コード例 #1
0
void
UniformSamplingExtractor<PointT>::filterPlanar (const PointInTPtr & input, std::vector<int> &kp_idx)
{
    //create a search object
    typename pcl::search::Search<PointT>::Ptr tree;

    if (input->isOrganized () && !force_unorganized_)
        tree.reset (new pcl::search::OrganizedNeighbor<PointT> ());
    else
        tree.reset (new pcl::search::KdTree<PointT> (false));
    tree->setInputCloud (input);

    size_t kept = 0;
    for (size_t i = 0; i < kp_idx.size (); i++)
    {
        std::vector<int>  neighborhood_indices;
        std::vector<float> neighborhood_dist;

        if (tree->radiusSearch (kp_idx[i], radius_, neighborhood_indices, neighborhood_dist))
        {
            EIGEN_ALIGN16 Eigen::Matrix3f covariance_matrix;
            Eigen::Vector4f xyz_centroid;
            EIGEN_ALIGN16 Eigen::Vector3f eigenValues;
            EIGEN_ALIGN16 Eigen::Matrix3f eigenVectors;

            //compute planarity of the region
            computeMeanAndCovarianceMatrix (*input, neighborhood_indices, covariance_matrix, xyz_centroid);
            pcl::eigen33 (covariance_matrix, eigenVectors, eigenValues);

            float eigsum = eigenValues.sum ();
            if (!pcl_isfinite(eigsum))
                PCL_ERROR("Eigen sum is not finite\n");

            float t_planar = threshold_planar_;

            if(z_adaptative_)
                t_planar *= (1 + (std::max(input->points[kp_idx[i]].z,1.f) - 1.f));


            //if ((fabs (eigenValues[0] - eigenValues[1]) < 1.5e-4) || (eigsum != 0 && fabs (eigenValues[0] / eigsum) > 1.e-2))
            if ((fabs (eigenValues[0] - eigenValues[1]) < 1.5e-4) || (eigsum != 0 && fabs (eigenValues[0] / eigsum) > t_planar))
            {
                //region is not planar, add to filtered keypoint
                kp_idx[kept] = kp_idx[i];
                kept++;
            }
        }
    }
    kp_idx.resize (kept);
}
コード例 #2
0
pcl::PointCloud<pcl::Normal>::Ptr don(
        pcl::PointCloud<PointT> & cloud,
        pcl::PointCloud<NormalT> & normals, float radius1 = 0.2,
        float radius2 = 0.5){

    pcl::PointCloud<pcl::Normal>::Ptr donormals;
    donormals.reset(new pcl::PointCloud<pcl::Normal>());
    donormals->resize(cloud.size());

    typename pcl::search::Search<PointT>::Ptr tree;
    tree.reset (new pcl::search::KdTree<PointT> (false));

    typename pcl::PointCloud<PointT>::ConstPtr cptr(&cloud, boost::serialization::null_deleter());
    tree->setInputCloud(cptr);

    std::vector<int> idxs;
    std::vector<float> sq_dists;

    auto avg_normal = [] (std::vector<int> idxs, pcl::PointCloud<NormalT> & normals) {
        pcl::Normal sum;
        for(int idx : idxs) {
            sum.getNormalVector3fMap() += normals[idx].getNormalVector3fMap();
        }
        sum.getNormalVector3fMap() /= idxs.size();
        return sum;
    };

    for(uint idx = 0; idx < cloud.size(); idx++){
        std::vector<float> rads;
        rads.push_back(radius1);
        rads.push_back(radius2);
        std::vector<pcl::Normal> avgs;
        for(float rad : rads){
            idxs.clear();
            sq_dists.clear();
            tree->radiusSearch(idx, rad, idxs, sq_dists);
            idxs.push_back(idx);
            avgs.push_back(avg_normal(idxs, normals));
        }

        (*donormals)[idx].getNormalVector3fMap() = (avgs[0].getNormalVector3fMap() - avgs[1].getNormalVector3fMap())/2.0;
    }

    return donormals;
}
コード例 #3
0
template <typename PointT> void
pcl::getPointCloudDifference (
    const pcl::PointCloud<PointT> &src,
    double threshold,
    const typename pcl::search::Search<PointT>::Ptr &tree,
    pcl::PointCloud<PointT> &output)
{
  // We're interested in a single nearest neighbor only
  std::vector<int> nn_indices (1);
  std::vector<float> nn_distances (1);

  // The input cloud indices that do not have a neighbor in the target cloud
  std::vector<int> src_indices;

  // Iterate through the source data set
  for (int i = 0; i < static_cast<int> (src.points.size ()); ++i)
  {
    // Ignore invalid points in the inpout cloud
    if (!isFinite (src.points[i]))
      continue;
    // Search for the closest point in the target data set (number of neighbors to find = 1)
    if (!tree->nearestKSearch (src.points[i], 1, nn_indices, nn_distances))
    {
      PCL_WARN ("No neighbor found for point %lu (%f %f %f)!\n", i, src.points[i].x, src.points[i].y, src.points[i].z);
      continue;
    }
    // Add points without a corresponding point in the target cloud to the output cloud
    if (nn_distances[0] > threshold)
      src_indices.push_back (i);
  }

  // Copy all the data fields from the input cloud to the output one
  copyPointCloud (src, src_indices, output);

  // Output is always dense, as invalid points in the input cloud are ignored
  output.is_dense = true;
}
コード例 #4
0
template <typename PointT, typename PointNT> void
pcl::SmoothedSurfacesKeypoint<PointT, PointNT>::detectKeypoints (PointCloudT &output)
{
    // Calculate differences for each cloud
    std::vector<std::vector<float> > diffs (scales_.size ());

    // The cloud with the smallest scale has no differences
    std::vector<float> aux_diffs (input_->points.size (), 0.0f);
    diffs[scales_[0].second] = aux_diffs;

    cloud_trees_[scales_[0].second]->setInputCloud (clouds_[scales_[0].second]);
    for (size_t scale_i = 1; scale_i < clouds_.size (); ++scale_i)
    {
        size_t cloud_i = scales_[scale_i].second,
               cloud_i_minus_one = scales_[scale_i - 1].second;
        diffs[cloud_i].resize (input_->points.size ());
        PCL_INFO ("cloud_i %u cloud_i_minus_one %u\n", cloud_i, cloud_i_minus_one);
        for (size_t point_i = 0; point_i < input_->points.size (); ++point_i)
            diffs[cloud_i][point_i] = cloud_normals_[cloud_i]->points[point_i].getNormalVector3fMap ().dot (
                                          clouds_[cloud_i]->points[point_i].getVector3fMap () - clouds_[cloud_i_minus_one]->points[point_i].getVector3fMap ());

        // Setup kdtree for this cloud
        cloud_trees_[cloud_i]->setInputCloud (clouds_[cloud_i]);
    }


    // Find minima and maxima in differences inside the input cloud
    typename pcl::search::Search<PointT>::Ptr input_tree = cloud_trees_.back ();
    for (int point_i = 0; point_i < static_cast<int> (input_->points.size ()); ++point_i)
    {
        std::vector<int> nn_indices;
        std::vector<float> nn_distances;
        input_tree->radiusSearch (point_i, input_scale_ * neighborhood_constant_, nn_indices, nn_distances);

        bool is_min = true, is_max = true;
        for (std::vector<int>::iterator nn_it = nn_indices.begin (); nn_it != nn_indices.end (); ++nn_it)
            if (*nn_it != point_i)
            {
                if (diffs[input_index_][point_i] < diffs[input_index_][*nn_it])
                    is_max = false;
                else if (diffs[input_index_][point_i] > diffs[input_index_][*nn_it])
                    is_min = false;
            }

        // If the point is a local minimum/maximum, check if it is the same over all the scales
        if (is_min || is_max)
        {
            bool passed_min = true, passed_max = true;
            for (size_t scale_i = 0; scale_i < scales_.size (); ++scale_i)
            {
                size_t cloud_i = scales_[scale_i].second;
                // skip input cloud
                if (cloud_i == clouds_.size () - 1)
                    continue;

                nn_indices.clear ();
                nn_distances.clear ();
                cloud_trees_[cloud_i]->radiusSearch (point_i, scales_[scale_i].first * neighborhood_constant_, nn_indices, nn_distances);

                bool is_min_other_scale = true, is_max_other_scale = true;
                for (std::vector<int>::iterator nn_it = nn_indices.begin (); nn_it != nn_indices.end (); ++nn_it)
                    if (*nn_it != point_i)
                    {
                        if (diffs[input_index_][point_i] < diffs[cloud_i][*nn_it])
                            is_max_other_scale = false;
                        else if (diffs[input_index_][point_i] > diffs[cloud_i][*nn_it])
                            is_min_other_scale = false;
                    }

                if (is_min == true && is_min_other_scale == false)
                    passed_min = false;
                if (is_max == true && is_max_other_scale == false)
                    passed_max = false;

                if (!passed_min && !passed_max)
                    break;
            }

            // check if point was minimum/maximum over all the scales
            if (passed_min || passed_max)
                output.points.push_back (input_->points[point_i]);
        }
    }

    output.header = input_->header;
    output.width = static_cast<uint32_t> (output.points.size ());
    output.height = 1;

    // debug stuff
//  for (size_t scale_i = 0; scale_i < scales_.size (); ++scale_i)
//  {
//    PointCloud<PointXYZI>::Ptr debug_cloud (new PointCloud<PointXYZI> ());
//    debug_cloud->points.resize (input_->points.size ());
//    debug_cloud->width = input_->width;
//    debug_cloud->height = input_->height;
//    for (size_t point_i = 0; point_i < input_->points.size (); ++point_i)
//    {
//      debug_cloud->points[point_i].intensity = diffs[scales_[scale_i].second][point_i];
//      debug_cloud->points[point_i].x = input_->points[point_i].x;
//      debug_cloud->points[point_i].y = input_->points[point_i].y;
//      debug_cloud->points[point_i].z = input_->points[point_i].z;
//    }

//    char str[512]; sprintf (str, "diffs_%2d.pcd", scale_i);
//    io::savePCDFile (str, *debug_cloud);
//  }
}