCodeValue() != TR::athrow && !(tailSplitEnd->getNumChildren() >= 1 && tailSplitEnd->getFirstChild()->getOpCodeValue() == TR::athrow) ) { tailSplitBlock->append(TR::TreeTop::create(comp(), TR::Node::create(tailSplitEnd, TR::Goto, 0, block->getNextBlock()->getExit()->getNextTreeTop()))); cfg->addEdge(tailSplitBlock, block->getNextBlock()->getNextBlock()); } else { for (auto e = block->getNextBlock()->getSuccessors().begin(); e != block->getNextBlock()->getSuccessors().end(); ++e) cfg->addEdge(tailSplitBlock, (*e)->getTo()); } cfg->removeEdge(cold1, block->getNextBlock()); optimizer()->setUseDefInfo(NULL); optimizer()->setValueNumberInfo(NULL); }
// This opt tries to reduce merge backs from cold code that are the result of inliner // gnerated nopable virtual guards // It looks for one basic pattern // // guard1 -> cold1 // BBEND // BBSTART // guard2 -> cold2 // if guard1 is the guard for a method which calls the method guard2 protects or cold1 is // a predecessor of cold2 (a situation commonly greated by virtual guard tail splitter) we // can transform the guards as follows when guard1 and guard2 a // guard1 -> cold1 // BBEND // BBSTART // guard2 -> cold1 // This is safe because there are no trees between the guards and calling the caller will // result in the call to the callee if we need to patch guard2. cold2 and its mergebacks // can then be eliminated // // In addition this opt will try to move guard2 up from the end of a block to the // start of the block. We can do this if guard2 is an HCR guard and there is no GC point // between BBSTART and guard2 since HCR is a stop-the-world event. // // Finally, there is a simple tail splitting step run before the analysis of a guard if we // detect that the taken side of the guard merges back in the next block - this happens // for some empty methods and is common for Object.<init> at the top of constructors. int32_t TR_VirtualGuardHeadMerger::perform() { static char *disableVGHeadMergerTailSplitting = feGetEnv("TR_DisableVGHeadMergerTailSplitting"); TR::CFG *cfg = comp()->getFlowGraph(); // Cache the loads for the outer guard's cold path TR_BitVector coldPathLoads(comp()->trMemory()->currentStackRegion()); TR_BitVector privArgSymRefs(comp()->trMemory()->currentStackRegion()); bool evaluatedColdPathLoads = false; for (TR::Block *block = optimizer()->getMethodSymbol()->getFirstTreeTop()->getNode()->getBlock(); block; block = block->getNextBlock()) { TR::Node *guard1 = block->getLastRealTreeTop()->getNode(); if (isMergeableGuard(guard1)) { if (trace()) traceMsg(comp(), "Found mergeable guard in block_%d\n", block->getNumber()); TR::Block *cold1 = guard1->getBranchDestination()->getEnclosingBlock(); // check for an immediate merge back from the cold block and // tail split one block if we can - we only handle splitting a block // ending in a fallthrough, a branch or a goto for now for simplicity if (!disableVGHeadMergerTailSplitting && (cold1->getSuccessors().size() == 1) && cold1->hasSuccessor(block->getNextBlock()) && cold1->getLastRealTreeTop()->getNode()->getOpCode().isGoto()) { // TODO handle moving code earlier in the block down below the guard // tail split if ((block->getNextBlock()->getSuccessors().size() == 1) || ((block->getNextBlock()->getSuccessors().size() == 2) && block->getNextBlock()->getLastRealTreeTop()->getNode()->getOpCode().isBranch()) && performTransformation(comp(), "%sCloning block_%d and placing clone after block_%d to reduce HCR guard nops\n", OPT_DETAILS, block->getNextBlock()->getNumber(), cold1->getNumber())) tailSplitBlock(block, cold1); } // guard motion is fairly complex but what we want to achieve around guard1 is a sequence // of relocated privarg blocks, followed by a sequence of runtime patchable guards going to // guard1's cold block, followed by a sequence of stop-the-world guards going to guard1's // cold block // // The following code is to setup the various insert points based on the following diagrams // of basic blocks: // // start: setup: end result after moving runtime guard' // | | +-------+ <-- privargIns // | | <-- privargIns | // +-------+ <-- runtimeIns +-------+ // | | | | Guard'| // | | V +-------+ <-- runtimeIns // +-------+ +-------+ | // | Guard | | Guard | V // +-------+ +-------+ <-- HCRIns +-------+ // | ===> | ===> | Guard | // V V +-------+ <-- HCRIns // +-------+ +-------+ | // | | | | V // | | | | +-------+ // // Note we always split the block - this may create an empty block but preserves the incoming // control flow we leave the rest to block extension to fix later block = block->split(block->getLastRealTreeTop(), cfg, true, false); TR::Block *privargIns = block->getPrevBlock(); TR::Block *runtimeIns = block->getPrevBlock(); TR::Block *HCRIns = block; // New outer guard so cold paths must be evaluated evaluatedColdPathLoads = false; // scan for candidate guards to merge with guard1 identified above for (TR::Block *nextBlock = block->getNextBlock(); nextBlock; nextBlock = nextBlock->getNextBlock()) { if (!(nextBlock->getPredecessors().size() == 1) || !nextBlock->hasPredecessor(block)) { break; } TR::TreeTop *guard2Tree = NULL; if (isMergeableGuard(nextBlock->getFirstRealTreeTop()->getNode())) { guard2Tree = nextBlock->getFirstRealTreeTop(); } else if (isMergeableGuard(nextBlock->getLastRealTreeTop()->getNode())) { guard2Tree = nextBlock->getLastRealTreeTop(); } else break; TR::Node *guard2 = guard2Tree->getNode(); TR::Block *guard2Block = nextBlock; // It is not possible to shift an OSR guard unless the destination is already an OSR point // as the necessary OSR state will not be available if (guard2->isOSRGuard() && !guard1->isOSRGuard()) break; TR::Block *insertPoint = isStopTheWorldGuard(guard2) ? HCRIns : runtimeIns; if (!safeToMoveGuard(insertPoint, guard2Tree, guard1->getBranchDestination(), privArgSymRefs)) break; // now we figure out if we can redirect guard2 to guard1's cold block // ie can we do the head merge TR::Block *cold2 = guard2->getBranchDestination()->getEnclosingBlock(); if (guard1->getInlinedSiteIndex() == guard2->getInlinedSiteIndex()) { if (trace()) traceMsg(comp(), " Guard1 [%p] is guarding the same call as Guard2 [%p] - proceeding with guard merging\n", guard1, guard2); } else if (guard2->getInlinedSiteIndex() > -1 && guard1->getInlinedSiteIndex() == TR::comp()->getInlinedCallSite(guard2->getInlinedSiteIndex())._byteCodeInfo.getCallerIndex()) { if (trace()) traceMsg(comp(), " Guard1 [%p] is the caller of Guard2 [%p] - proceeding with guard merging\n", guard1, guard2); } else if ((cold1->getSuccessors().size() == 1) && cold1->hasSuccessor(cold2)) { if (trace()) traceMsg(comp(), " Guard1 cold destination block_%d has guard2 cold destination block_%d as its only successor - proceeding with guard merging\n", cold1->getNumber(), cold2->getNumber()); } else { if (trace()) traceMsg(comp(), " Cold1 block_%d and cold2 block_%d of guard2 [%p] in unknown relationship - abandon the merge attempt\n", cold1->getNumber(), cold2->getNumber(), guard2); break; } // Runtime guards will shift their privargs, so it is necessary to check such a move is safe // This is possible if a privarg temp was recycled for the inner call site, with a prior use as an // argument for the outer call site. As the privargs for the inner call site must be evaluated before // both guards, this would result in the recycled temp holding the incorrect value if the guard is ever // taken. if (!isStopTheWorldGuard(guard2)) { if (!evaluatedColdPathLoads) { collectColdPathLoads(cold1, coldPathLoads); evaluatedColdPathLoads = true; } if (coldPathLoads.intersects(privArgSymRefs)) { if (trace()) traceMsg(comp(), " Recycled temp live in cold1 block_%d and used as privarg before guard2 [%p] - stop guard merging", cold1->getNumber(), guard2); break; } } if (!performTransformation(comp(), "%sRedirecting %s guard [%p] in block_%d to parent guard cold block_%d\n", OPT_DETAILS, isStopTheWorldGuard(guard2) ? "stop the world" : "runtime", guard2, guard2Block->getNumber(), cold1->getNumber())) continue; if (guard2->getBranchDestination() != guard1->getBranchDestination()) guard2Block->changeBranchDestination(guard1->getBranchDestination(), cfg); if (guard2Tree != guard2Block->getFirstRealTreeTop()) { cfg->setStructure(NULL); // We should leave code ahead of an HCR guard in place because: // 1, it might have side effect to runtime guards after it, moving it up might cause us to falsely merge // the subsequent runtime guards // 2, it might contain live monitor, moving it up above a guard can affect the monitor's live range if (!isStopTheWorldGuard(guard2)) { // the block created above guard2 contains only privarg treetops or monitor stores if // guard2 is a runtime-patchable guard and is safe to merge. We need to move the priv // args up to the runtime insert point and leave the monitor stores in place // It's safe to do so because there is no data dependency between the monitor store and // the priv arg store, because the priv arg store does not load the value from the temp // holding the monitored object // Split priv arg stores from monitor stores // Monitor store is generated for the caller of the method guard2 protects, so should appear before // priv arg stores for the method guard2 protects TR::Block *privargBlock = guard2Block; guard2Block = splitRuntimeGuardBlock(comp(), guard2Block, cfg); if (privargBlock != guard2Block) { if (trace()) traceMsg(comp(), " Moving privarg block_%d after block_%d\n", privargBlock->getNumber(), privargIns->getNumber()); moveBlockAfterDest(cfg, privargBlock, privargIns); if (HCRIns == privargIns) HCRIns = privargBlock; if (runtimeIns == privargIns) runtimeIns = privargBlock; privargIns = privargBlock; // refresh the insertPoint since it could be stale after the above updates insertPoint = runtimeIns; } } guard2Block = guard2Block->split(guard2Tree, cfg, true, false); if (trace()) traceMsg(comp(), " Created new block_%d to hold guard [%p] from block_%d\n", guard2Block->getNumber(), guard2, guard2Block->getNumber()); } if (insertPoint != guard2Block->getPrevBlock()) { TR::DebugCounter::incStaticDebugCounter(comp(), TR::DebugCounter::debugCounterName(comp(), "headMerger/%s_%s/(%s)", isStopTheWorldGuard(guard1) ? "stop the world" : "runtime", isStopTheWorldGuard(guard2) ? "stop the world" : "runtime", comp()->signature())); cfg->setStructure(NULL); block = nextBlock = guard2Block->getPrevBlock(); if (trace()) traceMsg(comp(), " Moving guard2 block block_%d after block_%d\n", guard2Block->getNumber(), insertPoint->getNumber()); moveBlockAfterDest(cfg, guard2Block, insertPoint); if (HCRIns == insertPoint) HCRIns = guard2Block; if (runtimeIns == insertPoint) runtimeIns = guard2Block; } else { block = guard2Block; } guard1 = guard2; } } } return 1; }
TR_ExpressionsSimplification::LoopInfo* TR_ExpressionsSimplification::findLoopInfo(TR_RegionStructure* region) { ListIterator<TR::CFGEdge> exitEdges(®ion->getExitEdges()); if (region->getExitEdges().getSize() != 1) { if (trace()) traceMsg(comp(), "Region with more than 1 exit edges can't be handled\n"); return 0; } TR_StructureSubGraphNode* exitNode = toStructureSubGraphNode(exitEdges.getFirst()->getFrom()); if (!exitNode->getStructure()->asBlock()) { if (trace()) traceMsg(comp(), "The exit block can't be found\n"); return 0; } TR::Block *exitBlock = exitNode->getStructure()->asBlock()->getBlock(); TR::Node *lastTreeInExitBlock = exitBlock->getLastRealTreeTop()->getNode(); if (trace()) { traceMsg(comp(), "The exit block is %d\n", exitBlock->getNumber()); traceMsg(comp(), "The branch node is %p\n", lastTreeInExitBlock); } if (!lastTreeInExitBlock->getOpCode().isBranch()) { if (trace()) traceMsg(comp(), "The branch node couldn't be found\n"); return 0; } if (lastTreeInExitBlock->getNumChildren() < 2) { if (trace()) traceMsg(comp(), "The branch node has less than 2 children\n"); return 0; } TR::Node *firstChildOfLastTree = lastTreeInExitBlock->getFirstChild(); TR::Node *secondChildOfLastTree = lastTreeInExitBlock->getSecondChild(); if (!firstChildOfLastTree->getOpCode().hasSymbolReference()) { if (trace()) traceMsg(comp(), "The branch node's first child node %p - its opcode does not have a symbol reference\n", firstChildOfLastTree); return 0; } TR::SymbolReference *firstChildSymRef = firstChildOfLastTree->getSymbolReference(); if (trace()) traceMsg(comp(), "Symbol Reference: %p Symbol: %p\n", firstChildSymRef, firstChildSymRef->getSymbol()); // Locate the induction variable that matches with the exit node symbol // TR_InductionVariable *indVar = region->findMatchingIV(firstChildSymRef); if (!indVar) return 0; if (!indVar->getIncr()->asIntConst()) { if (trace()) traceMsg(comp(), "Increment is not a constant\n"); return 0; } int32_t increment = indVar->getIncr()->getLowInt(); _visitCount = comp()->incVisitCount(); bool indVarWrittenAndUsedUnexpectedly = false; if (firstChildOfLastTree->getReferenceCount() > 1) { TR::TreeTop *cursorTreeTopInExitBlock = exitBlock->getEntry(); TR::TreeTop *exitTreeTopInExitBlock = exitBlock->getExit(); bool loadSeen = false; while (cursorTreeTopInExitBlock != exitTreeTopInExitBlock) { TR::Node *cursorNode = cursorTreeTopInExitBlock->getNode(); if (checkForLoad(cursorNode, firstChildOfLastTree)) loadSeen = true; if (!cursorNode->getOpCode().isStore() && (cursorNode->getNumChildren() > 0)) cursorNode = cursorNode->getFirstChild(); if (cursorNode->getOpCode().isStore() && (cursorNode->getSymbolReference() == firstChildSymRef)) { indVarWrittenAndUsedUnexpectedly = true; if ((cursorNode->getFirstChild() == firstChildOfLastTree) || !loadSeen) indVarWrittenAndUsedUnexpectedly = false; else break; } cursorTreeTopInExitBlock = cursorTreeTopInExitBlock->getNextTreeTop(); } } if (indVarWrittenAndUsedUnexpectedly) { return 0; } int32_t lowerBound; int32_t upperBound = 0; TR::Node *bound = 0; bool equals = false; switch(lastTreeInExitBlock->getOpCodeValue()) { case TR::ificmplt: case TR::ificmpgt: equals = true; case TR::ificmple: case TR::ificmpge: if (!(indVar->getEntry() && indVar->getEntry()->asIntConst())) { if (trace()) traceMsg(comp(), "Entry value is not a constant\n"); return 0; } lowerBound = indVar->getEntry()->getLowInt(); if (secondChildOfLastTree->getOpCode().isLoadConst()) { upperBound = secondChildOfLastTree->getInt(); } else if (secondChildOfLastTree->getOpCode().isLoadVar()) { bound = secondChildOfLastTree; } else { if (trace()) traceMsg(comp(), "Second child is not a const or a load\n"); return 0; } return new (trStackMemory()) LoopInfo(bound, lowerBound, upperBound, increment, equals); default: if (trace()) traceMsg(comp(), "The condition has not been implemeted\n"); return 0; } return 0; }
int32_t TR::DeadTreesElimination::process(TR::TreeTop *startTree, TR::TreeTop *endTree) { TR::StackMemoryRegion stackRegion(*comp()->trMemory()); LongestPathMap longestPaths(std::less<TR::Node*>(), stackRegion); typedef TR::typed_allocator<CRAnchor, TR::Region&> CRAnchorAlloc; typedef TR::forward_list<CRAnchor, CRAnchorAlloc> CRAnchorList; CRAnchorList anchors(stackRegion); vcount_t visitCount = comp()->incOrResetVisitCount(); TR::TreeTop *treeTop; for (treeTop = startTree; (treeTop != endTree); treeTop = treeTop->getNextTreeTop()) treeTop->getNode()->initializeFutureUseCounts(visitCount); TR::Block *block = NULL; bool delayedRegStoresBeforeThisPass = _delayedRegStores; // Update visitCount as they are used in this optimization and need to be visitCount = comp()->incOrResetVisitCount(); for (TR::TreeTopIterator iter(startTree, comp()); iter != endTree; ++iter) { TR::Node *node = iter.currentTree()->getNode(); if (node->getOpCodeValue() == TR::BBStart) { block = node->getBlock(); if (!block->isExtensionOfPreviousBlock()) longestPaths.clear(); } int vcountLimit = MAX_VCOUNT - 3; if (comp()->getVisitCount() > vcountLimit) { dumpOptDetails(comp(), "%sVisit count %d exceeds limit %d; stopping\n", optDetailString(), comp()->getVisitCount(), vcountLimit); return 0; } // correct at all intermediate stages // if ((node->getOpCodeValue() != TR::treetop) && (!node->getOpCode().isAnchor() || (node->getFirstChild()->getReferenceCount() != 1)) && (!node->getOpCode().isStoreReg() || (node->getFirstChild()->getReferenceCount() != 1)) && (delayedRegStoresBeforeThisPass || (iter.currentTree() == block->getLastRealTreeTop()) || !node->getOpCode().isStoreReg() || (node->getVisitCount() == visitCount))) { if (node->getOpCode().isAnchor() && node->getFirstChild()->getOpCode().isLoadIndirect()) anchors.push_front(CRAnchor(iter.currentTree(), block)); TR::TransformUtil::recursivelySetNodeVisitCount(node, visitCount); continue; } if (node->getOpCode().isStoreReg()) _delayedRegStores = true; TR::Node *child = node->getFirstChild(); if (child->getOpCodeValue() == TR::PassThrough) { TR::Node *newChild = child->getFirstChild(); node->setAndIncChild(0, newChild); newChild->incFutureUseCount(); if (child->getReferenceCount() <= 1) optimizer()->prepareForNodeRemoval(child); child->recursivelyDecReferenceCount(); recursivelyDecFutureUseCount(child); child = newChild; } bool treeTopCanBeEliminated = false; // If the treetop child has been seen before then it must be anchored // somewhere above already; so we don't need the treetop to be anchoring // this node (as the computation is already done at the first reference to // the node). // if (visitCount == child->getVisitCount()) { treeTopCanBeEliminated = true; } else { TR::ILOpCode &childOpCode = child->getOpCode(); TR::ILOpCodes opCodeValue = childOpCode.getOpCodeValue(); bool seenConditionalBranch = false; bool callWithNoSideEffects = child->getOpCode().isCall() && child->getSymbolReference()->getSymbol()->isResolvedMethod() && child->getSymbolReference()->getSymbol()->castToResolvedMethodSymbol()->isSideEffectFree(); if (callWithNoSideEffects) { treeTopCanBeEliminated = true; } else if (!((childOpCode.isCall() && !callWithNoSideEffects) || childOpCode.isStore() || ((opCodeValue == TR::New || opCodeValue == TR::anewarray || opCodeValue == TR::newarray) && child->getReferenceCount() > 1) || opCodeValue == TR::multianewarray || opCodeValue == TR::MergeNew || opCodeValue == TR::checkcast || opCodeValue == TR::Prefetch || opCodeValue == TR::iu2l || ((childOpCode.isDiv() || childOpCode.isRem()) && child->getNumChildren() == 3))) { // Perform the rather complex check to see whether its safe // to disconnect the child node from the treetop // bool safeToReplaceNode = false; if (child->getReferenceCount() == 1) { safeToReplaceNode = true; #ifdef J9_PROJECT_SPECIFIC if (child->getOpCode().isPackedExponentiation()) { // pdexp has a possible message side effect in truncating or no significant digits left cases safeToReplaceNode = false; } #endif if (opCodeValue == TR::loadaddr) treeTopCanBeEliminated = true; } else if (!_cannotBeEliminated) { safeToReplaceNode = isSafeToReplaceNode( child, iter.currentTree(), &seenConditionalBranch, visitCount, comp(), &_targetTrees, _cannotBeEliminated, longestPaths); } if (safeToReplaceNode) { if (childOpCode.hasSymbolReference()) { TR::SymbolReference *symRef = child->getSymbolReference(); if (symRef->getSymbol()->isAuto() || symRef->getSymbol()->isParm()) treeTopCanBeEliminated = true; else { if (childOpCode.isLoad() || (opCodeValue == TR::loadaddr) || (opCodeValue == TR::instanceof) || (((opCodeValue == TR::New) || (opCodeValue == TR::anewarray || opCodeValue == TR::newarray)) && ///child->getFirstChild()->isNonNegative())) child->markedAllocationCanBeRemoved())) // opCodeValue == TR::multianewarray || // opCodeValue == TR::MergeNew) treeTopCanBeEliminated = true; } } else treeTopCanBeEliminated = true; } } // Fix for the case when a float to non-float conversion node swings // down past a branch on IA32; this would cause a FP value to be commoned // across a branch where there was none originally; this causes pblms // as a value is left on the stack. // if (treeTopCanBeEliminated && seenConditionalBranch) { if (!cg()->getSupportsJavaFloatSemantics()) { if (child->getOpCode().isConversion() || child->getOpCode().isBooleanCompare()) { if (child->getFirstChild()->getOpCode().isFloatingPoint() && !child->getOpCode().isFloatingPoint()) treeTopCanBeEliminated = false; } } } if (treeTopCanBeEliminated) { TR::NodeChecklist visited(comp()); bool containsFloatingPoint = false; for (int32_t i = 0; i < child->getNumChildren(); ++i) { // Anchor nodes with reference count > 1 // bool highGlobalIndex = false; if (fixUpTree(child->getChild(i), iter.currentTree(), visited, highGlobalIndex, self(), visitCount)) containsFloatingPoint = true; if (highGlobalIndex) { dumpOptDetails(comp(), "%sGlobal index limit exceeded; stopping\n", optDetailString()); return 0; } } if (seenConditionalBranch && containsFloatingPoint) { if (!cg()->getSupportsJavaFloatSemantics()) treeTopCanBeEliminated = false; } } } // Update visitCount as they are used in this optimization and need to be // correct at all intermediate stages // if (!treeTopCanBeEliminated) TR::TransformUtil::recursivelySetNodeVisitCount(node, visitCount); if (treeTopCanBeEliminated) { TR::TreeTop *prevTree = iter.currentTree()->getPrevTreeTop(); TR::TreeTop *nextTree = iter.currentTree()->getNextTreeTop(); if (!node->getOpCode().isStoreReg() || (node->getFirstChild()->getReferenceCount() == 1)) { // Actually going to remove the treetop now // if (performTransformation(comp(), "%sRemove tree : [" POINTER_PRINTF_FORMAT "] ([" POINTER_PRINTF_FORMAT "] = %s)\n", optDetailString(), node, node->getFirstChild(), node->getFirstChild()->getOpCode().getName())) { prevTree->join(nextTree); optimizer()->prepareForNodeRemoval(node); ///child->recursivelyDecReferenceCount(); node->recursivelyDecReferenceCount(); recursivelyDecFutureUseCount(child); iter.jumpTo(prevTree); if (child->getReferenceCount() == 1) requestOpt(OMR::treeSimplification, true, block); if (nextTree->getNode()->getOpCodeValue() == TR::Goto && prevTree->getNode()->getOpCodeValue() == TR::BBStart && !prevTree->getNode()->getBlock()->isExtensionOfPreviousBlock()) { requestOpt( OMR::redundantGotoElimination, prevTree->getNode()->getBlock()); } } } else { if (performTransformation(comp(), "%sMove tree : [" POINTER_PRINTF_FORMAT "]([" POINTER_PRINTF_FORMAT "] = %s) to end of block\n", optDetailString(), node, node->getFirstChild(), node->getFirstChild()->getOpCode().getName())) { prevTree->join(nextTree); node->setVisitCount(visitCount); TR::TreeTop *lastTree = findLastTreetop(block, prevTree); TR::TreeTop *prevLastTree = lastTree->getPrevTreeTop(); TR::TreeTop *cursorTreeTop = nextTree; while (cursorTreeTop != lastTree) { if (cursorTreeTop->getNode()->getOpCode().isStoreReg() && (cursorTreeTop->getNode()->getGlobalRegisterNumber() == iter.currentTree()->getNode()->getGlobalRegisterNumber())) { lastTree = cursorTreeTop; prevLastTree = lastTree->getPrevTreeTop(); break; } cursorTreeTop = cursorTreeTop->getNextTreeTop(); } if (lastTree->getNode()->getOpCodeValue() == TR::BBStart) { prevLastTree = lastTree; lastTree = block->getExit(); } TR::Node *lastNode = lastTree->getNode(); TR::Node *prevLastNode = prevLastTree->getNode(); if (lastNode->getOpCode().isIf() && !lastNode->getOpCode().isCompBranchOnly() && prevLastNode->getOpCode().isStoreReg() && ((prevLastNode->getFirstChild() == lastNode->getFirstChild()) || (prevLastNode->getFirstChild() == lastNode->getSecondChild()))) { lastTree = prevLastTree; prevLastTree = lastTree->getPrevTreeTop(); } prevLastTree->join(iter.currentTree()); iter.currentTree()->join(lastTree); iter.jumpTo(prevTree); requestOpt(OMR::treeSimplification, true, block); } } } } for (auto it = anchors.begin(); it != anchors.end(); ++it) { TR::Node *anchor = it->tree->getNode(); TR::Node *load = anchor->getChild(0); if (load->getReferenceCount() > 1) continue; // We can eliminate the indirect load immediately, but for the moment the // subtree providing the base object has to be anchored. TR::Node *heapBase = anchor->getChild(1); TR::Node::recreate(anchor, TR::treetop); anchor->setAndIncChild(0, load->getChild(0)); anchor->setChild(1, NULL); anchor->setNumChildren(1); if (!heapBase->getOpCode().isLoadConst()) { it->tree->insertAfter( TR::TreeTop::create( comp(), TR::Node::create(heapBase, TR::treetop, 1, heapBase))); } load->recursivelyDecReferenceCount(); heapBase->recursivelyDecReferenceCount(); // A later pass of dead trees can likely move (or even remove) the base // object expression. requestOpt(OMR::deadTreesElimination, true, it->block); } return 1; // actual cost }
void TR::DeadTreesElimination::prePerformOnBlocks() { _cannotBeEliminated = false; _delayedRegStores = false; _targetTrees.deleteAll(); // Walk through all the blocks to remove trivial dead trees of the form // treetop // => node // The problem with these trees is in the scenario where the earlier use // of 'node' is also dead. However, our analysis won't find that because // the reference count is > 1. vcount_t visitCount = comp()->incOrResetVisitCount(); for (TR::TreeTop *tt = comp()->getStartTree(); tt != 0; tt = tt->getNextTreeTop()) { bool removed = false; TR::Node *node = tt->getNode(); if (node->getOpCodeValue() == TR::treetop && node->getFirstChild()->getVisitCount() == visitCount && performTransformation(comp(), "%sRemove trivial dead tree: %p\n", optDetailString(), node)) { TR::TransformUtil::removeTree(comp(), tt); removed = true; } else { if (node->getOpCode().isCheck() && node->getFirstChild()->getOpCode().isCall() && node->getFirstChild()->getReferenceCount() == 1 && node->getFirstChild()->getSymbolReference()->getSymbol()->isResolvedMethod() && node->getFirstChild()->getSymbolReference()->getSymbol()->castToResolvedMethodSymbol()->isSideEffectFree() && performTransformation(comp(), "%sRemove dead check of side-effect free call: %p\n", optDetailString(), node)) { TR::TransformUtil::removeTree(comp(), tt); removed = true; } } if (removed && tt->getNextTreeTop()->getNode()->getOpCodeValue() == TR::Goto && tt->getPrevTreeTop()->getNode()->getOpCodeValue() == TR::BBStart && !tt->getPrevTreeTop()->getNode()->getBlock()->isExtensionOfPreviousBlock()) { requestOpt(OMR::redundantGotoElimination, tt->getEnclosingBlock()); } if (node->getVisitCount() >= visitCount) continue; TR::TransformUtil::recursivelySetNodeVisitCount(tt->getNode(), visitCount); } // If the last use of an iRegLoad has been removed, then remove the node from // the BBStart and remove the corresponding dependency node from each of the block's // predecessors. // while (1) { bool glRegDepRemoved = false; for (TR::Block * b = comp()->getStartBlock(); b; b = b->getNextBlock()) { TR::TreeTop * startTT = b->getEntry(); TR::Node * startNode = startTT->getNode(); if (startNode->getNumChildren() > 0 && !debug("disableEliminationOfGlRegDeps")) { TR::Node * glRegDeps = startNode->getFirstChild(); TR_ASSERT(glRegDeps->getOpCodeValue() == TR::GlRegDeps, "expected TR::GlRegDeps"); for (int32_t i = glRegDeps->getNumChildren() - 1; i >= 0; --i) { TR::Node * dep = glRegDeps->getChild(i); if (dep->getReferenceCount() == 1 && (!dep->getOpCode().isFloatingPoint() || cg()->getSupportsJavaFloatSemantics()) && performTransformation(comp(), "%sRemove GlRegDep : %p\n", optDetailString(), glRegDeps->getChild(i))) { glRegDeps->removeChild(i); glRegDepRemoved = true; TR_GlobalRegisterNumber registerNum = dep->getGlobalRegisterNumber(); for (auto e = b->getPredecessors().begin(); e != b->getPredecessors().end(); ++e) { TR::Block * pred = toBlock((*e)->getFrom()); if (pred == comp()->getFlowGraph()->getStart()) continue; TR::Node * parent = pred->getLastRealTreeTop()->getNode(); if ( parent->getOpCode().isJumpWithMultipleTargets() && parent->getOpCode().hasBranchChildren()) { for (int32_t j = parent->getCaseIndexUpperBound() - 1; j > 0; --j) { TR::Node * caseNode = parent->getChild(j); TR_ASSERT(caseNode->getOpCode().isCase() || caseNode->getOpCodeValue() == TR::branch, "having problems navigating a switch"); if (caseNode->getBranchDestination() == startTT && caseNode->getNumChildren() > 0 && 0) // can't do this now that all glRegDeps are hung off the default branch removeGlRegDep(caseNode, registerNum, pred, this); } } else if (!parent->getOpCode().isReturn() && parent->getOpCodeValue() != TR::igoto && !( parent->getOpCode().isJumpWithMultipleTargets() && parent->getOpCode().hasBranchChildren()) && !(parent->getOpCodeValue()==TR::treetop && parent->getFirstChild()->getOpCode().isCall() && parent->getFirstChild()->getOpCode().isIndirect())) { if (pred->getNextBlock() == b) parent = pred->getExit()->getNode(); removeGlRegDep(parent, registerNum, pred, this); } } } } if (glRegDeps->getNumChildren() == 0) startNode->removeChild(0); } } if (!glRegDepRemoved) break; } }