int StartPeakExtraction(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); parser.addArgument("image", "i", mitkCommandLineParser::InputFile, "Input image", "sh coefficient image", us::Any(), false); parser.addArgument("outroot", "o", mitkCommandLineParser::OutputDirectory, "Output directory", "output root", us::Any(), false); parser.addArgument("mask", "m", mitkCommandLineParser::InputFile, "Mask", "mask image"); parser.addArgument("normalization", "n", mitkCommandLineParser::Int, "Normalization", "0=no norm, 1=max norm, 2=single vec norm", 1, true); parser.addArgument("numpeaks", "p", mitkCommandLineParser::Int, "Max. number of peaks", "maximum number of extracted peaks", 2, true); parser.addArgument("peakthres", "r", mitkCommandLineParser::Float, "Peak threshold", "peak threshold relative to largest peak", 0.4, true); parser.addArgument("abspeakthres", "a", mitkCommandLineParser::Float, "Absolute peak threshold", "absolute peak threshold weighted with local GFA value", 0.06, true); parser.addArgument("shConvention", "s", mitkCommandLineParser::String, "Use specified SH-basis", "use specified SH-basis (MITK, FSL, MRtrix)", string("MITK"), true); parser.addArgument("noFlip", "f", mitkCommandLineParser::Bool, "No flip", "do not flip input image to match MITK coordinate convention"); parser.addArgument("clusterThres", "c", mitkCommandLineParser::Float, "Clustering threshold", "directions closer together than the specified angular threshold will be clustered (in rad)", 0.9); parser.addArgument("flipX", "fx", mitkCommandLineParser::Bool, "Flip X", "Flip peaks in x direction"); parser.addArgument("flipY", "fy", mitkCommandLineParser::Bool, "Flip Y", "Flip peaks in y direction"); parser.addArgument("flipZ", "fz", mitkCommandLineParser::Bool, "Flip Z", "Flip peaks in z direction"); parser.setCategory("Preprocessing Tools"); parser.setTitle("Peak Extraction"); parser.setDescription(""); parser.setContributor("MIC"); map<string, us::Any> parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // mandatory arguments string imageName = us::any_cast<string>(parsedArgs["image"]); string outRoot = us::any_cast<string>(parsedArgs["outroot"]); // optional arguments string maskImageName(""); if (parsedArgs.count("mask")) maskImageName = us::any_cast<string>(parsedArgs["mask"]); int normalization = 1; if (parsedArgs.count("normalization")) normalization = us::any_cast<int>(parsedArgs["normalization"]); int numPeaks = 2; if (parsedArgs.count("numpeaks")) numPeaks = us::any_cast<int>(parsedArgs["numpeaks"]); float peakThres = 0.4; if (parsedArgs.count("peakthres")) peakThres = us::any_cast<float>(parsedArgs["peakthres"]); float absPeakThres = 0.06; if (parsedArgs.count("abspeakthres")) absPeakThres = us::any_cast<float>(parsedArgs["abspeakthres"]); float clusterThres = 0.9; if (parsedArgs.count("clusterThres")) clusterThres = us::any_cast<float>(parsedArgs["clusterThres"]); bool noFlip = false; if (parsedArgs.count("noFlip")) noFlip = us::any_cast<bool>(parsedArgs["noFlip"]); bool flipX = false; if (parsedArgs.count("flipX")) flipX = us::any_cast<bool>(parsedArgs["flipX"]); bool flipY = false; if (parsedArgs.count("flipY")) flipY = us::any_cast<bool>(parsedArgs["flipY"]); bool flipZ = false; if (parsedArgs.count("flipZ")) flipZ = us::any_cast<bool>(parsedArgs["flipZ"]); std::cout << "image: " << imageName; std::cout << "outroot: " << outRoot; if (!maskImageName.empty()) std::cout << "mask: " << maskImageName; else std::cout << "no mask image selected"; std::cout << "numpeaks: " << numPeaks; std::cout << "peakthres: " << peakThres; std::cout << "abspeakthres: " << absPeakThres; std::cout << "shOrder: " << shOrder; try { mitk::Image::Pointer image = dynamic_cast<mitk::Image*>(mitk::IOUtil::Load(imageName)[0].GetPointer()); mitk::Image::Pointer mask = dynamic_cast<mitk::Image*>(mitk::IOUtil::Load(maskImageName)[0].GetPointer()); typedef itk::Image<unsigned char, 3> ItkUcharImgType; typedef itk::FiniteDiffOdfMaximaExtractionFilter< float, shOrder, 20242 > MaximaExtractionFilterType; typename MaximaExtractionFilterType::Pointer filter = MaximaExtractionFilterType::New(); int toolkitConvention = 0; if (parsedArgs.count("shConvention")) { string convention = us::any_cast<string>(parsedArgs["shConvention"]).c_str(); if ( boost::algorithm::equals(convention, "FSL") ) { toolkitConvention = 1; std::cout << "Using FSL SH-basis"; } else if ( boost::algorithm::equals(convention, "MRtrix") ) { toolkitConvention = 2; std::cout << "Using MRtrix SH-basis"; } else std::cout << "Using MITK SH-basis"; } else std::cout << "Using MITK SH-basis"; ItkUcharImgType::Pointer itkMaskImage = nullptr; if (mask.IsNotNull()) { try{ itkMaskImage = ItkUcharImgType::New(); mitk::CastToItkImage(mask, itkMaskImage); filter->SetMaskImage(itkMaskImage); } catch(...) { } } if (toolkitConvention>0) { std::cout << "Converting coefficient image to MITK format"; typedef itk::ShCoefficientImageImporter< float, shOrder > ConverterType; typedef mitk::ImageToItk< itk::Image< float, 4 > > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(image); caster->Update(); itk::Image< float, 4 >::Pointer itkImage = caster->GetOutput(); typename ConverterType::Pointer converter = ConverterType::New(); if (noFlip) { converter->SetInputImage(itkImage); } else { std::cout << "Flipping image"; itk::FixedArray<bool, 4> flipAxes; flipAxes[0] = true; flipAxes[1] = true; flipAxes[2] = false; flipAxes[3] = false; itk::FlipImageFilter< itk::Image< float, 4 > >::Pointer flipper = itk::FlipImageFilter< itk::Image< float, 4 > >::New(); flipper->SetInput(itkImage); flipper->SetFlipAxes(flipAxes); flipper->Update(); itk::Image< float, 4 >::Pointer flipped = flipper->GetOutput(); itk::Matrix< double,4,4 > m = itkImage->GetDirection(); m[0][0] *= -1; m[1][1] *= -1; flipped->SetDirection(m); itk::Point< float, 4 > o = itkImage->GetOrigin(); o[0] -= (flipped->GetLargestPossibleRegion().GetSize(0)-1); o[1] -= (flipped->GetLargestPossibleRegion().GetSize(1)-1); flipped->SetOrigin(o); converter->SetInputImage(flipped); } std::cout << "Starting conversion"; switch (toolkitConvention) { case 1: converter->SetToolkit(ConverterType::FSL); filter->SetToolkit(MaximaExtractionFilterType::FSL); break; case 2: converter->SetToolkit(ConverterType::MRTRIX); filter->SetToolkit(MaximaExtractionFilterType::MRTRIX); break; default: converter->SetToolkit(ConverterType::FSL); filter->SetToolkit(MaximaExtractionFilterType::FSL); break; } converter->GenerateData(); filter->SetInput(converter->GetCoefficientImage()); } else { try{ typedef mitk::ImageToItk< typename MaximaExtractionFilterType::CoefficientImageType > CasterType; typename CasterType::Pointer caster = CasterType::New(); caster->SetInput(image); caster->Update(); filter->SetInput(caster->GetOutput()); } catch(...) { std::cout << "wrong image type"; return EXIT_FAILURE; } } filter->SetMaxNumPeaks(numPeaks); filter->SetPeakThreshold(peakThres); filter->SetAbsolutePeakThreshold(absPeakThres); filter->SetAngularThreshold(1); filter->SetClusteringThreshold(clusterThres); filter->SetFlipX(flipX); filter->SetFlipY(flipY); filter->SetFlipZ(flipZ); switch (normalization) { case 0: filter->SetNormalizationMethod(MaximaExtractionFilterType::NO_NORM); break; case 1: filter->SetNormalizationMethod(MaximaExtractionFilterType::MAX_VEC_NORM); break; case 2: filter->SetNormalizationMethod(MaximaExtractionFilterType::SINGLE_VEC_NORM); break; } std::cout << "Starting extraction"; filter->Update(); // write direction image { typename MaximaExtractionFilterType::PeakImageType::Pointer itkImg = filter->GetPeakImage(); string outfilename = outRoot; outfilename.append("_PEAKS.nrrd"); typedef itk::ImageFileWriter< typename MaximaExtractionFilterType::PeakImageType > WriterType; typename WriterType::Pointer writer = WriterType::New(); writer->SetFileName(outfilename); writer->SetInput(itkImg); writer->Update(); } // write num directions image { ItkUcharImgType::Pointer numDirImage = filter->GetNumDirectionsImage(); if (itkMaskImage.IsNotNull()) { numDirImage->SetDirection(itkMaskImage->GetDirection()); numDirImage->SetOrigin(itkMaskImage->GetOrigin()); } string outfilename = outRoot.c_str(); outfilename.append("_NUM_PEAKS.nrrd"); typedef itk::ImageFileWriter< ItkUcharImgType > WriterType; WriterType::Pointer writer = WriterType::New(); writer->SetFileName(outfilename); writer->SetInput(numDirImage); writer->Update(); } } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; }
void QmitkOdfMaximaExtractionView::StartMaximaExtraction() { typedef itk::FiniteDiffOdfMaximaExtractionFilter< float, shOrder, 20242 > MaximaExtractionFilterType; typename MaximaExtractionFilterType::Pointer filter = MaximaExtractionFilterType::New(); mitk::Geometry3D::Pointer geometry; try{ Image::Pointer img = dynamic_cast<Image*>(m_ImageNodes.at(0)->GetData()); typedef ImageToItk< typename MaximaExtractionFilterType::CoefficientImageType > CasterType; typename CasterType::Pointer caster = CasterType::New(); caster->SetInput(img); caster->Update(); filter->SetInput(caster->GetOutput()); geometry = img->GetGeometry(); } catch(itk::ExceptionObject &e) { MITK_INFO << "wrong image type: " << e.what(); throw; } filter->SetAngularThreshold(cos((float)m_Controls->m_AngularThreshold->value()*M_PI/180)); filter->SetClusteringThreshold(cos((float)m_Controls->m_ClusteringAngleBox->value()*M_PI/180)); filter->SetMaxNumPeaks(m_Controls->m_MaxNumPeaksBox->value()); filter->SetPeakThreshold(m_Controls->m_PeakThresholdBox->value()); filter->SetAbsolutePeakThreshold(m_Controls->m_AbsoluteThresholdBox->value()); if (!m_BinaryImageNodes.empty()) { ItkUcharImgType::Pointer itkMaskImage = ItkUcharImgType::New(); Image::Pointer mitkMaskImg = dynamic_cast<Image*>(m_BinaryImageNodes.at(0)->GetData()); CastToItkImage<ItkUcharImgType>(mitkMaskImg, itkMaskImage); filter->SetMaskImage(itkMaskImage); } switch (m_Controls->m_NormalizationBox->currentIndex()) { case 0: filter->SetNormalizationMethod(MaximaExtractionFilterType::NO_NORM); break; case 1: filter->SetNormalizationMethod(MaximaExtractionFilterType::MAX_VEC_NORM); break; case 2: filter->SetNormalizationMethod(MaximaExtractionFilterType::SINGLE_VEC_NORM); break; } filter->Update(); if (m_Controls->m_OutputDirectionImagesBox->isChecked()) { typedef typename MaximaExtractionFilterType::ItkDirectionImageContainer ItkDirectionImageContainer; typename ItkDirectionImageContainer::Pointer container = filter->GetDirectionImageContainer(); for (int i=0; i<container->Size(); i++) { typename MaximaExtractionFilterType::ItkDirectionImage::Pointer itkImg = container->GetElement(i); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk( itkImg.GetPointer() ); img->SetVolume( itkImg->GetBufferPointer() ); DataNode::Pointer node = DataNode::New(); node->SetData(img); QString name(m_ImageNodes.at(0)->GetName().c_str()); name += "_Direction"; name += QString::number(i+1); node->SetName(name.toStdString().c_str()); GetDataStorage()->Add(node); } } if (m_Controls->m_OutputNumDirectionsBox->isChecked()) { ItkUcharImgType::Pointer numDirImage = filter->GetNumDirectionsImage(); mitk::Image::Pointer image2 = mitk::Image::New(); image2->InitializeByItk( numDirImage.GetPointer() ); image2->SetVolume( numDirImage->GetBufferPointer() ); DataNode::Pointer node2 = DataNode::New(); node2->SetData(image2); QString name(m_ImageNodes.at(0)->GetName().c_str()); name += "_NumDirections"; node2->SetName(name.toStdString().c_str()); GetDataStorage()->Add(node2); } if (m_Controls->m_OutputVectorFieldBox->isChecked()) { mitk::Vector3D outImageSpacing = geometry->GetSpacing(); float minSpacing = 1; if(outImageSpacing[0]<outImageSpacing[1] && outImageSpacing[0]<outImageSpacing[2]) minSpacing = outImageSpacing[0]; else if (outImageSpacing[1] < outImageSpacing[2]) minSpacing = outImageSpacing[1]; else minSpacing = outImageSpacing[2]; mitk::FiberBundleX::Pointer directions = filter->GetOutputFiberBundle(); directions->SetGeometry(geometry); DataNode::Pointer node = DataNode::New(); node->SetData(directions); QString name(m_ImageNodes.at(0)->GetName().c_str()); name += "_VectorField"; node->SetName(name.toStdString().c_str()); node->SetProperty("Fiber2DSliceThickness", mitk::FloatProperty::New(minSpacing)); node->SetProperty("Fiber2DfadeEFX", mitk::BoolProperty::New(false)); GetDataStorage()->Add(node); } }