void OMR::CodeGenPhase::performRegisterAssigningPhase(TR::CodeGenerator * cg, TR::CodeGenPhase * phase) { TR::Compilation* comp = cg->comp(); phase->reportPhase(RegisterAssigningPhase); if (cg->getDebug()) cg->getDebug()->roundAddressEnumerationCounters(); { TR::LexicalMemProfiler mp("RA", comp->phaseMemProfiler()); LexicalTimer pt("RA", comp->phaseTimer()); TR_RegisterKinds colourableKindsToAssign; TR_RegisterKinds nonColourableKindsToAssign = cg->prepareRegistersForAssignment(); cg->jettisonAllSpills(); // Spill temps used before now may lead to conflicts if also used by register assignment // Do local register assignment for non-colourable registers. // if(cg->getTraceRAOption(TR_TraceRAListing)) if(cg->getDebug()) cg->getDebug()->dumpMethodInstrs(comp->getOutFile(),"Before Local RA",false); cg->doRegisterAssignment(nonColourableKindsToAssign); if (comp->compilationShouldBeInterrupted(AFTER_REGISTER_ASSIGNMENT_CONTEXT)) { comp->failCompilation<TR::CompilationInterrupted>("interrupted after RA"); } } if (comp->getOption(TR_TraceCG) || comp->getOptions()->getTraceCGOption(TR_TraceCGPostRegisterAssignment)) comp->getDebug()->dumpMethodInstrs(comp->getOutFile(), "Post Register Assignment Instructions", false, true); }
void OMR::CodeGenPhase::performInstructionSelectionPhase(TR::CodeGenerator * cg, TR::CodeGenPhase * phase) { TR::Compilation* comp = cg->comp(); phase->reportPhase(InstructionSelectionPhase); if (comp->getOption(TR_TraceCG) || comp->getOption(TR_TraceTrees) || comp->getOptions()->getTraceCGOption(TR_TraceCGPreInstructionSelection)) comp->dumpMethodTrees("Pre Instruction Selection Trees"); TR::LexicalMemProfiler mp(phase->getName(), comp->phaseMemProfiler()); LexicalTimer pt(phase->getName(), comp->phaseTimer()); cg->doInstructionSelection(); if (comp->getOption(TR_TraceCG) || comp->getOptions()->getTraceCGOption(TR_TraceCGPostInstructionSelection)) comp->getDebug()->dumpMethodInstrs(comp->getOutFile(), "Post Instruction Selection Instructions", false, true); // check reference counts #if defined(DEBUG) || defined(PROD_WITH_ASSUMES) for (int r=0; r<NumRegisterKinds; r++) { if (TO_KIND_MASK(r) & cg->getSupportedLiveRegisterKinds()) { cg->checkForLiveRegisters(cg->getLiveRegisters((TR_RegisterKinds)r)); } } #endif // check interrupt if (comp->compilationShouldBeInterrupted(AFTER_INSTRUCTION_SELECTION_CONTEXT)) { comp->failCompilation<TR::CompilationInterrupted>("interrupted after instruction selection"); } }
void OMR::CodeGenPhase::performEmitSnippetsPhase(TR::CodeGenerator * cg, TR::CodeGenPhase * phase) { TR::Compilation * comp = cg->comp(); phase->reportPhase(EmitSnippetsPhase); TR::LexicalMemProfiler mp("Emit Snippets", comp->phaseMemProfiler()); LexicalTimer pt("Emit Snippets", comp->phaseTimer()); cg->emitSnippets(); if (comp->getOption(TR_EnableOSR)) { comp->getOSRCompilationData()->checkOSRLimits(); comp->getOSRCompilationData()->compressInstruction2SharedSlotMap(); } if (comp->getOption(TR_TraceCG) || comp->getOptions()->getTraceCGOption(TR_TraceCGPostBinaryEncoding)) { diagnostic("\nbuffer start = %8x, code start = %8x, buffer length = %d", cg->getBinaryBufferStart(), cg->getCodeStart(), cg->getEstimatedCodeLength()); diagnostic("\n"); const char * title = "Post Binary Instructions"; comp->getDebug()->dumpMethodInstrs(comp->getOutFile(), title, false, true); traceMsg(comp,"<snippets>"); comp->getDebug()->print(comp->getOutFile(), cg->getSnippetList()); traceMsg(comp,"\n</snippets>\n"); auto iterator = cg->getSnippetList().begin(); int32_t estimatedSnippetStart = cg->getEstimatedSnippetStart(); while (iterator != cg->getSnippetList().end()) { estimatedSnippetStart += (*iterator)->getLength(estimatedSnippetStart); ++iterator; } int32_t snippetLength = estimatedSnippetStart - cg->getEstimatedSnippetStart(); diagnostic("\nAmount of code memory allocated for this function = %d" "\nAmount of code memory consumed for this function = %d" "\nAmount of snippet code memory consumed for this function = %d\n\n", cg->getEstimatedCodeLength(), cg->getCodeLength(), snippetLength); } }
void OMR::CodeGenPhase::performPeepholePhase(TR::CodeGenerator * cg, TR::CodeGenPhase * phase) { TR::Compilation * comp = cg->comp(); phase->reportPhase(PeepholePhase); TR::LexicalMemProfiler mp(phase->getName(), comp->phaseMemProfiler()); LexicalTimer pt(phase->getName(), comp->phaseTimer()); cg->doPeephole(); if (comp->getOption(TR_TraceCG)) comp->getDebug()->dumpMethodInstrs(comp->getOutFile(), "Post Peephole Instructions", false); }
void OMR::CodeGenPhase::performMapStackPhase(TR::CodeGenerator * cg, TR::CodeGenPhase * phase) { TR::Compilation* comp = cg->comp(); cg->remapGCIndicesInInternalPtrFormat(); { TR::LexicalMemProfiler mp("Stackmap", comp->phaseMemProfiler()); LexicalTimer pt("Stackmap", comp->phaseTimer()); cg->getLinkage()->mapStack(comp->getJittedMethodSymbol()); if (comp->getOption(TR_TraceCG) || comp->getOptions()->getTraceCGOption(TR_TraceEarlyStackMap)) comp->getDebug()->dumpMethodInstrs(comp->getOutFile(), "Post Stack Map", false); } cg->setMappingAutomatics(); }
void OMR::CodeGenPhase::performProcessRelocationsPhase(TR::CodeGenerator * cg, TR::CodeGenPhase * phase) { TR::Compilation * comp = cg->comp(); if (comp->getPersistentInfo()->isRuntimeInstrumentationEnabled()) { // This must be called before relocations to generate the relocation data for the profiled instructions. cg->createHWPRecords(); } phase->reportPhase(ProcessRelocationsPhase); TR::LexicalMemProfiler mp(phase->getName(), comp->phaseMemProfiler()); LexicalTimer pt(phase->getName(), comp->phaseTimer()); cg->processRelocations(); cg->resizeCodeMemory(); cg->registerAssumptions(); cg->syncCode(cg->getBinaryBufferStart(), cg->getBinaryBufferCursor() - cg->getBinaryBufferStart()); if (comp->getOption(TR_EnableOSR)) { if (comp->getOption(TR_TraceOSR) && !comp->getOption(TR_DisableOSRSharedSlots)) { (*comp) << "OSRCompilationData is " << *comp->getOSRCompilationData() << "\n"; } } if (comp->getOption(TR_AOT) && (comp->getOption(TR_TraceRelocatableDataCG) || comp->getOption(TR_TraceRelocatableDataDetailsCG) || comp->getOption(TR_TraceReloCG))) { traceMsg(comp, "\n<relocatableDataCG>\n"); if (comp->getOption(TR_TraceRelocatableDataDetailsCG)) // verbose output { uint8_t * relocatableMethodCodeStart = (uint8_t *)comp->getRelocatableMethodCodeStart(); traceMsg(comp, "Code start = %8x, Method start pc = %x, Method start pc offset = 0x%x\n", relocatableMethodCodeStart, cg->getCodeStart(), cg->getCodeStart() - relocatableMethodCodeStart); } cg->getAheadOfTimeCompile()->dumpRelocationData(); traceMsg(comp, "</relocatableDataCG>\n"); } if (debug("dumpCodeSizes")) { diagnostic("%08d %s\n", cg->getCodeLength(), comp->signature()); } if (comp->getCurrentMethod() == NULL) { comp->getMethodSymbol()->setMethodAddress(cg->getBinaryBufferStart()); } TR_ASSERT(cg->getCodeLength() <= cg->getEstimatedCodeLength(), "Method length estimate must be conservatively large\n" " codeLength = %d, estimatedCodeLength = %d \n", cg->getCodeLength(), cg->getEstimatedCodeLength() ); // also trace the interal stack atlas cg->getStackAtlas()->close(cg); TR::SimpleRegex * regex = comp->getOptions()->getSlipTrap(); if (regex && TR::SimpleRegex::match(regex, comp->getCurrentMethod())) { if (TR::Compiler->target.is64Bit()) { setDllSlip((char*)cg->getCodeStart(),(char*)cg->getCodeStart()+cg->getCodeLength(),"SLIPDLL64", comp); } else { setDllSlip((char*)cg->getCodeStart(),(char*)cg->getCodeStart()+cg->getCodeLength(),"SLIPDLL31", comp); } } if (comp->getOption(TR_TraceCG) || comp->getOptions()->getTraceCGOption(TR_TraceCGPostBinaryEncoding)) { const char * title = "Post Relocation Instructions"; comp->getDebug()->dumpMethodInstrs(comp->getOutFile(), title, false, true); traceMsg(comp,"<snippets>"); comp->getDebug()->print(comp->getOutFile(), cg->getSnippetList()); traceMsg(comp,"\n</snippets>\n"); auto iterator = cg->getSnippetList().begin(); int32_t estimatedSnippetStart = cg->getEstimatedSnippetStart(); while (iterator != cg->getSnippetList().end()) { estimatedSnippetStart += (*iterator)->getLength(estimatedSnippetStart); ++iterator; } } }