void initialiseFilters() { // resamplers transform = TransformType::New(); transform->SetIdentity(); volumeInterpolator = VolumeInterpolatorType::New(); maskVolumeInterpolator = MaskVolumeInterpolatorType::New(); resampler = ResamplerType::New(); resampler->SetInput( originalImage ); resampler->SetInterpolator( volumeInterpolator ); resampler->SetOutputSpacing( resamplerSpacing ); resampler->SetSize( resamplerSize ); resampler->SetTransform( transform ); resampler->SetDefaultPixelValue( 127 ); maskResampler = MaskResamplerType::New(); maskResampler->SetInput( originalMask ); maskResampler->SetInterpolator( maskVolumeInterpolator ); maskResampler->SetOutputSpacing( resamplerSpacing ); maskResampler->SetSize( resamplerSize ); maskResampler->SetTransform( transform ); // extract image filters sliceExtractor = SliceExtractorType::New(); sliceExtractor->SetInput( resampler->GetOutput() ); maskSliceExtractor = MaskSliceExtractorType::New(); maskSliceExtractor->SetInput( maskResampler->GetOutput() ); // masks for(unsigned int i=0; i<resamplerSize[2]; i++) { masks2D.push_back( MaskType2D::New() ); } }
bool ShowSegmentationAsSmoothedSurface::ThreadedUpdateFunction() { Image::Pointer image; GetPointerParameter("Input", image); float smoothing; GetParameter("Smoothing", smoothing); float decimation; GetParameter("Decimation", decimation); float closing; GetParameter("Closing", closing); int timeNr = 0; GetParameter("TimeNr", timeNr); if (image->GetDimension() == 4) MITK_INFO << "CREATING SMOOTHED POLYGON MODEL (t = " << timeNr << ')'; else MITK_INFO << "CREATING SMOOTHED POLYGON MODEL"; MITK_INFO << " Smoothing = " << smoothing; MITK_INFO << " Decimation = " << decimation; MITK_INFO << " Closing = " << closing; Geometry3D::Pointer geometry = dynamic_cast<Geometry3D *>(image->GetGeometry()->Clone().GetPointer()); // Make ITK image out of MITK image typedef itk::Image<unsigned char, 3> CharImageType; typedef itk::Image<unsigned short, 3> ShortImageType; typedef itk::Image<float, 3> FloatImageType; if (image->GetDimension() == 4) { ImageTimeSelector::Pointer imageTimeSelector = ImageTimeSelector::New(); imageTimeSelector->SetInput(image); imageTimeSelector->SetTimeNr(timeNr); imageTimeSelector->UpdateLargestPossibleRegion(); image = imageTimeSelector->GetOutput(0); } ImageToItk<CharImageType>::Pointer imageToItkFilter = ImageToItk<CharImageType>::New(); try { imageToItkFilter->SetInput(image); } catch (const itk::ExceptionObject &e) { // Most probably the input image type is wrong. Binary images are expected to be // >unsigned< char images. MITK_ERROR << e.GetDescription() << endl; return false; } imageToItkFilter->Update(); CharImageType::Pointer itkImage = imageToItkFilter->GetOutput(); // Get bounding box and relabel MITK_INFO << "Extracting VOI..."; int imageLabel = 1; bool roiFound = false; CharImageType::IndexType minIndex; minIndex.Fill(numeric_limits<CharImageType::IndexValueType>::max()); CharImageType::IndexType maxIndex; maxIndex.Fill(numeric_limits<CharImageType::IndexValueType>::min()); itk::ImageRegionIteratorWithIndex<CharImageType> iter(itkImage, itkImage->GetLargestPossibleRegion()); for (iter.GoToBegin(); !iter.IsAtEnd(); ++iter) { if (iter.Get() == imageLabel) { roiFound = true; iter.Set(1); CharImageType::IndexType currentIndex = iter.GetIndex(); for (unsigned int dim = 0; dim < 3; ++dim) { minIndex[dim] = min(currentIndex[dim], minIndex[dim]); maxIndex[dim] = max(currentIndex[dim], maxIndex[dim]); } } else { iter.Set(0); } } if (!roiFound) { ProgressBar::GetInstance()->Progress(8); MITK_ERROR << "Didn't found segmentation labeled with " << imageLabel << "!" << endl; return false; } ProgressBar::GetInstance()->Progress(1); // Extract and pad bounding box typedef itk::RegionOfInterestImageFilter<CharImageType, CharImageType> ROIFilterType; ROIFilterType::Pointer roiFilter = ROIFilterType::New(); CharImageType::RegionType region; CharImageType::SizeType size; for (unsigned int dim = 0; dim < 3; ++dim) { size[dim] = maxIndex[dim] - minIndex[dim] + 1; } region.SetIndex(minIndex); region.SetSize(size); roiFilter->SetInput(itkImage); roiFilter->SetRegionOfInterest(region); roiFilter->ReleaseDataFlagOn(); roiFilter->ReleaseDataBeforeUpdateFlagOn(); typedef itk::ConstantPadImageFilter<CharImageType, CharImageType> PadFilterType; PadFilterType::Pointer padFilter = PadFilterType::New(); const PadFilterType::SizeValueType pad[3] = { 10, 10, 10 }; padFilter->SetInput(roiFilter->GetOutput()); padFilter->SetConstant(0); padFilter->SetPadLowerBound(pad); padFilter->SetPadUpperBound(pad); padFilter->ReleaseDataFlagOn(); padFilter->ReleaseDataBeforeUpdateFlagOn(); padFilter->Update(); CharImageType::Pointer roiImage = padFilter->GetOutput(); roiImage->DisconnectPipeline(); roiFilter = nullptr; padFilter = nullptr; // Correct origin of real geometry (changed by cropping and padding) typedef Geometry3D::TransformType TransformType; TransformType::Pointer transform = TransformType::New(); TransformType::OutputVectorType translation; for (unsigned int dim = 0; dim < 3; ++dim) translation[dim] = (int)minIndex[dim] - (int)pad[dim]; transform->SetIdentity(); transform->Translate(translation); geometry->Compose(transform, true); ProgressBar::GetInstance()->Progress(1); // Median MITK_INFO << "Median..."; typedef itk::BinaryMedianImageFilter<CharImageType, CharImageType> MedianFilterType; MedianFilterType::Pointer medianFilter = MedianFilterType::New(); CharImageType::SizeType radius = { 0 }; medianFilter->SetRadius(radius); medianFilter->SetBackgroundValue(0); medianFilter->SetForegroundValue(1); medianFilter->SetInput(roiImage); medianFilter->ReleaseDataFlagOn(); medianFilter->ReleaseDataBeforeUpdateFlagOn(); medianFilter->Update(); ProgressBar::GetInstance()->Progress(1); // Intelligent closing MITK_INFO << "Intelligent closing..."; unsigned int surfaceRatio = (unsigned int)((1.0f - closing) * 100.0f); typedef itk::IntelligentBinaryClosingFilter<CharImageType, ShortImageType> ClosingFilterType; ClosingFilterType::Pointer closingFilter = ClosingFilterType::New(); closingFilter->SetInput(medianFilter->GetOutput()); closingFilter->ReleaseDataFlagOn(); closingFilter->ReleaseDataBeforeUpdateFlagOn(); closingFilter->SetSurfaceRatio(surfaceRatio); closingFilter->Update(); ShortImageType::Pointer closedImage = closingFilter->GetOutput(); closedImage->DisconnectPipeline(); roiImage = nullptr; medianFilter = nullptr; closingFilter = nullptr; ProgressBar::GetInstance()->Progress(1); // Gaussian blur MITK_INFO << "Gauss..."; typedef itk::BinaryThresholdImageFilter<ShortImageType, FloatImageType> BinaryThresholdToFloatFilterType; BinaryThresholdToFloatFilterType::Pointer binThresToFloatFilter = BinaryThresholdToFloatFilterType::New(); binThresToFloatFilter->SetInput(closedImage); binThresToFloatFilter->SetLowerThreshold(1); binThresToFloatFilter->SetUpperThreshold(1); binThresToFloatFilter->SetInsideValue(100); binThresToFloatFilter->SetOutsideValue(0); binThresToFloatFilter->ReleaseDataFlagOn(); binThresToFloatFilter->ReleaseDataBeforeUpdateFlagOn(); typedef itk::DiscreteGaussianImageFilter<FloatImageType, FloatImageType> GaussianFilterType; // From the following line on, IntelliSense (VS 2008) is broken. Any idea how to fix it? GaussianFilterType::Pointer gaussFilter = GaussianFilterType::New(); gaussFilter->SetInput(binThresToFloatFilter->GetOutput()); gaussFilter->SetUseImageSpacing(true); gaussFilter->SetVariance(smoothing); gaussFilter->ReleaseDataFlagOn(); gaussFilter->ReleaseDataBeforeUpdateFlagOn(); typedef itk::BinaryThresholdImageFilter<FloatImageType, CharImageType> BinaryThresholdFromFloatFilterType; BinaryThresholdFromFloatFilterType::Pointer binThresFromFloatFilter = BinaryThresholdFromFloatFilterType::New(); binThresFromFloatFilter->SetInput(gaussFilter->GetOutput()); binThresFromFloatFilter->SetLowerThreshold(50); binThresFromFloatFilter->SetUpperThreshold(255); binThresFromFloatFilter->SetInsideValue(1); binThresFromFloatFilter->SetOutsideValue(0); binThresFromFloatFilter->ReleaseDataFlagOn(); binThresFromFloatFilter->ReleaseDataBeforeUpdateFlagOn(); binThresFromFloatFilter->Update(); CharImageType::Pointer blurredImage = binThresFromFloatFilter->GetOutput(); blurredImage->DisconnectPipeline(); closedImage = nullptr; binThresToFloatFilter = nullptr; gaussFilter = nullptr; ProgressBar::GetInstance()->Progress(1); // Fill holes MITK_INFO << "Filling cavities..."; typedef itk::ConnectedThresholdImageFilter<CharImageType, CharImageType> ConnectedThresholdFilterType; ConnectedThresholdFilterType::Pointer connectedThresFilter = ConnectedThresholdFilterType::New(); CharImageType::IndexType corner; corner[0] = 0; corner[1] = 0; corner[2] = 0; connectedThresFilter->SetInput(blurredImage); connectedThresFilter->SetSeed(corner); connectedThresFilter->SetLower(0); connectedThresFilter->SetUpper(0); connectedThresFilter->SetReplaceValue(2); connectedThresFilter->ReleaseDataFlagOn(); connectedThresFilter->ReleaseDataBeforeUpdateFlagOn(); typedef itk::BinaryThresholdImageFilter<CharImageType, CharImageType> BinaryThresholdFilterType; BinaryThresholdFilterType::Pointer binThresFilter = BinaryThresholdFilterType::New(); binThresFilter->SetInput(connectedThresFilter->GetOutput()); binThresFilter->SetLowerThreshold(0); binThresFilter->SetUpperThreshold(0); binThresFilter->SetInsideValue(50); binThresFilter->SetOutsideValue(0); binThresFilter->ReleaseDataFlagOn(); binThresFilter->ReleaseDataBeforeUpdateFlagOn(); typedef itk::AddImageFilter<CharImageType, CharImageType, CharImageType> AddFilterType; AddFilterType::Pointer addFilter = AddFilterType::New(); addFilter->SetInput1(blurredImage); addFilter->SetInput2(binThresFilter->GetOutput()); addFilter->ReleaseDataFlagOn(); addFilter->ReleaseDataBeforeUpdateFlagOn(); addFilter->Update(); ProgressBar::GetInstance()->Progress(1); // Surface extraction MITK_INFO << "Surface extraction..."; Image::Pointer filteredImage = Image::New(); CastToMitkImage(addFilter->GetOutput(), filteredImage); filteredImage->SetGeometry(geometry); ImageToSurfaceFilter::Pointer imageToSurfaceFilter = ImageToSurfaceFilter::New(); imageToSurfaceFilter->SetInput(filteredImage); imageToSurfaceFilter->SetThreshold(50); imageToSurfaceFilter->SmoothOn(); imageToSurfaceFilter->SetDecimate(ImageToSurfaceFilter::NoDecimation); m_Surface = imageToSurfaceFilter->GetOutput(0); ProgressBar::GetInstance()->Progress(1); // Mesh decimation if (decimation > 0.0f && decimation < 1.0f) { MITK_INFO << "Quadric mesh decimation..."; vtkQuadricDecimation *quadricDecimation = vtkQuadricDecimation::New(); quadricDecimation->SetInputData(m_Surface->GetVtkPolyData()); quadricDecimation->SetTargetReduction(decimation); quadricDecimation->AttributeErrorMetricOn(); quadricDecimation->GlobalWarningDisplayOff(); quadricDecimation->Update(); vtkCleanPolyData* cleaner = vtkCleanPolyData::New(); cleaner->SetInputConnection(quadricDecimation->GetOutputPort()); cleaner->PieceInvariantOn(); cleaner->ConvertLinesToPointsOn(); cleaner->ConvertStripsToPolysOn(); cleaner->PointMergingOn(); cleaner->Update(); m_Surface->SetVtkPolyData(cleaner->GetOutput()); } ProgressBar::GetInstance()->Progress(1); // Compute Normals vtkPolyDataNormals* computeNormals = vtkPolyDataNormals::New(); computeNormals->SetInputData(m_Surface->GetVtkPolyData()); computeNormals->SetFeatureAngle(360.0f); computeNormals->FlipNormalsOff(); computeNormals->Update(); m_Surface->SetVtkPolyData(computeNormals->GetOutput()); return true; }
/** * @brief 3D resample data to new grid size * * @param M Incoming data * @param f Resampling factor in all 3 dimensions * @param im Interpolation method (LINEAR|BSPLINE) * * @return Resampled data */ template<class T> static Matrix<T> resample (const Matrix<T>& M, const Matrix<double>& f, const InterpMethod& im) { Matrix <T> res = M; #ifdef HAVE_INSIGHT typedef typename itk::OrientedImage< T, 3 > InputImageType; typedef typename itk::OrientedImage< T, 3 > OutputImageType; typedef typename itk::IdentityTransform< double, 3 > TransformType; typedef typename itk::LinearInterpolateImageFunction< InputImageType, double > InterpolatorType; typedef typename itk::ResampleImageFilter< InputImageType, InputImageType > ResampleFilterType; typename InterpolatorType::Pointer linterp = InterpolatorType::New(); TransformType::Pointer trafo = TransformType::New(); trafo->SetIdentity(); typename InputImageType::SpacingType space; space[0] = 1.0/f[0]; space[1] = 1.0/f[1]; space[2] = 1.0/f[2]; typedef typename InputImageType::SizeType::SizeValueType SizeValueType; typename InputImageType::SizeType size; size[0] = static_cast<SizeValueType>(res.Dim(0)); size[1] = static_cast<SizeValueType>(res.Dim(1)); size[2] = static_cast<SizeValueType>(res.Dim(2)); typename itk::OrientedImage< T, 3 >::Pointer input = itk::OrientedImage< T, 3 >::New(); typename itk::OrientedImage< T, 3 >::Pointer output = itk::OrientedImage< T, 3 >::New(); typename itk::Image< T, 3 >::IndexType ipos; ipos[0] = 0; ipos[1] = 0; ipos[2] = 0; typename itk::Image< T, 3 >::IndexType opos; opos[0] = 0; opos[1] = 0; opos[2] = 0; typename itk::Image< T, 3 >::RegionType ireg; ireg.SetSize(size); ireg.SetIndex(ipos); input->SetRegions(ireg); input->Allocate(); typename itk::Image< T, 3 >::RegionType oreg; oreg.SetSize(size); ireg.SetIndex(opos); output->SetRegions(oreg); output->Allocate(); for (size_t z = 0; z < res.Dim(2); z++) for (size_t y = 0; y < res.Dim(1); y++) for (size_t x = 0; x < res.Dim(0); x++) { ipos[0] = x; ipos[1] = y; ipos[2] = z; input->SetPixel (ipos, res.At(x,y,z)); } typename ResampleFilterType::Pointer rs = ResampleFilterType::New(); rs->SetInput( input ); rs->SetTransform( trafo ); rs->SetInterpolator( linterp ); rs->SetOutputOrigin ( input->GetOrigin()); rs->SetOutputSpacing ( space ); rs->SetOutputDirection ( input->GetDirection()); rs->SetSize ( size ); rs->Update (); output = rs->GetOutput(); res = Matrix<T> (res.Dim(0)*f[0], res.Dim(1)*f[1], res.Dim(2)*f[2]); res.Res(0) = res.Res(0)/f[0]; res.Res(1) = res.Dim(1)/f[1]; res.Res(2) = res.Dim(2)/f[2]; for (size_t z = 0; z < res.Dim(2); z++) for (size_t y = 0; y < res.Dim(1); y++) for (size_t x = 0; x < res.Dim(0); x++) { opos[0] = x; opos[1] = y; opos[2] = z; res.At(x,y,z) = output->GetPixel (opos); } #else printf ("ITK ERROR - Resampling not performed without ITK!\n"); #endif return res; }
int main( int argc, char *argv[] ) { string input_name; string output_dir; if (argc == 3) { input_name = argv[1]; output_dir = argv[2]; } const unsigned int Dimension = 3; const unsigned int OutDimension = 2; typedef short InputPixelType; typedef int FilterPixelType; typedef itk::Image< InputPixelType, Dimension > InputImageType; typedef itk::Image< FilterPixelType, Dimension > FilterImageType; typedef itk::Image< FilterPixelType, OutDimension > OutFilterImageType; InputImageType::Pointer image; itk::MetaDataDictionary dict; if (input_name.size() && output_dir.size()) { if (boost::filesystem::is_regular_file( input_name )) { typedef itk::ImageFileReader< InputImageType > ReaderType; ReaderType::Pointer reader = ReaderType::New(); reader->SetFileName( input_name ); try { reader->Update(); } catch( itk::ExceptionObject & err ) { std::cerr << "ERROR: ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; return EXIT_FAILURE; } image = reader->GetOutput(); dict = reader->GetMetaDataDictionary(); } else if (boost::filesystem::is_directory( input_name )) { itkBasic::SeriesReader sreader( input_name ); sreader.readSeriesData( 2 ); try { itkBasic::ReaderType::Pointer imageReader = itkBasic::ReaderType::New(); itkBasic::FileNamesContainer fc; sreader.getSeriesFileNames(0, fc); image = itkBasic::getDicomSerie( fc, imageReader, 1 ); dict = *((*imageReader->GetMetaDataDictionaryArray())[0]); } catch( itk::ExceptionObject & err ) { std::cerr << "ERROR: ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; return EXIT_FAILURE; } } } if (!image) { std::cerr << argv[0] << ": input output" << std::endl; exit(1); } typedef itk::SigmoidImageFilter< InputImageType, FilterImageType > SigmoidCasterType; SigmoidCasterType::Pointer sigmoidcaster = SigmoidCasterType::New(); sigmoidcaster->SetInput( image ); sigmoidcaster->SetOutputMaximum( 4000 ); sigmoidcaster->SetOutputMinimum( 1000 ); typedef itk::AccumulateImageFilter< FilterImageType, FilterImageType > AccumulateFilter; AccumulateFilter::Pointer accumulator = AccumulateFilter::New(); accumulator->SetAccumulateDimension(1); accumulator->SetInput( sigmoidcaster->GetOutput() ); typedef itk::ExtractImageFilter< FilterImageType, OutFilterImageType > ExtractFilter; ExtractFilter::Pointer extractor = ExtractFilter::New(); extractor->SetInput( accumulator->GetOutput() ); FilterImageType::Pointer accuOut = accumulator->GetOutput(); accuOut->UpdateOutputInformation(); FilterImageType::RegionType extractRegion = accuOut->GetLargestPossibleRegion(); extractRegion.SetSize(1,0); extractor->SetExtractionRegion( extractRegion ); typedef itk::ResampleImageFilter<OutFilterImageType, OutFilterImageType > ResampleFilter; ResampleFilter::Pointer resampler = ResampleFilter::New(); resampler->SetInput( extractor->GetOutput() ); typedef itk::BSplineInterpolateImageFunction< OutFilterImageType > InterpolatorType; InterpolatorType::Pointer interpolator = InterpolatorType::New(); interpolator->SetSplineOrder(3); resampler->SetInterpolator( interpolator ); OutFilterImageType::Pointer exOut = extractor->GetOutput(); exOut->UpdateOutputInformation(); typedef itk::CenteredRigid2DTransform< double > TransformType; TransformType::Pointer transform = TransformType::New(); transform->SetIdentity(); OutFilterImageType::PointType exOutCenter = exOut->GetOrigin(); exOutCenter[0] += (exOut->GetLargestPossibleRegion().GetSize()[0]-1) * exOut->GetSpacing()[0] *.5; exOutCenter[1] += (exOut->GetLargestPossibleRegion().GetSize()[1]-1) * exOut->GetSpacing()[1] *.5; transform->SetCenter( exOutCenter ); transform->SetAngleInDegrees( 180 ); resampler->SetTransform( transform ); resampler->SetOutputParametersFromImage( exOut ); OutFilterImageType::SpacingType resampleSpacing = exOut->GetSpacing(); resampleSpacing.Fill( std::min( resampleSpacing[0], resampleSpacing[1] ) ); OutFilterImageType::SizeType resampleSize; resampleSize[0] = exOut->GetLargestPossibleRegion().GetSize()[0] * exOut->GetSpacing()[0] / resampleSpacing[0]; resampleSize[1] = exOut->GetLargestPossibleRegion().GetSize()[1] * exOut->GetSpacing()[1] / resampleSpacing[1]; resampler->SetSize( resampleSize ); resampler->SetOutputSpacing( resampleSpacing ); OutFilterImageType::Pointer result = resampler->GetOutput(); sigmoidcaster->SetBeta( -500 ); sigmoidcaster->SetAlpha( 5 ); result->Update(); int outDicomIndex = 0; itk::EncapsulateMetaData( dict, "0008|0008", string("DERIVED\\SECONDARY\\AXIAL")); boost::filesystem::path outpath = output_dir; outpath = outpath / "IM%06d"; std::vector< itk::MetaDataDictionary* > dictArray; dictArray.push_back(&dict); itkBasic::writeDicomSeries( itkBasic::ImageRescale(itkBasic::ImageSharp(result, 0.5), -1000, 4000), outpath.string(), &dictArray, outDicomIndex); // itkBasic::ImageSave( itkBasic::ImageSharp(result, 0.5), boost::str( boost::format("%s.%s.png") % output_name % "lung" ), 1, 0); // Auto Level sigmoidcaster->SetBeta( 1000 ); sigmoidcaster->SetAlpha( 300 ); result->Update(); itkBasic::writeDicomSeries( itkBasic::ImageRescale(itkBasic::ImageSharp(result, 0.5), -1000, 4000), outpath.string(), &dictArray, outDicomIndex); // itkBasic::ImageSave( itkBasic::ImageSharp(result, 0.5), boost::str( boost::format("%s.%s.png") % output_name % "bone" ), 1, 0); // Auto Level sigmoidcaster->SetBeta( 0 ); sigmoidcaster->SetAlpha( 2000 ); result->Update(); itkBasic::writeDicomSeries( itkBasic::ImageRescale(itkBasic::ImageSharp(result, 0.5), -1000, 4000), outpath.string(), &dictArray, outDicomIndex); // itkBasic::ImageSave( itkBasic::ImageSharp(result, 0.5), boost::str( boost::format("%s.%s.png") % output_name % "normal" ), 1, 0); // Auto Level }
bool mitk::NavigationDataLandmarkTransformFilter::FindCorrespondentLandmarks(LandmarkPointContainer& sources, const LandmarkPointContainer& targets) const { if (sources.size() < 6 || targets.size() < 6) return false; //throw std::invalid_argument("ICP correspondence finding needs at least 6 landmarks"); /* lots of type definitions */ typedef itk::PointSet<mitk::ScalarType, 3> PointSetType; //typedef itk::BoundingBox<PointSetType::PointIdentifier, PointSetType::PointDimension> BoundingBoxType; typedef itk::EuclideanDistancePointMetric< PointSetType, PointSetType> MetricType; //typedef MetricType::TransformType TransformBaseType; //typedef MetricType::TransformType::ParametersType ParametersType; //typedef TransformBaseType::JacobianType JacobianType; //typedef itk::Euler3DTransform< double > TransformType; typedef itk::VersorRigid3DTransform< double > TransformType; typedef TransformType ParametersType; typedef itk::PointSetToPointSetRegistrationMethod< PointSetType, PointSetType > RegistrationType; /* copy landmarks to itk pointsets for registration */ PointSetType::Pointer sourcePointSet = PointSetType::New(); unsigned int i = 0; for (LandmarkPointContainer::const_iterator it = sources.begin(); it != sources.end(); ++it) { PointSetType::PointType doublePoint; mitk::itk2vtk(*it, doublePoint); // copy mitk::ScalarType point into double point as workaround to ITK 3.10 bug sourcePointSet->SetPoint(i++, doublePoint /**it*/); } i = 0; PointSetType::Pointer targetPointSet = PointSetType::New(); for (LandmarkPointContainer::const_iterator it = targets.begin(); it != targets.end(); ++it) { PointSetType::PointType doublePoint; mitk::itk2vtk(*it, doublePoint); // copy mitk::ScalarType point into double point as workaround to ITK 3.10 bug targetPointSet->SetPoint(i++, doublePoint /**it*/); } /* get centroid and extends of our pointsets */ //BoundingBoxType::Pointer sourceBoundingBox = BoundingBoxType::New(); //sourceBoundingBox->SetPoints(sourcePointSet->GetPoints()); //sourceBoundingBox->ComputeBoundingBox(); //BoundingBoxType::Pointer targetBoundingBox = BoundingBoxType::New(); //targetBoundingBox->SetPoints(targetPointSet->GetPoints()); //targetBoundingBox->ComputeBoundingBox(); TransformType::Pointer transform = TransformType::New(); transform->SetIdentity(); //transform->SetTranslation(targetBoundingBox->GetCenter() - sourceBoundingBox->GetCenter()); itk::LevenbergMarquardtOptimizer::Pointer optimizer = itk::LevenbergMarquardtOptimizer::New(); optimizer->SetUseCostFunctionGradient(false); RegistrationType::Pointer registration = RegistrationType::New(); // Scale the translation components of the Transform in the Optimizer itk::LevenbergMarquardtOptimizer::ScalesType scales(transform->GetNumberOfParameters()); const double translationScale = 5000; //sqrtf(targetBoundingBox->GetDiagonalLength2()) * 1000; // dynamic range of translations const double rotationScale = 1.0; // dynamic range of rotations scales[0] = 1.0 / rotationScale; scales[1] = 1.0 / rotationScale; scales[2] = 1.0 / rotationScale; scales[3] = 1.0 / translationScale; scales[4] = 1.0 / translationScale; scales[5] = 1.0 / translationScale; //scales.Fill(0.01); unsigned long numberOfIterations = 80000; double gradientTolerance = 1e-10; // convergence criterion double valueTolerance = 1e-10; // convergence criterion double epsilonFunction = 1e-10; // convergence criterion optimizer->SetScales( scales ); optimizer->SetNumberOfIterations( numberOfIterations ); optimizer->SetValueTolerance( valueTolerance ); optimizer->SetGradientTolerance( gradientTolerance ); optimizer->SetEpsilonFunction( epsilonFunction ); registration->SetInitialTransformParameters( transform->GetParameters() ); //------------------------------------------------------ // Connect all the components required for Registration //------------------------------------------------------ MetricType::Pointer metric = MetricType::New(); registration->SetMetric( metric ); registration->SetOptimizer( optimizer ); registration->SetTransform( transform ); registration->SetFixedPointSet( targetPointSet ); registration->SetMovingPointSet( sourcePointSet ); try { //registration->StartRegistration(); registration->Update(); } catch( itk::ExceptionObject & e ) { MITK_INFO << "Exception caught during ICP optimization: " << e; return false; //throw e; } MITK_INFO << "ICP successful: Solution = " << transform->GetParameters() << std::endl; MITK_INFO << "Metric value: " << metric->GetValue(transform->GetParameters()); /* find point correspondences */ //mitk::PointLocator::Pointer pointLocator = mitk::PointLocator::New(); // <<- use mitk::PointLocator instead of searching manually? //pointLocator->SetPoints() for (LandmarkPointContainer::const_iterator sourcesIt = sources.begin(); sourcesIt != sources.end(); ++sourcesIt) { } //MetricType::MeasureType closestDistances = metric->GetValue(transform->GetParameters()); //unsigned int index = 0; LandmarkPointContainer sortedSources; for (LandmarkPointContainer::const_iterator targetsIt = targets.begin(); targetsIt != targets.end(); ++targetsIt) { double minDistance = itk::NumericTraits<double>::max(); LandmarkPointContainer::iterator minDistanceIterator = sources.end(); for (LandmarkPointContainer::iterator sourcesIt = sources.begin(); sourcesIt != sources.end(); ++sourcesIt) { TransformInitializerType::LandmarkPointType transformedSource = transform->TransformPoint(*sourcesIt); double dist = targetsIt->EuclideanDistanceTo(transformedSource); MITK_INFO << "target: " << *targetsIt << ", source: " << *sourcesIt << ", transformed source: " << transformedSource << ", dist: " << dist; if (dist < minDistance ) { minDistanceIterator = sourcesIt; minDistance = dist; } } if (minDistanceIterator == sources.end()) return false; MITK_INFO << "minimum distance point is: " << *minDistanceIterator << " (dist: " << targetsIt->EuclideanDistanceTo(transform->TransformPoint(*minDistanceIterator)) << ", minDist: " << minDistance << ")"; sortedSources.push_back(*minDistanceIterator); // this point is assigned sources.erase(minDistanceIterator); // erase it from sources to avoid duplicate assigns } //for (LandmarkPointContainer::const_iterator sortedSourcesIt = sortedSources.begin(); targetsIt != sortedSources.end(); ++targetsIt) sources = sortedSources; return true; }