void ExtractChannelFromRgbaImageFilter< ReferenceImageType, OutputImageType >::GenerateData() { typename InputImageType::Pointer rgbaImage = static_cast< InputImageType * >( this->ProcessObject::GetInput(0) ); typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(this->ProcessObject::GetOutput(0)); typename InputImageType::RegionType region = rgbaImage->GetLargestPossibleRegion(); outputImage->SetSpacing( m_ReferenceImage->GetSpacing() ); // Set the image spacing outputImage->SetOrigin( m_ReferenceImage->GetOrigin() ); // Set the image origin outputImage->SetDirection( m_ReferenceImage->GetDirection() ); // Set the image direction outputImage->SetRegions( m_ReferenceImage->GetLargestPossibleRegion()); outputImage->Allocate(); outputImage->FillBuffer(0); float* outImageBufferPointer = outputImage->GetBufferPointer(); itk::Image< short, 3 >::Pointer counterImage = itk::Image< short, 3 >::New(); counterImage->SetSpacing( m_ReferenceImage->GetSpacing() ); // Set the image spacing counterImage->SetOrigin( m_ReferenceImage->GetOrigin() ); // Set the image origin counterImage->SetDirection( m_ReferenceImage->GetDirection() ); // Set the image direction counterImage->SetRegions( m_ReferenceImage->GetLargestPossibleRegion()); counterImage->Allocate(); counterImage->FillBuffer(0); short* counterImageBufferPointer = counterImage->GetBufferPointer(); int w = m_ReferenceImage->GetLargestPossibleRegion().GetSize().GetElement(0); int h = m_ReferenceImage->GetLargestPossibleRegion().GetSize().GetElement(1); int d = m_ReferenceImage->GetLargestPossibleRegion().GetSize().GetElement(2); typedef ImageRegionConstIterator< InputImageType > InImageIteratorType; InImageIteratorType rgbaIt(rgbaImage, region); rgbaIt.GoToBegin(); while(!rgbaIt.IsAtEnd()){ InPixelType x = rgbaIt.Get(); ++rgbaIt; itk::Point<float, 3> vertex; itk::Index<3> index = rgbaIt.GetIndex(); rgbaImage->TransformIndexToPhysicalPoint(index, vertex); outputImage->TransformPhysicalPointToIndex(vertex, index); itk::ContinuousIndex<float, 3> contIndex; outputImage->TransformPhysicalPointToContinuousIndex(vertex, contIndex); float frac_x = contIndex[0] - index[0]; float frac_y = contIndex[1] - index[1]; float frac_z = contIndex[2] - index[2]; int px = index[0]; if (frac_x<0) { px -= 1; frac_x += 1; } int py = index[1]; if (frac_y<0) { py -= 1; frac_y += 1; } int pz = index[2]; if (frac_z<0) { pz -= 1; frac_z += 1; } frac_x = 1-frac_x; frac_y = 1-frac_y; frac_z = 1-frac_z; // int coordinates inside image? if (px < 0 || px >= w-1) continue; if (py < 0 || py >= h-1) continue; if (pz < 0 || pz >= d-1) continue; OutPixelType out; switch (m_Channel) { case RED: out = (float)x.GetRed()/255; break; case GREEN: out = (float)x.GetGreen()/255; break; case BLUE: out = (float)x.GetBlue()/255; break; case ALPHA: out = (float)x.GetAlpha()/255; } outImageBufferPointer[( px + w*(py + h*pz ))] += out*( frac_x)*( frac_y)*( frac_z); outImageBufferPointer[( px + w*(py+1+ h*pz ))] += out*( frac_x)*(1-frac_y)*( frac_z); outImageBufferPointer[( px + w*(py + h*pz+h))] += out*( frac_x)*( frac_y)*(1-frac_z); outImageBufferPointer[( px + w*(py+1+ h*pz+h))] += out*( frac_x)*(1-frac_y)*(1-frac_z); outImageBufferPointer[( px+1 + w*(py + h*pz ))] += out*(1-frac_x)*( frac_y)*( frac_z); outImageBufferPointer[( px+1 + w*(py + h*pz+h))] += out*(1-frac_x)*( frac_y)*(1-frac_z); outImageBufferPointer[( px+1 + w*(py+1+ h*pz ))] += out*(1-frac_x)*(1-frac_y)*( frac_z); outImageBufferPointer[( px+1 + w*(py+1+ h*pz+h))] += out*(1-frac_x)*(1-frac_y)*(1-frac_z); counterImageBufferPointer[( px + w*(py + h*pz ))] += 1; counterImageBufferPointer[( px + w*(py+1+ h*pz ))] += 1; counterImageBufferPointer[( px + w*(py + h*pz+h))] += 1; counterImageBufferPointer[( px + w*(py+1+ h*pz+h))] += 1; counterImageBufferPointer[( px+1 + w*(py + h*pz ))] += 1; counterImageBufferPointer[( px+1 + w*(py + h*pz+h))] += 1; counterImageBufferPointer[( px+1 + w*(py+1+ h*pz ))] += 1; counterImageBufferPointer[( px+1 + w*(py+1+ h*pz+h))] += 1; } typedef ImageRegionIterator< OutputImageType > OutImageIteratorType; OutImageIteratorType outIt(outputImage, outputImage->GetLargestPossibleRegion()); outIt.GoToBegin(); typedef ImageRegionConstIterator< itk::Image< short, 3 > > CountImageIteratorType; CountImageIteratorType counterIt(counterImage, counterImage->GetLargestPossibleRegion()); counterIt.GoToBegin(); while(!outIt.IsAtEnd() && !counterIt.IsAtEnd()){ if (counterIt.Value()>0) outIt.Set(outIt.Value()/counterIt.Value()); ++outIt; ++counterIt; } }
void TractDensityImageFilter< OutputImageType >::GenerateData() { // generate upsampled image mitk::Geometry3D::Pointer geometry = m_FiberBundle->GetGeometry(); typename OutputImageType::Pointer outImage = this->GetOutput(); // calculate new image parameters mitk::Vector3D newSpacing; mitk::Point3D newOrigin; itk::Matrix<double, 3, 3> newDirection; ImageRegion<3> upsampledRegion; if (m_UseImageGeometry && !m_InputImage.IsNull()) { MITK_INFO << "TractDensityImageFilter: using image geometry"; newSpacing = m_InputImage->GetSpacing()/m_UpsamplingFactor; upsampledRegion = m_InputImage->GetLargestPossibleRegion(); newOrigin = m_InputImage->GetOrigin(); typename OutputImageType::RegionType::SizeType size = upsampledRegion.GetSize(); size[0] *= m_UpsamplingFactor; size[1] *= m_UpsamplingFactor; size[2] *= m_UpsamplingFactor; upsampledRegion.SetSize(size); newDirection = m_InputImage->GetDirection(); } else { MITK_INFO << "TractDensityImageFilter: using fiber bundle geometry"; newSpacing = geometry->GetSpacing()/m_UpsamplingFactor; newOrigin = geometry->GetOrigin(); mitk::Geometry3D::BoundsArrayType bounds = geometry->GetBounds(); newOrigin[0] += bounds.GetElement(0); newOrigin[1] += bounds.GetElement(2); newOrigin[2] += bounds.GetElement(4); for (int i=0; i<3; i++) for (int j=0; j<3; j++) newDirection[j][i] = geometry->GetMatrixColumn(i)[j]; upsampledRegion.SetSize(0, geometry->GetExtent(0)*m_UpsamplingFactor); upsampledRegion.SetSize(1, geometry->GetExtent(1)*m_UpsamplingFactor); upsampledRegion.SetSize(2, geometry->GetExtent(2)*m_UpsamplingFactor); } typename OutputImageType::RegionType::SizeType upsampledSize = upsampledRegion.GetSize(); // apply new image parameters outImage->SetSpacing( newSpacing ); outImage->SetOrigin( newOrigin ); outImage->SetDirection( newDirection ); outImage->SetRegions( upsampledRegion ); outImage->Allocate(); outImage->FillBuffer(0.0); int w = upsampledSize[0]; int h = upsampledSize[1]; int d = upsampledSize[2]; // set/initialize output OutPixelType* outImageBufferPointer = (OutPixelType*)outImage->GetBufferPointer(); // resample fiber bundle float minSpacing = 1; if(newSpacing[0]<newSpacing[1] && newSpacing[0]<newSpacing[2]) minSpacing = newSpacing[0]; else if (newSpacing[1] < newSpacing[2]) minSpacing = newSpacing[1]; else minSpacing = newSpacing[2]; MITK_INFO << "TractDensityImageFilter: resampling fibers to ensure sufficient voxel coverage"; m_FiberBundle = m_FiberBundle->GetDeepCopy(); m_FiberBundle->ResampleFibers(minSpacing); MITK_INFO << "TractDensityImageFilter: starting image generation"; vtkSmartPointer<vtkPolyData> fiberPolyData = m_FiberBundle->GetFiberPolyData(); vtkSmartPointer<vtkCellArray> vLines = fiberPolyData->GetLines(); vLines->InitTraversal(); int numFibers = m_FiberBundle->GetNumFibers(); boost::progress_display disp(numFibers); for( int i=0; i<numFibers; i++ ) { ++disp; vtkIdType numPoints(0); vtkIdType* points(NULL); vLines->GetNextCell ( numPoints, points ); // fill output image for( int j=0; j<numPoints; j++) { itk::Point<float, 3> vertex = GetItkPoint(fiberPolyData->GetPoint(points[j])); itk::Index<3> index; itk::ContinuousIndex<float, 3> contIndex; outImage->TransformPhysicalPointToIndex(vertex, index); outImage->TransformPhysicalPointToContinuousIndex(vertex, contIndex); float frac_x = contIndex[0] - index[0]; float frac_y = contIndex[1] - index[1]; float frac_z = contIndex[2] - index[2]; if (frac_x<0) { index[0] -= 1; frac_x += 1; } if (frac_y<0) { index[1] -= 1; frac_y += 1; } if (frac_z<0) { index[2] -= 1; frac_z += 1; } frac_x = 1-frac_x; frac_y = 1-frac_y; frac_z = 1-frac_z; // int coordinates inside image? if (index[0] < 0 || index[0] >= w-1) continue; if (index[1] < 0 || index[1] >= h-1) continue; if (index[2] < 0 || index[2] >= d-1) continue; if (m_BinaryOutput) { outImageBufferPointer[( index[0] + w*(index[1] + h*index[2] ))] = 1; outImageBufferPointer[( index[0] + w*(index[1]+1+ h*index[2] ))] = 1; outImageBufferPointer[( index[0] + w*(index[1] + h*index[2]+h))] = 1; outImageBufferPointer[( index[0] + w*(index[1]+1+ h*index[2]+h))] = 1; outImageBufferPointer[( index[0]+1 + w*(index[1] + h*index[2] ))] = 1; outImageBufferPointer[( index[0]+1 + w*(index[1] + h*index[2]+h))] = 1; outImageBufferPointer[( index[0]+1 + w*(index[1]+1+ h*index[2] ))] = 1; outImageBufferPointer[( index[0]+1 + w*(index[1]+1+ h*index[2]+h))] = 1; } else { outImageBufferPointer[( index[0] + w*(index[1] + h*index[2] ))] += ( frac_x)*( frac_y)*( frac_z); outImageBufferPointer[( index[0] + w*(index[1]+1+ h*index[2] ))] += ( frac_x)*(1-frac_y)*( frac_z); outImageBufferPointer[( index[0] + w*(index[1] + h*index[2]+h))] += ( frac_x)*( frac_y)*(1-frac_z); outImageBufferPointer[( index[0] + w*(index[1]+1+ h*index[2]+h))] += ( frac_x)*(1-frac_y)*(1-frac_z); outImageBufferPointer[( index[0]+1 + w*(index[1] + h*index[2] ))] += (1-frac_x)*( frac_y)*( frac_z); outImageBufferPointer[( index[0]+1 + w*(index[1] + h*index[2]+h))] += (1-frac_x)*( frac_y)*(1-frac_z); outImageBufferPointer[( index[0]+1 + w*(index[1]+1+ h*index[2] ))] += (1-frac_x)*(1-frac_y)*( frac_z); outImageBufferPointer[( index[0]+1 + w*(index[1]+1+ h*index[2]+h))] += (1-frac_x)*(1-frac_y)*(1-frac_z); } } } if (!m_OutputAbsoluteValues && !m_BinaryOutput) { MITK_INFO << "TractDensityImageFilter: max-normalizing output image"; OutPixelType max = 0; for (int i=0; i<w*h*d; i++) if (max < outImageBufferPointer[i]) max = outImageBufferPointer[i]; if (max>0) for (int i=0; i<w*h*d; i++) outImageBufferPointer[i] /= max; } if (m_InvertImage) { MITK_INFO << "TractDensityImageFilter: inverting image"; for (int i=0; i<w*h*d; i++) outImageBufferPointer[i] = 1-outImageBufferPointer[i]; } MITK_INFO << "TractDensityImageFilter: finished processing"; }
void TractsToFiberEndingsImageFilter< OutputImageType >::GenerateData() { // generate upsampled image mitk::Geometry3D::Pointer geometry = m_FiberBundle->GetGeometry(); typename OutputImageType::Pointer outImage = this->GetOutput(); // calculate new image parameters mitk::Vector3D newSpacing; mitk::Point3D newOrigin; itk::Matrix<double, 3, 3> newDirection; ImageRegion<3> upsampledRegion; if (m_UseImageGeometry && !m_InputImage.IsNull()) { newSpacing = m_InputImage->GetSpacing()/m_UpsamplingFactor; upsampledRegion = m_InputImage->GetLargestPossibleRegion(); newOrigin = m_InputImage->GetOrigin(); typename OutputImageType::RegionType::SizeType size = upsampledRegion.GetSize(); size[0] *= m_UpsamplingFactor; size[1] *= m_UpsamplingFactor; size[2] *= m_UpsamplingFactor; upsampledRegion.SetSize(size); newDirection = m_InputImage->GetDirection(); } else { newSpacing = geometry->GetSpacing()/m_UpsamplingFactor; newOrigin = geometry->GetOrigin(); mitk::Geometry3D::BoundsArrayType bounds = geometry->GetBounds(); newOrigin[0] += bounds.GetElement(0); newOrigin[1] += bounds.GetElement(2); newOrigin[2] += bounds.GetElement(4); for (int i=0; i<3; i++) for (int j=0; j<3; j++) newDirection[j][i] = geometry->GetMatrixColumn(i)[j]; upsampledRegion.SetSize(0, geometry->GetExtent(0)*m_UpsamplingFactor); upsampledRegion.SetSize(1, geometry->GetExtent(1)*m_UpsamplingFactor); upsampledRegion.SetSize(2, geometry->GetExtent(2)*m_UpsamplingFactor); } typename OutputImageType::RegionType::SizeType upsampledSize = upsampledRegion.GetSize(); // apply new image parameters outImage->SetSpacing( newSpacing ); outImage->SetOrigin( newOrigin ); outImage->SetDirection( newDirection ); outImage->SetRegions( upsampledRegion ); outImage->Allocate(); int w = upsampledSize[0]; int h = upsampledSize[1]; int d = upsampledSize[2]; // set/initialize output OutPixelType* outImageBufferPointer = (OutPixelType*)outImage->GetBufferPointer(); for (int i=0; i<w*h*d; i++) outImageBufferPointer[i] = 0; // resample fiber bundle float minSpacing = 1; if(newSpacing[0]<newSpacing[1] && newSpacing[0]<newSpacing[2]) minSpacing = newSpacing[0]; else if (newSpacing[1] < newSpacing[2]) minSpacing = newSpacing[1]; else minSpacing = newSpacing[2]; vtkSmartPointer<vtkPolyData> fiberPolyData = m_FiberBundle->GetFiberPolyData(); vtkSmartPointer<vtkCellArray> vLines = fiberPolyData->GetLines(); vLines->InitTraversal(); int numFibers = m_FiberBundle->GetNumFibers(); boost::progress_display disp(numFibers); for( int i=0; i<numFibers; i++ ) { ++disp; vtkIdType numPoints(0); vtkIdType* points(NULL); vLines->GetNextCell ( numPoints, points ); // fill output image if (numPoints>0) { itk::Point<float, 3> vertex = GetItkPoint(fiberPolyData->GetPoint(points[0])); itk::Index<3> index; outImage->TransformPhysicalPointToIndex(vertex, index); if (m_BinaryOutput) outImage->SetPixel(index, 1); else outImage->SetPixel(index, outImage->GetPixel(index)+1); } if (numPoints>2) { itk::Point<float, 3> vertex = GetItkPoint(fiberPolyData->GetPoint(points[numPoints-1])); itk::Index<3> index; outImage->TransformPhysicalPointToIndex(vertex, index); if (m_BinaryOutput) outImage->SetPixel(index, 1); else outImage->SetPixel(index, outImage->GetPixel(index)+1); } } if (m_InvertImage) for (int i=0; i<w*h*d; i++) outImageBufferPointer[i] = 1-outImageBufferPointer[i]; }