ACPI_STATUS AcpiExExtractFromField ( ACPI_OPERAND_OBJECT *ObjDesc, void *Buffer, UINT32 BufferLength) { ACPI_STATUS Status; UINT64 RawDatum; UINT64 MergedDatum; UINT32 FieldOffset = 0; UINT32 BufferOffset = 0; UINT32 BufferTailBits; UINT32 DatumCount; UINT32 FieldDatumCount; UINT32 AccessBitWidth; UINT32 i; ACPI_FUNCTION_TRACE (ExExtractFromField); /* Validate target buffer and clear it */ if (BufferLength < ACPI_ROUND_BITS_UP_TO_BYTES (ObjDesc->CommonField.BitLength)) { ACPI_ERROR ((AE_INFO, "Field size %u (bits) is too large for buffer (%u)", ObjDesc->CommonField.BitLength, BufferLength)); return_ACPI_STATUS (AE_BUFFER_OVERFLOW); } memset (Buffer, 0, BufferLength); AccessBitWidth = ACPI_MUL_8 (ObjDesc->CommonField.AccessByteWidth); /* Handle the simple case here */ if ((ObjDesc->CommonField.StartFieldBitOffset == 0) && (ObjDesc->CommonField.BitLength == AccessBitWidth)) { if (BufferLength >= sizeof (UINT64)) { Status = AcpiExFieldDatumIo (ObjDesc, 0, Buffer, ACPI_READ); } else { /* Use RawDatum (UINT64) to handle buffers < 64 bits */ Status = AcpiExFieldDatumIo (ObjDesc, 0, &RawDatum, ACPI_READ); memcpy (Buffer, &RawDatum, BufferLength); } return_ACPI_STATUS (Status); } /* TBD: Move to common setup code */ /* Field algorithm is limited to sizeof(UINT64), truncate if needed */ if (ObjDesc->CommonField.AccessByteWidth > sizeof (UINT64)) { ObjDesc->CommonField.AccessByteWidth = sizeof (UINT64); AccessBitWidth = sizeof (UINT64) * 8; } /* Compute the number of datums (access width data items) */ DatumCount = ACPI_ROUND_UP_TO ( ObjDesc->CommonField.BitLength, AccessBitWidth); FieldDatumCount = ACPI_ROUND_UP_TO ( ObjDesc->CommonField.BitLength + ObjDesc->CommonField.StartFieldBitOffset, AccessBitWidth); /* Priming read from the field */ Status = AcpiExFieldDatumIo (ObjDesc, FieldOffset, &RawDatum, ACPI_READ); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } MergedDatum = RawDatum >> ObjDesc->CommonField.StartFieldBitOffset; /* Read the rest of the field */ for (i = 1; i < FieldDatumCount; i++) { /* Get next input datum from the field */ FieldOffset += ObjDesc->CommonField.AccessByteWidth; Status = AcpiExFieldDatumIo ( ObjDesc, FieldOffset, &RawDatum, ACPI_READ); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* * Merge with previous datum if necessary. * * Note: Before the shift, check if the shift value will be larger than * the integer size. If so, there is no need to perform the operation. * This avoids the differences in behavior between different compilers * concerning shift values larger than the target data width. */ if (AccessBitWidth - ObjDesc->CommonField.StartFieldBitOffset < ACPI_INTEGER_BIT_SIZE) { MergedDatum |= RawDatum << (AccessBitWidth - ObjDesc->CommonField.StartFieldBitOffset); } if (i == DatumCount) { break; } /* Write merged datum to target buffer */ memcpy (((char *) Buffer) + BufferOffset, &MergedDatum, ACPI_MIN(ObjDesc->CommonField.AccessByteWidth, BufferLength - BufferOffset)); BufferOffset += ObjDesc->CommonField.AccessByteWidth; MergedDatum = RawDatum >> ObjDesc->CommonField.StartFieldBitOffset; } /* Mask off any extra bits in the last datum */ BufferTailBits = ObjDesc->CommonField.BitLength % AccessBitWidth; if (BufferTailBits) { MergedDatum &= ACPI_MASK_BITS_ABOVE (BufferTailBits); } /* Write the last datum to the buffer */ memcpy (((char *) Buffer) + BufferOffset, &MergedDatum, ACPI_MIN(ObjDesc->CommonField.AccessByteWidth, BufferLength - BufferOffset)); return_ACPI_STATUS (AE_OK); }
ACPI_STATUS AcpiExInsertIntoField ( ACPI_OPERAND_OBJECT *ObjDesc, void *Buffer, UINT32 BufferLength) { void *NewBuffer; ACPI_STATUS Status; UINT64 Mask; UINT64 WidthMask; UINT64 MergedDatum; UINT64 RawDatum = 0; UINT32 FieldOffset = 0; UINT32 BufferOffset = 0; UINT32 BufferTailBits; UINT32 DatumCount; UINT32 FieldDatumCount; UINT32 AccessBitWidth; UINT32 RequiredLength; UINT32 i; ACPI_FUNCTION_TRACE (ExInsertIntoField); /* Validate input buffer */ NewBuffer = NULL; RequiredLength = ACPI_ROUND_BITS_UP_TO_BYTES ( ObjDesc->CommonField.BitLength); /* * We must have a buffer that is at least as long as the field * we are writing to. This is because individual fields are * indivisible and partial writes are not supported -- as per * the ACPI specification. */ if (BufferLength < RequiredLength) { /* We need to create a new buffer */ NewBuffer = ACPI_ALLOCATE_ZEROED (RequiredLength); if (!NewBuffer) { return_ACPI_STATUS (AE_NO_MEMORY); } /* * Copy the original data to the new buffer, starting * at Byte zero. All unused (upper) bytes of the * buffer will be 0. */ memcpy ((char *) NewBuffer, (char *) Buffer, BufferLength); Buffer = NewBuffer; BufferLength = RequiredLength; } /* TBD: Move to common setup code */ /* Algo is limited to sizeof(UINT64), so cut the AccessByteWidth */ if (ObjDesc->CommonField.AccessByteWidth > sizeof (UINT64)) { ObjDesc->CommonField.AccessByteWidth = sizeof (UINT64); } AccessBitWidth = ACPI_MUL_8 (ObjDesc->CommonField.AccessByteWidth); /* Create the bitmasks used for bit insertion */ WidthMask = ACPI_MASK_BITS_ABOVE_64 (AccessBitWidth); Mask = WidthMask & ACPI_MASK_BITS_BELOW (ObjDesc->CommonField.StartFieldBitOffset); /* Compute the number of datums (access width data items) */ DatumCount = ACPI_ROUND_UP_TO (ObjDesc->CommonField.BitLength, AccessBitWidth); FieldDatumCount = ACPI_ROUND_UP_TO (ObjDesc->CommonField.BitLength + ObjDesc->CommonField.StartFieldBitOffset, AccessBitWidth); /* Get initial Datum from the input buffer */ memcpy (&RawDatum, Buffer, ACPI_MIN(ObjDesc->CommonField.AccessByteWidth, BufferLength - BufferOffset)); MergedDatum = RawDatum << ObjDesc->CommonField.StartFieldBitOffset; /* Write the entire field */ for (i = 1; i < FieldDatumCount; i++) { /* Write merged datum to the target field */ MergedDatum &= Mask; Status = AcpiExWriteWithUpdateRule ( ObjDesc, Mask, MergedDatum, FieldOffset); if (ACPI_FAILURE (Status)) { goto Exit; } FieldOffset += ObjDesc->CommonField.AccessByteWidth; /* * Start new output datum by merging with previous input datum * if necessary. * * Note: Before the shift, check if the shift value will be larger than * the integer size. If so, there is no need to perform the operation. * This avoids the differences in behavior between different compilers * concerning shift values larger than the target data width. */ if ((AccessBitWidth - ObjDesc->CommonField.StartFieldBitOffset) < ACPI_INTEGER_BIT_SIZE) { MergedDatum = RawDatum >> (AccessBitWidth - ObjDesc->CommonField.StartFieldBitOffset); } else {
static void acpi_tb_convert_fadt(void) { const char *name; struct acpi_generic_address *address64; u32 address32; u8 length; u8 flags; u32 i; /* * For ACPI 1.0 FADTs (revision 1 or 2), ensure that reserved fields which * should be zero are indeed zero. This will workaround BIOSs that * inadvertently place values in these fields. * * The ACPI 1.0 reserved fields that will be zeroed are the bytes located * at offset 45, 55, 95, and the word located at offset 109, 110. * * Note: The FADT revision value is unreliable. Only the length can be * trusted. */ if (acpi_gbl_FADT.header.length <= ACPI_FADT_V2_SIZE) { acpi_gbl_FADT.preferred_profile = 0; acpi_gbl_FADT.pstate_control = 0; acpi_gbl_FADT.cst_control = 0; acpi_gbl_FADT.boot_flags = 0; } /* * Now we can update the local FADT length to the length of the * current FADT version as defined by the ACPI specification. * Thus, we will have a common FADT internally. */ acpi_gbl_FADT.header.length = sizeof(struct acpi_table_fadt); /* * Expand the 32-bit DSDT addresses to 64-bit as necessary. * Later ACPICA code will always use the X 64-bit field. */ acpi_gbl_FADT.Xdsdt = acpi_tb_select_address("DSDT", acpi_gbl_FADT.dsdt, acpi_gbl_FADT.Xdsdt); /* If Hardware Reduced flag is set, we are all done */ if (acpi_gbl_reduced_hardware) { return; } /* Examine all of the 64-bit extended address fields (X fields) */ for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++) { /* * Get the 32-bit and 64-bit addresses, as well as the register * length and register name. */ address32 = *ACPI_ADD_PTR(u32, &acpi_gbl_FADT, fadt_info_table[i].address32); address64 = ACPI_ADD_PTR(struct acpi_generic_address, &acpi_gbl_FADT, fadt_info_table[i].address64); length = *ACPI_ADD_PTR(u8, &acpi_gbl_FADT, fadt_info_table[i].length); name = fadt_info_table[i].name; flags = fadt_info_table[i].flags; /* * Expand the ACPI 1.0 32-bit addresses to the ACPI 2.0 64-bit "X" * generic address structures as necessary. Later code will always use * the 64-bit address structures. * * November 2013: * Now always use the 64-bit address if it is valid (non-zero), in * accordance with the ACPI specification which states that a 64-bit * address supersedes the 32-bit version. This behavior can be * overridden by the acpi_gbl_use32_bit_fadt_addresses flag. * * During 64-bit address construction and verification, * these cases are handled: * * Address32 zero, Address64 [don't care] - Use Address64 * * No override: if acpi_gbl_use32_bit_fadt_addresses is FALSE, and: * Address32 non-zero, Address64 zero - Copy/use Address32 * Address32 non-zero == Address64 non-zero - Use Address64 * Address32 non-zero != Address64 non-zero - Warning, use Address64 * * Override: if acpi_gbl_use32_bit_fadt_addresses is TRUE, and: * Address32 non-zero, Address64 zero - Copy/use Address32 * Address32 non-zero == Address64 non-zero - Copy/use Address32 * Address32 non-zero != Address64 non-zero - Warning, copy/use Address32 * * Note: space_id is always I/O for 32-bit legacy address fields */ if (address32) { if (address64->address) { if (address64->address != (u64)address32) { /* Address mismatch */ ACPI_BIOS_WARNING((AE_INFO, "32/64X address mismatch in FADT/%s: " "0x%8.8X/0x%8.8X%8.8X, using %u-bit address", name, address32, ACPI_FORMAT_UINT64 (address64->address), acpi_gbl_use32_bit_fadt_addresses ? 32 : 64)); } /* * For each extended field, check for length mismatch * between the legacy length field and the corresponding * 64-bit X length field. * Note: If the legacy length field is > 0xFF bits, ignore * this check. (GPE registers can be larger than the * 64-bit GAS structure can accomodate, 0xFF bits). */ if ((ACPI_MUL_8(length) <= ACPI_UINT8_MAX) && (address64->bit_width != ACPI_MUL_8(length))) { ACPI_BIOS_WARNING((AE_INFO, "32/64X length mismatch in FADT/%s: %u/%u", name, ACPI_MUL_8(length), address64-> bit_width)); } } /* * Hardware register access code always uses the 64-bit fields. * So if the 64-bit field is zero or is to be overridden, * initialize it with the 32-bit fields. * Note that when the 32-bit address favor is specified, the * 64-bit fields are always re-initialized so that * access_size/bit_width/bit_offset fields can be correctly * configured to the values to trigger a 32-bit compatible * access mode in the hardware register access code. */ if (!address64->address || acpi_gbl_use32_bit_fadt_addresses) { acpi_tb_init_generic_address(address64, ACPI_ADR_SPACE_SYSTEM_IO, length, (u64)address32, name, flags); } } if (fadt_info_table[i].flags & ACPI_FADT_REQUIRED) { /* * Field is required (Pm1a_event, Pm1a_control). * Both the address and length must be non-zero. */ if (!address64->address || !length) { ACPI_BIOS_ERROR((AE_INFO, "Required FADT field %s has zero address and/or length: " "0x%8.8X%8.8X/0x%X", name, ACPI_FORMAT_UINT64(address64-> address), length)); } } else if (fadt_info_table[i].flags & ACPI_FADT_SEPARATE_LENGTH) { /* * Field is optional (Pm2_control, GPE0, GPE1) AND has its own * length field. If present, both the address and length must * be valid. */ if ((address64->address && !length) || (!address64->address && length)) { ACPI_BIOS_WARNING((AE_INFO, "Optional FADT field %s has valid %s but zero %s: " "0x%8.8X%8.8X/0x%X", name, (length ? "Length" : "Address"), (length ? "Address" : "Length"), ACPI_FORMAT_UINT64 (address64->address), length)); } } } }
ACPI_STATUS AcpiExWriteWithUpdateRule ( ACPI_OPERAND_OBJECT *ObjDesc, UINT64 Mask, UINT64 FieldValue, UINT32 FieldDatumByteOffset) { ACPI_STATUS Status = AE_OK; UINT64 MergedValue; UINT64 CurrentValue; ACPI_FUNCTION_TRACE_U32 (ExWriteWithUpdateRule, Mask); /* Start with the new bits */ MergedValue = FieldValue; /* If the mask is all ones, we don't need to worry about the update rule */ if (Mask != ACPI_UINT64_MAX) { /* Decode the update rule */ switch (ObjDesc->CommonField.FieldFlags & AML_FIELD_UPDATE_RULE_MASK) { case AML_FIELD_UPDATE_PRESERVE: /* * Check if update rule needs to be applied (not if mask is all * ones) The left shift drops the bits we want to ignore. */ if ((~Mask << (ACPI_MUL_8 (sizeof (Mask)) - ACPI_MUL_8 (ObjDesc->CommonField.AccessByteWidth))) != 0) { /* * Read the current contents of the byte/word/dword containing * the field, and merge with the new field value. */ Status = AcpiExFieldDatumIo ( ObjDesc, FieldDatumByteOffset, &CurrentValue, ACPI_READ); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } MergedValue |= (CurrentValue & ~Mask); } break; case AML_FIELD_UPDATE_WRITE_AS_ONES: /* Set positions outside the field to all ones */ MergedValue |= ~Mask; break; case AML_FIELD_UPDATE_WRITE_AS_ZEROS: /* Set positions outside the field to all zeros */ MergedValue &= Mask; break; default: ACPI_ERROR ((AE_INFO, "Unknown UpdateRule value: 0x%X", (ObjDesc->CommonField.FieldFlags & AML_FIELD_UPDATE_RULE_MASK))); return_ACPI_STATUS (AE_AML_OPERAND_VALUE); } } ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "Mask %8.8X%8.8X, DatumOffset %X, Width %X, " "Value %8.8X%8.8X, MergedValue %8.8X%8.8X\n", ACPI_FORMAT_UINT64 (Mask), FieldDatumByteOffset, ObjDesc->CommonField.AccessByteWidth, ACPI_FORMAT_UINT64 (FieldValue), ACPI_FORMAT_UINT64 (MergedValue))); /* Write the merged value */ Status = AcpiExFieldDatumIo ( ObjDesc, FieldDatumByteOffset, &MergedValue, ACPI_WRITE); return_ACPI_STATUS (Status); }
static char * AcpiGetTagPathname ( ACPI_PARSE_OBJECT *IndexOp, ACPI_NAMESPACE_NODE *BufferNode, ACPI_NAMESPACE_NODE *ResourceNode, UINT32 BitIndex) { ACPI_STATUS Status; UINT32 ResourceBitIndex; UINT8 ResourceTableIndex; ACPI_SIZE RequiredSize; char *Pathname; AML_RESOURCE *Aml; ACPI_PARSE_OBJECT *Op; char *InternalPath; char *Tag; /* Get the Op that contains the actual buffer data */ Op = BufferNode->Op->Common.Value.Arg; Op = Op->Common.Next; if (!Op) { return (NULL); } /* Get the individual resource descriptor and validate it */ Aml = ACPI_CAST_PTR (AML_RESOURCE, &Op->Named.Data[ResourceNode->Value]); Status = AcpiUtValidateResource (NULL, Aml, &ResourceTableIndex); if (ACPI_FAILURE (Status)) { return (NULL); } /* Get offset into this descriptor (from offset into entire buffer) */ ResourceBitIndex = BitIndex - ACPI_MUL_8 (ResourceNode->Value); /* Get the tag associated with this resource descriptor and offset */ Tag = AcpiDmGetResourceTag (ResourceBitIndex, Aml, ResourceTableIndex); if (!Tag) { return (NULL); } /* * Now that we know that we have a reference that can be converted to a * symbol, change the name of the resource to a unique name. */ AcpiDmUpdateResourceName (ResourceNode); /* Get the full pathname to the parent buffer */ RequiredSize = AcpiNsGetPathnameLength (BufferNode); if (!RequiredSize) { return (NULL); } Pathname = ACPI_ALLOCATE_ZEROED (RequiredSize + ACPI_PATH_SEGMENT_LENGTH); if (!Pathname) { return (NULL); } Status = AcpiNsBuildExternalPath (BufferNode, RequiredSize, Pathname); if (ACPI_FAILURE (Status)) { ACPI_FREE (Pathname); return (NULL); } /* * Create the full path to the resource and tag by: remove the buffer name, * append the resource descriptor name, append a dot, append the tag name. * * TBD: Always using the full path is a bit brute force, the path can be * often be optimized with carats (if the original buffer namepath is a * single nameseg). This doesn't really matter, because these paths do not * end up in the final compiled AML, it's just an appearance issue for the * disassembled code. */ Pathname[strlen (Pathname) - ACPI_NAME_SIZE] = 0; strncat (Pathname, ResourceNode->Name.Ascii, ACPI_NAME_SIZE); strcat (Pathname, "."); strncat (Pathname, Tag, ACPI_NAME_SIZE); /* Internalize the namepath to AML format */ AcpiNsInternalizeName (Pathname, &InternalPath); ACPI_FREE (Pathname); /* Update the Op with the symbol */ AcpiPsInitOp (IndexOp, AML_INT_NAMEPATH_OP); IndexOp->Common.Value.String = InternalPath; /* We will need the tag later. Cheat by putting it in the Node field */ IndexOp->Common.Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Tag); return (InternalPath); }
acpi_status acpi_ex_prep_field_value ( struct acpi_create_field_info *info) { union acpi_operand_object *obj_desc; u32 type; acpi_status status; ACPI_FUNCTION_TRACE ("ex_prep_field_value"); /* Parameter validation */ if (info->field_type != ACPI_TYPE_LOCAL_INDEX_FIELD) { if (!info->region_node) { ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Null region_node\n")); return_ACPI_STATUS (AE_AML_NO_OPERAND); } type = acpi_ns_get_type (info->region_node); if (type != ACPI_TYPE_REGION) { ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Needed Region, found type %X %s\n", type, acpi_ut_get_type_name (type))); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } } /* Allocate a new field object */ obj_desc = acpi_ut_create_internal_object (info->field_type); if (!obj_desc) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Initialize areas of the object that are common to all fields */ obj_desc->common_field.node = info->field_node; status = acpi_ex_prep_common_field_object (obj_desc, info->field_flags, info->attribute, info->field_bit_position, info->field_bit_length); if (ACPI_FAILURE (status)) { acpi_ut_delete_object_desc (obj_desc); return_ACPI_STATUS (status); } /* Initialize areas of the object that are specific to the field type */ switch (info->field_type) { case ACPI_TYPE_LOCAL_REGION_FIELD: obj_desc->field.region_obj = acpi_ns_get_attached_object (info->region_node); /* An additional reference for the container */ acpi_ut_add_reference (obj_desc->field.region_obj); ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "region_field: Bitoff=%X Off=%X Gran=%X Region %p\n", obj_desc->field.start_field_bit_offset, obj_desc->field.base_byte_offset, obj_desc->field.access_byte_width, obj_desc->field.region_obj)); break; case ACPI_TYPE_LOCAL_BANK_FIELD: obj_desc->bank_field.value = info->bank_value; obj_desc->bank_field.region_obj = acpi_ns_get_attached_object (info->region_node); obj_desc->bank_field.bank_obj = acpi_ns_get_attached_object (info->register_node); /* An additional reference for the attached objects */ acpi_ut_add_reference (obj_desc->bank_field.region_obj); acpi_ut_add_reference (obj_desc->bank_field.bank_obj); ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "Bank Field: bit_off=%X Off=%X Gran=%X Region %p bank_reg %p\n", obj_desc->bank_field.start_field_bit_offset, obj_desc->bank_field.base_byte_offset, obj_desc->field.access_byte_width, obj_desc->bank_field.region_obj, obj_desc->bank_field.bank_obj)); break; case ACPI_TYPE_LOCAL_INDEX_FIELD: obj_desc->index_field.index_obj = acpi_ns_get_attached_object (info->register_node); obj_desc->index_field.data_obj = acpi_ns_get_attached_object (info->data_register_node); obj_desc->index_field.value = (u32) (info->field_bit_position / ACPI_MUL_8 (obj_desc->field.access_byte_width)); if (!obj_desc->index_field.data_obj || !obj_desc->index_field.index_obj) { ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Null Index Object\n")); return_ACPI_STATUS (AE_AML_INTERNAL); } /* An additional reference for the attached objects */ acpi_ut_add_reference (obj_desc->index_field.data_obj); acpi_ut_add_reference (obj_desc->index_field.index_obj); ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "index_field: bitoff=%X off=%X gran=%X Index %p Data %p\n", obj_desc->index_field.start_field_bit_offset, obj_desc->index_field.base_byte_offset, obj_desc->field.access_byte_width, obj_desc->index_field.index_obj, obj_desc->index_field.data_obj)); break; default: /* No other types should get here */ break; } /* * Store the constructed descriptor (obj_desc) into the parent Node, * preserving the current type of that named_obj. */ status = acpi_ns_attach_object (info->field_node, obj_desc, acpi_ns_get_type (info->field_node)); ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "set named_obj %p (%4.4s) val = %p\n", info->field_node, info->field_node->name.ascii, obj_desc)); /* Remove local reference to the object */ acpi_ut_remove_reference (obj_desc); return_ACPI_STATUS (status); }
acpi_status acpi_ex_insert_into_field(union acpi_operand_object *obj_desc, void *buffer, u32 buffer_length) { void *new_buffer; acpi_status status; u64 mask; u64 width_mask; u64 merged_datum; u64 raw_datum = 0; u32 field_offset = 0; u32 buffer_offset = 0; u32 buffer_tail_bits; u32 datum_count; u32 field_datum_count; u32 access_bit_width; u32 required_length; u32 i; ACPI_FUNCTION_TRACE(ex_insert_into_field); /* Validate input buffer */ new_buffer = NULL; required_length = ACPI_ROUND_BITS_UP_TO_BYTES(obj_desc->common_field.bit_length); /* * We must have a buffer that is at least as long as the field * we are writing to. This is because individual fields are * indivisible and partial writes are not supported -- as per * the ACPI specification. */ if (buffer_length < required_length) { /* We need to create a new buffer */ new_buffer = ACPI_ALLOCATE_ZEROED(required_length); if (!new_buffer) { return_ACPI_STATUS(AE_NO_MEMORY); } /* * Copy the original data to the new buffer, starting * at Byte zero. All unused (upper) bytes of the * buffer will be 0. */ ACPI_MEMCPY((char *)new_buffer, (char *)buffer, buffer_length); buffer = new_buffer; buffer_length = required_length; } /* TBD: Move to common setup code */ /* Algo is limited to sizeof(u64), so cut the access_byte_width */ if (obj_desc->common_field.access_byte_width > sizeof(u64)) { obj_desc->common_field.access_byte_width = sizeof(u64); } access_bit_width = ACPI_MUL_8(obj_desc->common_field.access_byte_width); /* * Create the bitmasks used for bit insertion. * Note: This if/else is used to bypass compiler differences with the * shift operator */ if (access_bit_width == ACPI_INTEGER_BIT_SIZE) { width_mask = ACPI_UINT64_MAX; } else { width_mask = ACPI_MASK_BITS_ABOVE(access_bit_width); } mask = width_mask & ACPI_MASK_BITS_BELOW(obj_desc->common_field.start_field_bit_offset); /* Compute the number of datums (access width data items) */ datum_count = ACPI_ROUND_UP_TO(obj_desc->common_field.bit_length, access_bit_width); field_datum_count = ACPI_ROUND_UP_TO(obj_desc->common_field.bit_length + obj_desc->common_field. start_field_bit_offset, access_bit_width); /* Get initial Datum from the input buffer */ ACPI_MEMCPY(&raw_datum, buffer, ACPI_MIN(obj_desc->common_field.access_byte_width, buffer_length - buffer_offset)); merged_datum = raw_datum << obj_desc->common_field.start_field_bit_offset; /* Write the entire field */ for (i = 1; i < field_datum_count; i++) { /* Write merged datum to the target field */ merged_datum &= mask; status = acpi_ex_write_with_update_rule(obj_desc, mask, merged_datum, field_offset); if (ACPI_FAILURE(status)) { goto exit; } field_offset += obj_desc->common_field.access_byte_width; /* * Start new output datum by merging with previous input datum * if necessary. * * Note: Before the shift, check if the shift value will be larger than * the integer size. If so, there is no need to perform the operation. * This avoids the differences in behavior between different compilers * concerning shift values larger than the target data width. */ if ((access_bit_width - obj_desc->common_field.start_field_bit_offset) < ACPI_INTEGER_BIT_SIZE) { merged_datum = raw_datum >> (access_bit_width - obj_desc->common_field. start_field_bit_offset); } else {
acpi_status acpi_ex_write_with_update_rule ( union acpi_operand_object *obj_desc, acpi_integer mask, acpi_integer field_value, u32 field_datum_byte_offset) { acpi_status status = AE_OK; acpi_integer merged_value; acpi_integer current_value; ACPI_FUNCTION_TRACE_U32 ("ex_write_with_update_rule", mask); /* Start with the new bits */ merged_value = field_value; /* If the mask is all ones, we don't need to worry about the update rule */ if (mask != ACPI_INTEGER_MAX) { /* Decode the update rule */ switch (obj_desc->common_field.field_flags & AML_FIELD_UPDATE_RULE_MASK) { case AML_FIELD_UPDATE_PRESERVE: /* * Check if update rule needs to be applied (not if mask is all * ones) The left shift drops the bits we want to ignore. */ if ((~mask << (ACPI_MUL_8 (sizeof (mask)) - ACPI_MUL_8 (obj_desc->common_field.access_byte_width))) != 0) { /* * Read the current contents of the byte/word/dword containing * the field, and merge with the new field value. */ status = acpi_ex_field_datum_io (obj_desc, field_datum_byte_offset, ¤t_value, ACPI_READ); if (ACPI_FAILURE (status)) { return_ACPI_STATUS (status); } merged_value |= (current_value & ~mask); } break; case AML_FIELD_UPDATE_WRITE_AS_ONES: /* Set positions outside the field to all ones */ merged_value |= ~mask; break; case AML_FIELD_UPDATE_WRITE_AS_ZEROS: /* Set positions outside the field to all zeros */ merged_value &= mask; break; default: ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "write_with_update_rule: Unknown update_rule setting: %X\n", (obj_desc->common_field.field_flags & AML_FIELD_UPDATE_RULE_MASK))); return_ACPI_STATUS (AE_AML_OPERAND_VALUE); } } ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "Mask %8.8X%8.8X, datum_offset %X, Width %X, Value %8.8X%8.8X, merged_value %8.8X%8.8X\n", ACPI_FORMAT_UINT64 (mask), field_datum_byte_offset, obj_desc->common_field.access_byte_width, ACPI_FORMAT_UINT64 (field_value), ACPI_FORMAT_UINT64 (merged_value))); /* Write the merged value */ status = acpi_ex_field_datum_io (obj_desc, field_datum_byte_offset, &merged_value, ACPI_WRITE); return_ACPI_STATUS (status); }
static void AcpiTbValidateFadt ( void) { char *Name; ACPI_GENERIC_ADDRESS *Address64; UINT8 Length; UINT32 i; /* * Check for FACS and DSDT address mismatches. An address mismatch between * the 32-bit and 64-bit address fields (FIRMWARE_CTRL/X_FIRMWARE_CTRL and * DSDT/X_DSDT) would indicate the presence of two FACS or two DSDT tables. */ if (AcpiGbl_FADT.Facs && (AcpiGbl_FADT.XFacs != (UINT64) AcpiGbl_FADT.Facs)) { ACPI_BIOS_WARNING ((AE_INFO, "32/64X FACS address mismatch in FADT - " "0x%8.8X/0x%8.8X%8.8X, using 32", AcpiGbl_FADT.Facs, ACPI_FORMAT_UINT64 (AcpiGbl_FADT.XFacs))); AcpiGbl_FADT.XFacs = (UINT64) AcpiGbl_FADT.Facs; } if (AcpiGbl_FADT.Dsdt && (AcpiGbl_FADT.XDsdt != (UINT64) AcpiGbl_FADT.Dsdt)) { ACPI_BIOS_WARNING ((AE_INFO, "32/64X DSDT address mismatch in FADT - " "0x%8.8X/0x%8.8X%8.8X, using 32", AcpiGbl_FADT.Dsdt, ACPI_FORMAT_UINT64 (AcpiGbl_FADT.XDsdt))); AcpiGbl_FADT.XDsdt = (UINT64) AcpiGbl_FADT.Dsdt; } /* If Hardware Reduced flag is set, we are all done */ if (AcpiGbl_ReducedHardware) { return; } /* Examine all of the 64-bit extended address fields (X fields) */ for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++) { /* * Generate pointer to the 64-bit address, get the register * length (width) and the register name */ Address64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS, &AcpiGbl_FADT, FadtInfoTable[i].Address64); Length = *ACPI_ADD_PTR (UINT8, &AcpiGbl_FADT, FadtInfoTable[i].Length); Name = FadtInfoTable[i].Name; /* * For each extended field, check for length mismatch between the * legacy length field and the corresponding 64-bit X length field. */ if (Address64->Address && (Address64->BitWidth != ACPI_MUL_8 (Length))) { ACPI_BIOS_WARNING ((AE_INFO, "32/64X length mismatch in FADT/%s: %u/%u", Name, ACPI_MUL_8 (Length), Address64->BitWidth)); } if (FadtInfoTable[i].Type & ACPI_FADT_REQUIRED) { /* * Field is required (PM1aEvent, PM1aControl, PmTimer). * Both the address and length must be non-zero. */ if (!Address64->Address || !Length) { ACPI_BIOS_ERROR ((AE_INFO, "Required FADT field %s has zero address and/or length: " "0x%8.8X%8.8X/0x%X", Name, ACPI_FORMAT_UINT64 (Address64->Address), Length)); } } else if (FadtInfoTable[i].Type & ACPI_FADT_SEPARATE_LENGTH) { /* * Field is optional (PM2Control, GPE0, GPE1) AND has its own * length field. If present, both the address and length must * be valid. */ if ((Address64->Address && !Length) || (!Address64->Address && Length)) { ACPI_BIOS_WARNING ((AE_INFO, "Optional FADT field %s has zero address or length: " "0x%8.8X%8.8X/0x%X", Name, ACPI_FORMAT_UINT64 (Address64->Address), Length)); } } } }
acpi_status acpi_ex_extract_from_field(union acpi_operand_object *obj_desc, void *buffer, u32 buffer_length) { acpi_status status; u64 raw_datum; u64 merged_datum; u32 field_offset = 0; u32 buffer_offset = 0; u32 buffer_tail_bits; u32 datum_count; u32 field_datum_count; u32 access_bit_width; u32 i; ACPI_FUNCTION_TRACE(ex_extract_from_field); /* Validate target buffer and clear it */ if (buffer_length < ACPI_ROUND_BITS_UP_TO_BYTES(obj_desc->common_field.bit_length)) { ACPI_ERROR((AE_INFO, "Field size %u (bits) is too large for buffer (%u)", obj_desc->common_field.bit_length, buffer_length)); return_ACPI_STATUS(AE_BUFFER_OVERFLOW); } ACPI_MEMSET(buffer, 0, buffer_length); access_bit_width = ACPI_MUL_8(obj_desc->common_field.access_byte_width); /* Handle the simple case here */ if ((obj_desc->common_field.start_field_bit_offset == 0) && (obj_desc->common_field.bit_length == access_bit_width)) { if (buffer_length >= sizeof(u64)) { status = acpi_ex_field_datum_io(obj_desc, 0, buffer, ACPI_READ); } else { /* Use raw_datum (u64) to handle buffers < 64 bits */ status = acpi_ex_field_datum_io(obj_desc, 0, &raw_datum, ACPI_READ); ACPI_MEMCPY(buffer, &raw_datum, buffer_length); } return_ACPI_STATUS(status); } /* TBD: Move to common setup code */ /* Field algorithm is limited to sizeof(u64), truncate if needed */ if (obj_desc->common_field.access_byte_width > sizeof(u64)) { obj_desc->common_field.access_byte_width = sizeof(u64); access_bit_width = sizeof(u64) * 8; } /* Compute the number of datums (access width data items) */ datum_count = ACPI_ROUND_UP_TO(obj_desc->common_field.bit_length, access_bit_width); field_datum_count = ACPI_ROUND_UP_TO(obj_desc->common_field.bit_length + obj_desc->common_field. start_field_bit_offset, access_bit_width); /* Priming read from the field */ status = acpi_ex_field_datum_io(obj_desc, field_offset, &raw_datum, ACPI_READ); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } merged_datum = raw_datum >> obj_desc->common_field.start_field_bit_offset; /* Read the rest of the field */ for (i = 1; i < field_datum_count; i++) { /* Get next input datum from the field */ field_offset += obj_desc->common_field.access_byte_width; status = acpi_ex_field_datum_io(obj_desc, field_offset, &raw_datum, ACPI_READ); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } /* * Merge with previous datum if necessary. * * Note: Before the shift, check if the shift value will be larger than * the integer size. If so, there is no need to perform the operation. * This avoids the differences in behavior between different compilers * concerning shift values larger than the target data width. */ if (access_bit_width - obj_desc->common_field.start_field_bit_offset < ACPI_INTEGER_BIT_SIZE) { merged_datum |= raw_datum << (access_bit_width - obj_desc->common_field. start_field_bit_offset); } if (i == datum_count) { break; } /* Write merged datum to target buffer */ ACPI_MEMCPY(((char *)buffer) + buffer_offset, &merged_datum, ACPI_MIN(obj_desc->common_field.access_byte_width, buffer_length - buffer_offset)); buffer_offset += obj_desc->common_field.access_byte_width; merged_datum = raw_datum >> obj_desc->common_field.start_field_bit_offset; } /* Mask off any extra bits in the last datum */ buffer_tail_bits = obj_desc->common_field.bit_length % access_bit_width; if (buffer_tail_bits) { merged_datum &= ACPI_MASK_BITS_ABOVE(buffer_tail_bits); } /* Write the last datum to the buffer */ ACPI_MEMCPY(((char *)buffer) + buffer_offset, &merged_datum, ACPI_MIN(obj_desc->common_field.access_byte_width, buffer_length - buffer_offset)); return_ACPI_STATUS(AE_OK); }
static ACPI_STATUS XfNamespaceLocateBegin ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context) { ACPI_WALK_STATE *WalkState = (ACPI_WALK_STATE *) Context; ACPI_NAMESPACE_NODE *Node; ACPI_STATUS Status; ACPI_OBJECT_TYPE ObjectType; char *Path; UINT8 PassedArgs; ACPI_PARSE_OBJECT *NextOp; ACPI_PARSE_OBJECT *OwningOp; ACPI_PARSE_OBJECT *SpaceIdOp; UINT32 MinimumLength; UINT32 Offset; UINT32 FieldBitLength; UINT32 TagBitLength; UINT8 Message = 0; const ACPI_OPCODE_INFO *OpInfo; UINT32 Flags; ACPI_FUNCTION_TRACE_PTR (XfNamespaceLocateBegin, Op); /* * If this node is the actual declaration of a name * [such as the XXXX name in "Method (XXXX)"], * we are not interested in it here. We only care about names that are * references to other objects within the namespace and the parent objects * of name declarations */ if (Op->Asl.CompileFlags & NODE_IS_NAME_DECLARATION) { return_ACPI_STATUS (AE_OK); } /* We are only interested in opcodes that have an associated name */ OpInfo = AcpiPsGetOpcodeInfo (Op->Asl.AmlOpcode); if ((!(OpInfo->Flags & AML_NAMED)) && (!(OpInfo->Flags & AML_CREATE)) && (Op->Asl.ParseOpcode != PARSEOP_NAMESTRING) && (Op->Asl.ParseOpcode != PARSEOP_NAMESEG) && (Op->Asl.ParseOpcode != PARSEOP_METHODCALL)) { return_ACPI_STATUS (AE_OK); } /* * One special case: CondRefOf operator - we don't care if the name exists * or not at this point, just ignore it, the point of the operator is to * determine if the name exists at runtime. */ if ((Op->Asl.Parent) && (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_CONDREFOF)) { return_ACPI_STATUS (AE_OK); } /* * We must enable the "search-to-root" for single NameSegs, but * we have to be very careful about opening up scopes */ Flags = ACPI_NS_SEARCH_PARENT; if ((Op->Asl.ParseOpcode == PARSEOP_NAMESTRING) || (Op->Asl.ParseOpcode == PARSEOP_NAMESEG) || (Op->Asl.ParseOpcode == PARSEOP_METHODCALL)) { /* * These are name references, do not push the scope stack * for them. */ Flags |= ACPI_NS_DONT_OPEN_SCOPE; } /* Get the NamePath from the appropriate place */ if (OpInfo->Flags & AML_NAMED) { /* For nearly all NAMED operators, the name reference is the first child */ Path = Op->Asl.Child->Asl.Value.String; if (Op->Asl.AmlOpcode == AML_ALIAS_OP) { /* * ALIAS is the only oddball opcode, the name declaration * (alias name) is the second operand */ Path = Op->Asl.Child->Asl.Next->Asl.Value.String; } } else if (OpInfo->Flags & AML_CREATE) { /* Name must appear as the last parameter */ NextOp = Op->Asl.Child; while (!(NextOp->Asl.CompileFlags & NODE_IS_NAME_DECLARATION)) { NextOp = NextOp->Asl.Next; } Path = NextOp->Asl.Value.String; } else { Path = Op->Asl.Value.String; } ObjectType = AslMapNamedOpcodeToDataType (Op->Asl.AmlOpcode); ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Type=%s\n", AcpiUtGetTypeName (ObjectType))); /* * Lookup the name in the namespace. Name must exist at this point, or it * is an invalid reference. * * The namespace is also used as a lookup table for references to resource * descriptors and the fields within them. */ Gbl_NsLookupCount++; Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ObjectType, ACPI_IMODE_EXECUTE, Flags, WalkState, &(Node)); if (ACPI_FAILURE (Status)) { if (Status == AE_NOT_FOUND) { /* * We didn't find the name reference by path -- we can qualify this * a little better before we print an error message */ if (strlen (Path) == ACPI_NAME_SIZE) { /* A simple, one-segment ACPI name */ if (XfObjectExists (Path)) { /* * There exists such a name, but we couldn't get to it * from this scope */ AslError (ASL_ERROR, ASL_MSG_NOT_REACHABLE, Op, Op->Asl.ExternalName); } else { /* The name doesn't exist, period */ AslError (ASL_ERROR, ASL_MSG_NOT_EXIST, Op, Op->Asl.ExternalName); } } else { /* Check for a fully qualified path */ if (Path[0] == AML_ROOT_PREFIX) { /* Gave full path, the object does not exist */ AslError (ASL_ERROR, ASL_MSG_NOT_EXIST, Op, Op->Asl.ExternalName); } else { /* * We can't tell whether it doesn't exist or just * can't be reached. */ AslError (ASL_ERROR, ASL_MSG_NOT_FOUND, Op, Op->Asl.ExternalName); } } Status = AE_OK; } return_ACPI_STATUS (Status); } /* Check for a reference vs. name declaration */ if (!(OpInfo->Flags & AML_NAMED) && !(OpInfo->Flags & AML_CREATE)) { /* This node has been referenced, mark it for reference check */ Node->Flags |= ANOBJ_IS_REFERENCED; #ifdef __UNDER_DEVELOPMENT /* Check for an illegal reference */ XfCheckIllegalReference (Op, Node); #endif } /* Attempt to optimize the NamePath */ OptOptimizeNamePath (Op, OpInfo->Flags, WalkState, Path, Node); /* * 1) Dereference an alias (A name reference that is an alias) * Aliases are not nested, the alias always points to the final object */ if ((Op->Asl.ParseOpcode != PARSEOP_ALIAS) && (Node->Type == ACPI_TYPE_LOCAL_ALIAS)) { /* This node points back to the original PARSEOP_ALIAS */ NextOp = Node->Op; /* The first child is the alias target op */ NextOp = NextOp->Asl.Child; /* That in turn points back to original target alias node */ if (NextOp->Asl.Node) { Node = NextOp->Asl.Node; } /* Else - forward reference to alias, will be resolved later */ } /* 2) Check for a reference to a resource descriptor */ if ((Node->Type == ACPI_TYPE_LOCAL_RESOURCE_FIELD) || (Node->Type == ACPI_TYPE_LOCAL_RESOURCE)) { /* * This was a reference to a field within a resource descriptor. * Extract the associated field offset (either a bit or byte * offset depending on the field type) and change the named * reference into an integer for AML code generation */ Offset = Node->Value; TagBitLength = Node->Length; /* * If a field is being created, generate the length (in bits) of * the field. Note: Opcodes other than CreateXxxField and Index * can come through here. For other opcodes, we just need to * convert the resource tag reference to an integer offset. */ switch (Op->Asl.Parent->Asl.AmlOpcode) { case AML_CREATE_FIELD_OP: /* Variable "Length" field, in bits */ /* * We know the length operand is an integer constant because * we know that it contains a reference to a resource * descriptor tag. */ FieldBitLength = (UINT32) Op->Asl.Next->Asl.Value.Integer; break; case AML_CREATE_BIT_FIELD_OP: FieldBitLength = 1; break; case AML_CREATE_BYTE_FIELD_OP: case AML_INDEX_OP: FieldBitLength = 8; break; case AML_CREATE_WORD_FIELD_OP: FieldBitLength = 16; break; case AML_CREATE_DWORD_FIELD_OP: FieldBitLength = 32; break; case AML_CREATE_QWORD_FIELD_OP: FieldBitLength = 64; break; default: FieldBitLength = 0; break; } /* Check the field length against the length of the resource tag */ if (FieldBitLength) { if (TagBitLength < FieldBitLength) { Message = ASL_MSG_TAG_SMALLER; } else if (TagBitLength > FieldBitLength) { Message = ASL_MSG_TAG_LARGER; } if (Message) { snprintf (MsgBuffer, sizeof(MsgBuffer), "Size mismatch, Tag: %u bit%s, Field: %u bit%s", TagBitLength, (TagBitLength > 1) ? "s" : "", FieldBitLength, (FieldBitLength > 1) ? "s" : ""); AslError (ASL_WARNING, Message, Op, MsgBuffer); } } /* Convert the BitOffset to a ByteOffset for certain opcodes */ switch (Op->Asl.Parent->Asl.AmlOpcode) { case AML_CREATE_BYTE_FIELD_OP: case AML_CREATE_WORD_FIELD_OP: case AML_CREATE_DWORD_FIELD_OP: case AML_CREATE_QWORD_FIELD_OP: case AML_INDEX_OP: Offset = ACPI_DIV_8 (Offset); break; default: break; } /* Now convert this node to an integer whose value is the field offset */ Op->Asl.AmlLength = 0; Op->Asl.ParseOpcode = PARSEOP_INTEGER; Op->Asl.Value.Integer = (UINT64) Offset; Op->Asl.CompileFlags |= NODE_IS_RESOURCE_FIELD; OpcGenerateAmlOpcode (Op); } /* 3) Check for a method invocation */ else if ((((Op->Asl.ParseOpcode == PARSEOP_NAMESTRING) || (Op->Asl.ParseOpcode == PARSEOP_NAMESEG)) && (Node->Type == ACPI_TYPE_METHOD) && (Op->Asl.Parent) && (Op->Asl.Parent->Asl.ParseOpcode != PARSEOP_METHOD)) || (Op->Asl.ParseOpcode == PARSEOP_METHODCALL)) { /* * A reference to a method within one of these opcodes is not an * invocation of the method, it is simply a reference to the method. */ if ((Op->Asl.Parent) && ((Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_REFOF) || (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_DEREFOF) || (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_OBJECTTYPE))) { return_ACPI_STATUS (AE_OK); } /* * There are two types of method invocation: * 1) Invocation with arguments -- the parser recognizes this * as a METHODCALL. * 2) Invocation with no arguments --the parser cannot determine that * this is a method invocation, therefore we have to figure it out * here. */ if (Node->Type != ACPI_TYPE_METHOD) { snprintf (MsgBuffer, sizeof(MsgBuffer), "%s is a %s", Op->Asl.ExternalName, AcpiUtGetTypeName (Node->Type)); AslError (ASL_ERROR, ASL_MSG_NOT_METHOD, Op, MsgBuffer); return_ACPI_STATUS (AE_OK); } /* Save the method node in the caller's op */ Op->Asl.Node = Node; if (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_CONDREFOF) { return_ACPI_STATUS (AE_OK); } /* * This is a method invocation, with or without arguments. * Count the number of arguments, each appears as a child * under the parent node */ Op->Asl.ParseOpcode = PARSEOP_METHODCALL; UtSetParseOpName (Op); PassedArgs = 0; NextOp = Op->Asl.Child; while (NextOp) { PassedArgs++; NextOp = NextOp->Asl.Next; } if (Node->Value != ASL_EXTERNAL_METHOD) { /* * Check the parsed arguments with the number expected by the * method declaration itself */ if (PassedArgs != Node->Value) { snprintf (MsgBuffer, sizeof(MsgBuffer), "%s requires %u", Op->Asl.ExternalName, Node->Value); if (PassedArgs < Node->Value) { AslError (ASL_ERROR, ASL_MSG_ARG_COUNT_LO, Op, MsgBuffer); } else { AslError (ASL_ERROR, ASL_MSG_ARG_COUNT_HI, Op, MsgBuffer); } } } } /* 4) Check for an ASL Field definition */ else if ((Op->Asl.Parent) && ((Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_FIELD) || (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_BANKFIELD))) { /* * Offset checking for fields. If the parent operation region has a * constant length (known at compile time), we can check fields * defined in that region against the region length. This will catch * fields and field units that cannot possibly fit within the region. * * Note: Index fields do not directly reference an operation region, * thus they are not included in this check. */ if (Op == Op->Asl.Parent->Asl.Child) { /* * This is the first child of the field node, which is * the name of the region. Get the parse node for the * region -- which contains the length of the region. */ OwningOp = Node->Op; Op->Asl.Parent->Asl.ExtraValue = ACPI_MUL_8 ((UINT32) OwningOp->Asl.Value.Integer); /* Examine the field access width */ switch ((UINT8) Op->Asl.Parent->Asl.Value.Integer) { case AML_FIELD_ACCESS_ANY: case AML_FIELD_ACCESS_BYTE: case AML_FIELD_ACCESS_BUFFER: default: MinimumLength = 1; break; case AML_FIELD_ACCESS_WORD: MinimumLength = 2; break; case AML_FIELD_ACCESS_DWORD: MinimumLength = 4; break; case AML_FIELD_ACCESS_QWORD: MinimumLength = 8; break; } /* * Is the region at least as big as the access width? * Note: DataTableRegions have 0 length */ if (((UINT32) OwningOp->Asl.Value.Integer) && ((UINT32) OwningOp->Asl.Value.Integer < MinimumLength)) { AslError (ASL_ERROR, ASL_MSG_FIELD_ACCESS_WIDTH, Op, NULL); } /* * Check EC/CMOS/SMBUS fields to make sure that the correct * access type is used (BYTE for EC/CMOS, BUFFER for SMBUS) */ SpaceIdOp = OwningOp->Asl.Child->Asl.Next; switch ((UINT32) SpaceIdOp->Asl.Value.Integer) { case ACPI_ADR_SPACE_EC: case ACPI_ADR_SPACE_CMOS: case ACPI_ADR_SPACE_GPIO: if ((UINT8) Op->Asl.Parent->Asl.Value.Integer != AML_FIELD_ACCESS_BYTE) { AslError (ASL_ERROR, ASL_MSG_REGION_BYTE_ACCESS, Op, NULL); } break; case ACPI_ADR_SPACE_SMBUS: case ACPI_ADR_SPACE_IPMI: case ACPI_ADR_SPACE_GSBUS: if ((UINT8) Op->Asl.Parent->Asl.Value.Integer != AML_FIELD_ACCESS_BUFFER) { AslError (ASL_ERROR, ASL_MSG_REGION_BUFFER_ACCESS, Op, NULL); } break; default: /* Nothing to do for other address spaces */ break; } } else { /* * This is one element of the field list. Check to make sure * that it does not go beyond the end of the parent operation region. * * In the code below: * Op->Asl.Parent->Asl.ExtraValue - Region Length (bits) * Op->Asl.ExtraValue - Field start offset (bits) * Op->Asl.Child->Asl.Value.Integer32 - Field length (bits) * Op->Asl.Child->Asl.ExtraValue - Field access width (bits) */ if (Op->Asl.Parent->Asl.ExtraValue && Op->Asl.Child) { XfCheckFieldRange (Op, Op->Asl.Parent->Asl.ExtraValue, Op->Asl.ExtraValue, (UINT32) Op->Asl.Child->Asl.Value.Integer, Op->Asl.Child->Asl.ExtraValue); } } } /* 5) Check for a connection object */ #if 0 else if (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_CONNECTION) { return_ACPI_STATUS (Status); } #endif Op->Asl.Node = Node; return_ACPI_STATUS (Status); }
ACPI_STATUS AcpiExPrepCommonFieldObject ( ACPI_OPERAND_OBJECT *ObjDesc, UINT8 FieldFlags, UINT8 FieldAttribute, UINT32 FieldBitPosition, UINT32 FieldBitLength) { UINT32 AccessBitWidth; UINT32 ByteAlignment; UINT32 NearestByteAddress; ACPI_FUNCTION_TRACE (ExPrepCommonFieldObject); /* * Note: the structure being initialized is the * ACPI_COMMON_FIELD_INFO; No structure fields outside of the common * area are initialized by this procedure. */ ObjDesc->CommonField.FieldFlags = FieldFlags; ObjDesc->CommonField.Attribute = FieldAttribute; ObjDesc->CommonField.BitLength = FieldBitLength; /* * Decode the access type so we can compute offsets. The access type gives * two pieces of information - the width of each field access and the * necessary ByteAlignment (address granularity) of the access. * * For AnyAcc, the AccessBitWidth is the largest width that is both * necessary and possible in an attempt to access the whole field in one * I/O operation. However, for AnyAcc, the ByteAlignment is always one * byte. * * For all Buffer Fields, the ByteAlignment is always one byte. * * For all other access types (Byte, Word, Dword, Qword), the Bitwidth is * the same (equivalent) as the ByteAlignment. */ AccessBitWidth = AcpiExDecodeFieldAccess ( ObjDesc, FieldFlags, &ByteAlignment); if (!AccessBitWidth) { return_ACPI_STATUS (AE_AML_OPERAND_VALUE); } /* Setup width (access granularity) fields (values are: 1, 2, 4, 8) */ ObjDesc->CommonField.AccessByteWidth = (UINT8) ACPI_DIV_8 (AccessBitWidth); /* * BaseByteOffset is the address of the start of the field within the * region. It is the byte address of the first *datum* (field-width data * unit) of the field. (i.e., the first datum that contains at least the * first *bit* of the field.) * * Note: ByteAlignment is always either equal to the AccessBitWidth or 8 * (Byte access), and it defines the addressing granularity of the parent * region or buffer. */ NearestByteAddress = ACPI_ROUND_BITS_DOWN_TO_BYTES (FieldBitPosition); ObjDesc->CommonField.BaseByteOffset = (UINT32) ACPI_ROUND_DOWN (NearestByteAddress, ByteAlignment); /* * StartFieldBitOffset is the offset of the first bit of the field within * a field datum. */ ObjDesc->CommonField.StartFieldBitOffset = (UINT8) (FieldBitPosition - ACPI_MUL_8 (ObjDesc->CommonField.BaseByteOffset)); return_ACPI_STATUS (AE_OK); }
acpi_status acpi_ex_prep_common_field_object(union acpi_operand_object *obj_desc, u8 field_flags, u8 field_attribute, u32 field_bit_position, u32 field_bit_length) { u32 access_bit_width; u32 byte_alignment; u32 nearest_byte_address; ACPI_FUNCTION_TRACE(ex_prep_common_field_object); /* * Note: the structure being initialized is the * ACPI_COMMON_FIELD_INFO; No structure fields outside of the common * area are initialized by this procedure. */ obj_desc->common_field.field_flags = field_flags; obj_desc->common_field.attribute = field_attribute; obj_desc->common_field.bit_length = field_bit_length; /* * Decode the access type so we can compute offsets. The access type gives * two pieces of information - the width of each field access and the * necessary byte_alignment (address granularity) of the access. * * For any_acc, the access_bit_width is the largest width that is both * necessary and possible in an attempt to access the whole field in one * I/O operation. However, for any_acc, the byte_alignment is always one * byte. * * For all Buffer Fields, the byte_alignment is always one byte. * * For all other access types (Byte, Word, Dword, Qword), the Bitwidth is * the same (equivalent) as the byte_alignment. */ access_bit_width = acpi_ex_decode_field_access(obj_desc, field_flags, &byte_alignment); if (!access_bit_width) { return_ACPI_STATUS(AE_AML_OPERAND_VALUE); } /* Setup width (access granularity) fields (values are: 1, 2, 4, 8) */ obj_desc->common_field.access_byte_width = (u8) ACPI_DIV_8(access_bit_width); /* * base_byte_offset is the address of the start of the field within the * region. It is the byte address of the first *datum* (field-width data * unit) of the field. (i.e., the first datum that contains at least the * first *bit* of the field.) * * Note: byte_alignment is always either equal to the access_bit_width or 8 * (Byte access), and it defines the addressing granularity of the parent * region or buffer. */ nearest_byte_address = ACPI_ROUND_BITS_DOWN_TO_BYTES(field_bit_position); obj_desc->common_field.base_byte_offset = (u32) ACPI_ROUND_DOWN(nearest_byte_address, byte_alignment); /* * start_field_bit_offset is the offset of the first bit of the field within * a field datum. */ obj_desc->common_field.start_field_bit_offset = (u8) (field_bit_position - ACPI_MUL_8(obj_desc->common_field.base_byte_offset)); return_ACPI_STATUS(AE_OK); }
ACPI_STATUS AnBuildLocalTables ( ACPI_NEW_TABLE_DESC *TableList) { UINT32 TableCount = 0; ACPI_PHYSICAL_ADDRESS DsdtAddress = 0; UINT32 XsdtSize; ACPI_NEW_TABLE_DESC *NextTable; UINT32 NextIndex; ACPI_TABLE_FADT *ExternalFadt = NULL; /* * Update the table count. For the DSDT, it is not put into the XSDT. * For the FADT, this table is already accounted for since we usually * install a local FADT. */ NextTable = TableList; while (NextTable) { if (!ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_DSDT) && !ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_FADT)) { TableCount++; } NextTable = NextTable->Next; } XsdtSize = BASE_XSDT_SIZE + (TableCount * sizeof (UINT64)); /* Build an XSDT */ LocalXSDT = AcpiOsAllocate (XsdtSize); if (!LocalXSDT) { return (AE_NO_MEMORY); } memset (LocalXSDT, 0, XsdtSize); LocalXSDT->TableOffsetEntry[0] = ACPI_PTR_TO_PHYSADDR (&LocalFADT); /* * Install the user tables. The DSDT must be installed in the FADT. * All other tables are installed directly into the XSDT. * * Note: The tables are loaded in reverse order from the incoming * input, which makes it match the command line order. */ NextIndex = BASE_XSDT_TABLES; NextTable = TableList; while (NextTable) { /* * Incoming DSDT or FADT are special cases. All other tables are * just immediately installed into the XSDT. */ if (ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_DSDT)) { if (DsdtAddress) { printf ("Already found a DSDT, only one allowed\n"); return (AE_ALREADY_EXISTS); } /* The incoming user table is a DSDT */ DsdtAddress = ACPI_PTR_TO_PHYSADDR (NextTable->Table); } else if (ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_FADT)) { ExternalFadt = ACPI_CAST_PTR (ACPI_TABLE_FADT, NextTable->Table); LocalXSDT->TableOffsetEntry[0] = ACPI_PTR_TO_PHYSADDR (NextTable->Table); } else { /* Install the table in the XSDT */ LocalXSDT->TableOffsetEntry[TableCount - NextIndex + 1] = ACPI_PTR_TO_PHYSADDR (NextTable->Table); NextIndex++; } NextTable = NextTable->Next; } /* Build an RSDP. Contains a valid XSDT only, no RSDT */ memset (&LocalRSDP, 0, sizeof (ACPI_TABLE_RSDP)); ACPI_MAKE_RSDP_SIG (LocalRSDP.Signature); memcpy (LocalRSDP.OemId, "Intel", 6); LocalRSDP.Revision = 2; LocalRSDP.XsdtPhysicalAddress = ACPI_PTR_TO_PHYSADDR (LocalXSDT); LocalRSDP.Length = sizeof (ACPI_TABLE_XSDT); /* Set checksums for both XSDT and RSDP */ AnInitializeTableHeader ((void *) LocalXSDT, ACPI_SIG_XSDT, XsdtSize); LocalRSDP.Checksum = 0; LocalRSDP.Checksum = (UINT8) -AcpiTbChecksum ( (void *) &LocalRSDP, ACPI_RSDP_CHECKSUM_LENGTH); if (!DsdtAddress) { return (AE_SUPPORT); } /* * Build an FADT. There are two options for the FADT: * 1) Incoming external FADT specified on the command line * 2) A fully featured local FADT */ memset (&LocalFADT, 0, sizeof (ACPI_TABLE_FADT)); if (ExternalFadt) { /* * Use the external FADT, but we must update the DSDT/FACS * addresses as well as the checksum */ ExternalFadt->Dsdt = (UINT32) DsdtAddress; ExternalFadt->Facs = ACPI_PTR_TO_PHYSADDR (&LocalFACS); /* * If there room in the FADT for the XDsdt and XFacs 64-bit * pointers, use them. */ if (ExternalFadt->Header.Length > ACPI_PTR_DIFF ( &ExternalFadt->XDsdt, ExternalFadt)) { ExternalFadt->Dsdt = 0; ExternalFadt->Facs = 0; ExternalFadt->XDsdt = DsdtAddress; ExternalFadt->XFacs = ACPI_PTR_TO_PHYSADDR (&LocalFACS); } /* Complete the external FADT with the checksum */ ExternalFadt->Header.Checksum = 0; ExternalFadt->Header.Checksum = (UINT8) -AcpiTbChecksum ( (void *) ExternalFadt, ExternalFadt->Header.Length); } else { /* * Build a local FADT so we can test the hardware/event init */ LocalFADT.Header.Revision = 5; /* Setup FADT header and DSDT/FACS addresses */ LocalFADT.Dsdt = 0; LocalFADT.Facs = 0; LocalFADT.XDsdt = DsdtAddress; LocalFADT.XFacs = ACPI_PTR_TO_PHYSADDR (&LocalFACS); /* Miscellaneous FADT fields */ LocalFADT.Gpe0BlockLength = 16; LocalFADT.Gpe0Block = 0x00001234; LocalFADT.Gpe1BlockLength = 6; LocalFADT.Gpe1Block = 0x00005678; LocalFADT.Gpe1Base = 96; LocalFADT.Pm1EventLength = 4; LocalFADT.Pm1aEventBlock = 0x00001aaa; LocalFADT.Pm1bEventBlock = 0x00001bbb; LocalFADT.Pm1ControlLength = 2; LocalFADT.Pm1aControlBlock = 0xB0; LocalFADT.PmTimerLength = 4; LocalFADT.PmTimerBlock = 0xA0; LocalFADT.Pm2ControlBlock = 0xC0; LocalFADT.Pm2ControlLength = 1; /* Setup one example X-64 field */ LocalFADT.XPm1bEventBlock.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO; LocalFADT.XPm1bEventBlock.Address = LocalFADT.Pm1bEventBlock; LocalFADT.XPm1bEventBlock.BitWidth = (UINT8) ACPI_MUL_8 (LocalFADT.Pm1EventLength); } AnInitializeTableHeader ((void *) &LocalFADT, ACPI_SIG_FADT, sizeof (ACPI_TABLE_FADT)); /* Build a FACS */ memset (&LocalFACS, 0, sizeof (ACPI_TABLE_FACS)); ACPI_MOVE_NAME (LocalFACS.Signature, ACPI_SIG_FACS); LocalFACS.Length = sizeof (ACPI_TABLE_FACS); LocalFACS.GlobalLock = 0x11AA0011; return (AE_OK); }
static void AcpiTbConvertFadt ( void) { const char *Name; ACPI_GENERIC_ADDRESS *Address64; UINT32 Address32; UINT8 Length; UINT8 Flags; UINT32 i; /* * For ACPI 1.0 FADTs (revision 1 or 2), ensure that reserved fields which * should be zero are indeed zero. This will workaround BIOSs that * inadvertently place values in these fields. * * The ACPI 1.0 reserved fields that will be zeroed are the bytes located * at offset 45, 55, 95, and the word located at offset 109, 110. * * Note: The FADT revision value is unreliable. Only the length can be * trusted. */ if (AcpiGbl_FADT.Header.Length <= ACPI_FADT_V2_SIZE) { AcpiGbl_FADT.PreferredProfile = 0; AcpiGbl_FADT.PstateControl = 0; AcpiGbl_FADT.CstControl = 0; AcpiGbl_FADT.BootFlags = 0; } /* * Now we can update the local FADT length to the length of the * current FADT version as defined by the ACPI specification. * Thus, we will have a common FADT internally. */ AcpiGbl_FADT.Header.Length = sizeof (ACPI_TABLE_FADT); /* * Expand the 32-bit DSDT addresses to 64-bit as necessary. * Later ACPICA code will always use the X 64-bit field. */ AcpiGbl_FADT.XDsdt = AcpiTbSelectAddress ("DSDT", AcpiGbl_FADT.Dsdt, AcpiGbl_FADT.XDsdt); /* If Hardware Reduced flag is set, we are all done */ if (AcpiGbl_ReducedHardware) { return; } /* Examine all of the 64-bit extended address fields (X fields) */ for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++) { /* * Get the 32-bit and 64-bit addresses, as well as the register * length and register name. */ Address32 = *ACPI_ADD_PTR (UINT32, &AcpiGbl_FADT, FadtInfoTable[i].Address32); Address64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS, &AcpiGbl_FADT, FadtInfoTable[i].Address64); Length = *ACPI_ADD_PTR (UINT8, &AcpiGbl_FADT, FadtInfoTable[i].Length); Name = FadtInfoTable[i].Name; Flags = FadtInfoTable[i].Flags; /* * Expand the ACPI 1.0 32-bit addresses to the ACPI 2.0 64-bit "X" * generic address structures as necessary. Later code will always use * the 64-bit address structures. * * November 2013: * Now always use the 64-bit address if it is valid (non-zero), in * accordance with the ACPI specification which states that a 64-bit * address supersedes the 32-bit version. This behavior can be * overridden by the AcpiGbl_Use32BitFadtAddresses flag. * * During 64-bit address construction and verification, * these cases are handled: * * Address32 zero, Address64 [don't care] - Use Address64 * * No override: if AcpiGbl_Use32BitFadtAddresses is FALSE, and: * Address32 non-zero, Address64 zero - Copy/use Address32 * Address32 non-zero == Address64 non-zero - Use Address64 * Address32 non-zero != Address64 non-zero - Warning, use Address64 * * Override: if AcpiGbl_Use32BitFadtAddresses is TRUE, and: * Address32 non-zero, Address64 zero - Copy/use Address32 * Address32 non-zero == Address64 non-zero - Copy/use Address32 * Address32 non-zero != Address64 non-zero - Warning, copy/use Address32 * * Note: SpaceId is always I/O for 32-bit legacy address fields */ if (Address32) { if (Address64->Address) { if (Address64->Address != (UINT64) Address32) { /* Address mismatch */ ACPI_BIOS_WARNING ((AE_INFO, "32/64X address mismatch in FADT/%s: " "0x%8.8X/0x%8.8X%8.8X, using %u-bit address", Name, Address32, ACPI_FORMAT_UINT64 (Address64->Address), AcpiGbl_Use32BitFadtAddresses ? 32 : 64)); } /* * For each extended field, check for length mismatch * between the legacy length field and the corresponding * 64-bit X length field. * Note: If the legacy length field is > 0xFF bits, ignore * this check. (GPE registers can be larger than the * 64-bit GAS structure can accommodate, 0xFF bits). */ if ((ACPI_MUL_8 (Length) <= ACPI_UINT8_MAX) && (Address64->BitWidth != ACPI_MUL_8 (Length))) { ACPI_BIOS_WARNING ((AE_INFO, "32/64X length mismatch in FADT/%s: %u/%u", Name, ACPI_MUL_8 (Length), Address64->BitWidth)); } } /* * Hardware register access code always uses the 64-bit fields. * So if the 64-bit field is zero or is to be overridden, * initialize it with the 32-bit fields. * Note that when the 32-bit address favor is specified, the * 64-bit fields are always re-initialized so that * AccessSize/BitWidth/BitOffset fields can be correctly * configured to the values to trigger a 32-bit compatible * access mode in the hardware register access code. */ if (!Address64->Address || AcpiGbl_Use32BitFadtAddresses) { AcpiTbInitGenericAddress (Address64, ACPI_ADR_SPACE_SYSTEM_IO, Length, (UINT64) Address32, Name, Flags); } } if (FadtInfoTable[i].Flags & ACPI_FADT_REQUIRED) { /* * Field is required (PM1aEvent, PM1aControl). * Both the address and length must be non-zero. */ if (!Address64->Address || !Length) { ACPI_BIOS_ERROR ((AE_INFO, "Required FADT field %s has zero address and/or length: " "0x%8.8X%8.8X/0x%X", Name, ACPI_FORMAT_UINT64 (Address64->Address), Length)); } } else if (FadtInfoTable[i].Flags & ACPI_FADT_SEPARATE_LENGTH) { /* * Field is optional (PM2Control, GPE0, GPE1) AND has its own * length field. If present, both the address and length must * be valid. */ if ((Address64->Address && !Length) || (!Address64->Address && Length)) { ACPI_BIOS_WARNING ((AE_INFO, "Optional FADT field %s has valid %s but zero %s: " "0x%8.8X%8.8X/0x%X", Name, (Length ? "Length" : "Address"), (Length ? "Address": "Length"), ACPI_FORMAT_UINT64 (Address64->Address), Length)); } } } }
acpi_status acpi_ex_access_region ( union acpi_operand_object *obj_desc, u32 field_datum_byte_offset, acpi_integer *value, u32 function) { acpi_status status; union acpi_operand_object *rgn_desc; acpi_physical_address address; ACPI_FUNCTION_TRACE ("ex_access_region"); /* * Ensure that the region operands are fully evaluated and verify * the validity of the request */ status = acpi_ex_setup_region (obj_desc, field_datum_byte_offset); if (ACPI_FAILURE (status)) { return_ACPI_STATUS (status); } /* * The physical address of this field datum is: * * 1) The base of the region, plus * 2) The base offset of the field, plus * 3) The current offset into the field */ rgn_desc = obj_desc->common_field.region_obj; address = rgn_desc->region.address + obj_desc->common_field.base_byte_offset + field_datum_byte_offset; if ((function & ACPI_IO_MASK) == ACPI_READ) { ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "[READ]")); } else { ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "[WRITE]")); } ACPI_DEBUG_PRINT_RAW ((ACPI_DB_BFIELD, " Region [%s:%X], Width %X, byte_base %X, Offset %X at %8.8X%8.8X\n", acpi_ut_get_region_name (rgn_desc->region.space_id), rgn_desc->region.space_id, obj_desc->common_field.access_byte_width, obj_desc->common_field.base_byte_offset, field_datum_byte_offset, ACPI_FORMAT_UINT64 (address))); /* Invoke the appropriate address_space/op_region handler */ status = acpi_ev_address_space_dispatch (rgn_desc, function, address, ACPI_MUL_8 (obj_desc->common_field.access_byte_width), value); if (ACPI_FAILURE (status)) { if (status == AE_NOT_IMPLEMENTED) { ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Region %s(%X) not implemented\n", acpi_ut_get_region_name (rgn_desc->region.space_id), rgn_desc->region.space_id)); } else if (status == AE_NOT_EXIST) { ACPI_REPORT_ERROR (( "Region %s(%X) has no handler\n", acpi_ut_get_region_name (rgn_desc->region.space_id), rgn_desc->region.space_id)); } } return_ACPI_STATUS (status); }
ACPI_STATUS AeBuildLocalTables ( UINT32 TableCount, AE_TABLE_DESC *TableList) { ACPI_PHYSICAL_ADDRESS DsdtAddress = 0; UINT32 XsdtSize; AE_TABLE_DESC *NextTable; UINT32 NextIndex; ACPI_TABLE_FADT *ExternalFadt = NULL; /* * Update the table count. For the DSDT, it is not put into the XSDT. * For the FADT, this table is already accounted for since we usually * install a local FADT. */ NextTable = TableList; while (NextTable) { if (ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_DSDT) || ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_FADT)) { TableCount--; } NextTable = NextTable->Next; } XsdtSize = (((TableCount + 1) * sizeof (UINT64)) + sizeof (ACPI_TABLE_HEADER)); if (AcpiGbl_LoadTestTables) { XsdtSize += BASE_XSDT_SIZE; } /* Build an XSDT */ LocalXSDT = AcpiOsAllocate (XsdtSize); if (!LocalXSDT) { return (AE_NO_MEMORY); } memset (LocalXSDT, 0, XsdtSize); AeInitializeTableHeader ((void *) LocalXSDT, ACPI_SIG_XSDT, XsdtSize); LocalXSDT->TableOffsetEntry[0] = ACPI_PTR_TO_PHYSADDR (&LocalFADT); NextIndex = 1; /* * Install the user tables. The DSDT must be installed in the FADT. * All other tables are installed directly into the XSDT. * * Note: The tables are loaded in reverse order from the incoming * input, which makes it match the command line order. */ NextTable = TableList; while (NextTable) { /* * Incoming DSDT or FADT are special cases. All other tables are * just immediately installed into the XSDT. */ if (ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_DSDT)) { if (DsdtAddress) { printf ("Already found a DSDT, only one allowed\n"); return (AE_ALREADY_EXISTS); } /* The incoming user table is a DSDT */ DsdtAddress = ACPI_PTR_TO_PHYSADDR (NextTable->Table); DsdtToInstallOverride = NextTable->Table; } else if (ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_FADT)) { ExternalFadt = ACPI_CAST_PTR (ACPI_TABLE_FADT, NextTable->Table); LocalXSDT->TableOffsetEntry[0] = ACPI_PTR_TO_PHYSADDR (NextTable->Table); } else { /* Install the table in the XSDT */ LocalXSDT->TableOffsetEntry[TableCount - NextIndex + 1] = ACPI_PTR_TO_PHYSADDR (NextTable->Table); NextIndex++; } NextTable = NextTable->Next; } /* Install the optional extra local tables */ if (AcpiGbl_LoadTestTables) { LocalXSDT->TableOffsetEntry[NextIndex++] = ACPI_PTR_TO_PHYSADDR (&LocalTEST); LocalXSDT->TableOffsetEntry[NextIndex++] = ACPI_PTR_TO_PHYSADDR (&LocalBADTABLE); /* Install two SSDTs to test multiple table support */ LocalXSDT->TableOffsetEntry[NextIndex++] = ACPI_PTR_TO_PHYSADDR (&Ssdt1Code); LocalXSDT->TableOffsetEntry[NextIndex++] = ACPI_PTR_TO_PHYSADDR (&Ssdt2Code); /* Install the OEM1 table to test LoadTable */ LocalXSDT->TableOffsetEntry[NextIndex++] = ACPI_PTR_TO_PHYSADDR (&Oem1Code); /* Install the OEMx table to test LoadTable */ LocalXSDT->TableOffsetEntry[NextIndex++] = ACPI_PTR_TO_PHYSADDR (&OemxCode); /* Install the ECDT table to test _REG */ LocalXSDT->TableOffsetEntry[NextIndex++] = ACPI_PTR_TO_PHYSADDR (&EcdtCode); /* Install two UEFIs to test multiple table support */ LocalXSDT->TableOffsetEntry[NextIndex++] = ACPI_PTR_TO_PHYSADDR (&Uefi1Code); LocalXSDT->TableOffsetEntry[NextIndex++] = ACPI_PTR_TO_PHYSADDR (&Uefi2Code); } /* Build an RSDP. Contains a valid XSDT only, no RSDT */ memset (&LocalRSDP, 0, sizeof (ACPI_TABLE_RSDP)); ACPI_MAKE_RSDP_SIG (LocalRSDP.Signature); memcpy (LocalRSDP.OemId, "Intel", 6); LocalRSDP.Revision = 2; LocalRSDP.XsdtPhysicalAddress = ACPI_PTR_TO_PHYSADDR (LocalXSDT); LocalRSDP.Length = sizeof (ACPI_TABLE_RSDP); /* Set checksums for both XSDT and RSDP */ LocalXSDT->Header.Checksum = 0; LocalXSDT->Header.Checksum = (UINT8) -AcpiTbChecksum ( (void *) LocalXSDT, LocalXSDT->Header.Length); LocalRSDP.Checksum = 0; LocalRSDP.Checksum = (UINT8) -AcpiTbChecksum ( (void *) &LocalRSDP, ACPI_RSDP_CHECKSUM_LENGTH); if (!DsdtAddress) { /* Use the local DSDT because incoming table(s) are all SSDT(s) */ DsdtAddress = ACPI_PTR_TO_PHYSADDR (LocalDsdtCode); DsdtToInstallOverride = ACPI_CAST_PTR (ACPI_TABLE_HEADER, LocalDsdtCode); } /* * Build an FADT. There are three options for the FADT: * 1) Incoming external FADT specified on the command line * 2) A "hardware reduced" local FADT * 3) A fully featured local FADT */ memset (&LocalFADT, 0, sizeof (ACPI_TABLE_FADT)); if (ExternalFadt) { /* * Use the external FADT, but we must update the DSDT/FACS addresses * as well as the checksum */ ExternalFadt->Dsdt = (UINT32) DsdtAddress; if (!AcpiGbl_ReducedHardware) { ExternalFadt->Facs = ACPI_PTR_TO_PHYSADDR (&LocalFACS); } /* Is there room in the FADT for the XDsdst and XFacs 64-bit pointers? */ if (ExternalFadt->Header.Length > ACPI_PTR_DIFF (&ExternalFadt->XDsdt, ExternalFadt)) { ExternalFadt->XDsdt = DsdtAddress; if (!AcpiGbl_ReducedHardware) { ExternalFadt->XFacs = ACPI_PTR_TO_PHYSADDR (&LocalFACS); } } /* Complete the FADT with the checksum */ ExternalFadt->Header.Checksum = 0; ExternalFadt->Header.Checksum = (UINT8) -AcpiTbChecksum ( (void *) ExternalFadt, ExternalFadt->Header.Length); } else if (AcpiGbl_UseHwReducedFadt) { memcpy (&LocalFADT, HwReducedFadtCode, ACPI_FADT_V5_SIZE); LocalFADT.Dsdt = (UINT32) DsdtAddress; LocalFADT.XDsdt = DsdtAddress; LocalFADT.Header.Checksum = 0; LocalFADT.Header.Checksum = (UINT8) -AcpiTbChecksum ( (void *) &LocalFADT, LocalFADT.Header.Length); } else { /* * Build a local FADT so we can test the hardware/event init */ LocalFADT.Header.Revision = 5; AeInitializeTableHeader ((void *) &LocalFADT, ACPI_SIG_FADT, sizeof (ACPI_TABLE_FADT)); /* Setup FADT header and DSDT/FACS addresses */ LocalFADT.Dsdt = 0; LocalFADT.Facs = 0; LocalFADT.XDsdt = DsdtAddress; LocalFADT.XFacs = ACPI_PTR_TO_PHYSADDR (&LocalFACS); /* Miscellaneous FADT fields */ LocalFADT.Gpe0BlockLength = 0x08; LocalFADT.Gpe0Block = 0x00001234; LocalFADT.Gpe1BlockLength = 0x80; LocalFADT.Gpe1Block = 0x00005678; LocalFADT.Gpe1Base = 100; LocalFADT.Pm1EventLength = 4; LocalFADT.Pm1aEventBlock = 0x00001aaa; LocalFADT.Pm1bEventBlock = 0x00001bbb; LocalFADT.Pm1ControlLength = 2; LocalFADT.Pm1aControlBlock = 0xB0; LocalFADT.PmTimerLength = 4; LocalFADT.PmTimerBlock = 0xA0; LocalFADT.Pm2ControlBlock = 0xC0; LocalFADT.Pm2ControlLength = 1; /* Setup one example X-64 GAS field */ LocalFADT.XPm1bEventBlock.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO; LocalFADT.XPm1bEventBlock.Address = LocalFADT.Pm1bEventBlock; LocalFADT.XPm1bEventBlock.BitWidth = (UINT8) ACPI_MUL_8 (LocalFADT.Pm1EventLength); /* Complete the FADT with the checksum */ LocalFADT.Header.Checksum = 0; LocalFADT.Header.Checksum = (UINT8) -AcpiTbChecksum ( (void *) &LocalFADT, LocalFADT.Header.Length); } /* Build a FACS */ memset (&LocalFACS, 0, sizeof (ACPI_TABLE_FACS)); ACPI_MOVE_NAME (LocalFACS.Signature, ACPI_SIG_FACS); LocalFACS.Length = sizeof (ACPI_TABLE_FACS); LocalFACS.GlobalLock = 0x11AA0011; /* Build the optional local tables */ if (AcpiGbl_LoadTestTables) { /* * Build a fake table [TEST] so that we make sure that the * ACPICA core ignores it */ memset (&LocalTEST, 0, sizeof (ACPI_TABLE_HEADER)); ACPI_MOVE_NAME (LocalTEST.Signature, "TEST"); LocalTEST.Revision = 1; LocalTEST.Length = sizeof (ACPI_TABLE_HEADER); LocalTEST.Checksum = (UINT8) -AcpiTbChecksum ( (void *) &LocalTEST, LocalTEST.Length); /* * Build a fake table with a bad signature [BAD!] so that we make * sure that the ACPICA core ignores it */ memset (&LocalBADTABLE, 0, sizeof (ACPI_TABLE_HEADER)); ACPI_MOVE_NAME (LocalBADTABLE.Signature, "BAD!"); LocalBADTABLE.Revision = 1; LocalBADTABLE.Length = sizeof (ACPI_TABLE_HEADER); LocalBADTABLE.Checksum = (UINT8) -AcpiTbChecksum ( (void *) &LocalBADTABLE, LocalBADTABLE.Length); } return (AE_OK); }
void AcpiDmCheckResourceReference ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState) { ACPI_STATUS Status; ACPI_PARSE_OBJECT *BufferNameOp; ACPI_PARSE_OBJECT *IndexOp; ACPI_NAMESPACE_NODE *BufferNode; ACPI_NAMESPACE_NODE *ResourceNode; const ACPI_OPCODE_INFO *OpInfo; UINT32 BitIndex; /* We are only interested in the CreateXxxxField opcodes */ OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode); if (OpInfo->Type != AML_TYPE_CREATE_FIELD) { return; } /* Get the buffer term operand */ BufferNameOp = AcpiPsGetDepthNext (NULL, Op); /* Must be a named buffer, not an arg or local or method call */ if (BufferNameOp->Common.AmlOpcode != AML_INT_NAMEPATH_OP) { return; } /* Get the Index term, must be an integer constant to convert */ IndexOp = BufferNameOp->Common.Next; /* Major cheat: The Node field is also used for the Tag ptr. Clear it now */ IndexOp->Common.Node = NULL; OpInfo = AcpiPsGetOpcodeInfo (IndexOp->Common.AmlOpcode); if (OpInfo->ObjectType != ACPI_TYPE_INTEGER) { return; } /* Get the bit offset of the descriptor within the buffer */ if ((Op->Common.AmlOpcode == AML_CREATE_BIT_FIELD_OP) || (Op->Common.AmlOpcode == AML_CREATE_FIELD_OP)) { /* Index operand is a bit offset */ BitIndex = (UINT32) IndexOp->Common.Value.Integer; } else { /* Index operand is a byte offset, convert to bits */ BitIndex = (UINT32) ACPI_MUL_8 (IndexOp->Common.Value.Integer); } /* Lookup the buffer in the namespace */ Status = AcpiNsLookup (WalkState->ScopeInfo, BufferNameOp->Common.Value.String, ACPI_TYPE_BUFFER, ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT, WalkState, &BufferNode); if (ACPI_FAILURE (Status)) { return; } /* Validate object type, we must have a buffer */ if (BufferNode->Type != ACPI_TYPE_BUFFER) { return; } /* Find the resource descriptor node corresponding to the index */ ResourceNode = AcpiDmGetResourceNode (BufferNode, BitIndex); if (!ResourceNode) { return; } /* Translate the Index to a resource tag pathname */ AcpiGetTagPathname (IndexOp, BufferNode, ResourceNode, BitIndex); }
void AcpiDbDisplayGpes ( void) { ACPI_GPE_BLOCK_INFO *GpeBlock; ACPI_GPE_XRUPT_INFO *GpeXruptInfo; ACPI_GPE_EVENT_INFO *GpeEventInfo; ACPI_GPE_REGISTER_INFO *GpeRegisterInfo; UINT32 GpeIndex; UINT32 Block = 0; UINT32 i; UINT32 j; char Buffer[80]; ACPI_BUFFER RetBuf; ACPI_STATUS Status; RetBuf.Length = sizeof (Buffer); RetBuf.Pointer = Buffer; Block = 0; /* Walk the GPE lists */ GpeXruptInfo = AcpiGbl_GpeXruptListHead; while (GpeXruptInfo) { GpeBlock = GpeXruptInfo->GpeBlockListHead; while (GpeBlock) { Status = AcpiGetName (GpeBlock->Node, ACPI_FULL_PATHNAME, &RetBuf); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("Could not convert name to pathname\n"); } AcpiOsPrintf ("\nBlock %d - Info %p DeviceNode %p [%s]\n", Block, GpeBlock, GpeBlock->Node, Buffer); AcpiOsPrintf (" Registers: %u (%u GPEs)\n", GpeBlock->RegisterCount, ACPI_MUL_8 (GpeBlock->RegisterCount)); AcpiOsPrintf (" GPE range: 0x%X to 0x%X\n", GpeBlock->BlockBaseNumber, GpeBlock->BlockBaseNumber + (GpeBlock->RegisterCount * 8) -1); AcpiOsPrintf ( " RegisterInfo: %p Status %8.8X%8.8X Enable %8.8X%8.8X\n", GpeBlock->RegisterInfo, ACPI_FORMAT_UINT64 (GpeBlock->RegisterInfo->StatusAddress.Address), ACPI_FORMAT_UINT64 (GpeBlock->RegisterInfo->EnableAddress.Address)); AcpiOsPrintf (" EventInfo: %p\n", GpeBlock->EventInfo); /* Examine each GPE Register within the block */ for (i = 0; i < GpeBlock->RegisterCount; i++) { GpeRegisterInfo = &GpeBlock->RegisterInfo[i]; AcpiOsPrintf ( " Reg %u: WakeEnable %2.2X, RunEnable %2.2X Status %8.8X%8.8X Enable %8.8X%8.8X\n", i, GpeRegisterInfo->EnableForWake, GpeRegisterInfo->EnableForRun, ACPI_FORMAT_UINT64 (GpeRegisterInfo->StatusAddress.Address), ACPI_FORMAT_UINT64 (GpeRegisterInfo->EnableAddress.Address)); /* Now look at the individual GPEs in this byte register */ for (j = 0; j < ACPI_GPE_REGISTER_WIDTH; j++) { GpeIndex = (i * ACPI_GPE_REGISTER_WIDTH) + j; GpeEventInfo = &GpeBlock->EventInfo[GpeIndex]; if (!(GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK)) { /* This GPE is not used (no method or handler) */ continue; } AcpiOsPrintf ( " GPE %.3X: %p Flags %2.2X: ", GpeBlock->BlockBaseNumber + GpeIndex, GpeEventInfo, GpeEventInfo->Flags); if (GpeEventInfo->Flags & ACPI_GPE_LEVEL_TRIGGERED) { AcpiOsPrintf ("Level, "); } else { AcpiOsPrintf ("Edge, "); } switch (GpeEventInfo->Flags & ACPI_GPE_TYPE_MASK) { case ACPI_GPE_TYPE_WAKE: AcpiOsPrintf ("WakeOnly: "); break; case ACPI_GPE_TYPE_RUNTIME: AcpiOsPrintf (" RunOnly: "); break; case ACPI_GPE_TYPE_WAKE_RUN: AcpiOsPrintf (" WakeRun: "); break; default: AcpiOsPrintf (" NotUsed: "); break; } if (GpeEventInfo->Flags & ACPI_GPE_WAKE_ENABLED) { AcpiOsPrintf ("[Wake 1 "); } else { AcpiOsPrintf ("[Wake 0 "); } if (GpeEventInfo->Flags & ACPI_GPE_RUN_ENABLED) { AcpiOsPrintf ("Run 1], "); } else { AcpiOsPrintf ("Run 0], "); } switch (GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK) { case ACPI_GPE_DISPATCH_NOT_USED: AcpiOsPrintf ("NotUsed"); break; case ACPI_GPE_DISPATCH_HANDLER: AcpiOsPrintf ("Handler"); break; case ACPI_GPE_DISPATCH_METHOD: AcpiOsPrintf ("Method"); break; default: AcpiOsPrintf ("UNKNOWN: %X", GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK); break; } AcpiOsPrintf ("\n"); } } Block++; GpeBlock = GpeBlock->Next; } GpeXruptInfo = GpeXruptInfo->Next; } }
acpi_status acpi_ex_prep_common_field_object ( union acpi_operand_object *obj_desc, u8 field_flags, u8 field_attribute, u32 field_bit_position, u32 field_bit_length) { u32 access_bit_width; u32 byte_alignment; u32 nearest_byte_address; ACPI_FUNCTION_TRACE ("ex_prep_common_field_object"); /* * Note: the structure being initialized is the * ACPI_COMMON_FIELD_INFO; No structure fields outside of the common * area are initialized by this procedure. */ obj_desc->common_field.field_flags = field_flags; obj_desc->common_field.attribute = field_attribute; obj_desc->common_field.bit_length = field_bit_length; /* * Decode the access type so we can compute offsets. The access type gives * two pieces of information - the width of each field access and the * necessary byte_alignment (address granularity) of the access. * * For any_acc, the access_bit_width is the largest width that is both * necessary and possible in an attempt to access the whole field in one * I/O operation. However, for any_acc, the byte_alignment is always one * byte. * * For all Buffer Fields, the byte_alignment is always one byte. * * For all other access types (Byte, Word, Dword, Qword), the Bitwidth is * the same (equivalent) as the byte_alignment. */ access_bit_width = acpi_ex_decode_field_access (obj_desc, field_flags, &byte_alignment); if (!access_bit_width) { return_ACPI_STATUS (AE_AML_OPERAND_VALUE); } /* Setup width (access granularity) fields */ obj_desc->common_field.access_byte_width = (u8) ACPI_DIV_8 (access_bit_width); /* 1, 2, 4, 8 */ /* * base_byte_offset is the address of the start of the field within the * region. It is the byte address of the first *datum* (field-width data * unit) of the field. (i.e., the first datum that contains at least the * first *bit* of the field.) * * Note: byte_alignment is always either equal to the access_bit_width or 8 * (Byte access), and it defines the addressing granularity of the parent * region or buffer. */ nearest_byte_address = ACPI_ROUND_BITS_DOWN_TO_BYTES (field_bit_position); obj_desc->common_field.base_byte_offset = ACPI_ROUND_DOWN (nearest_byte_address, byte_alignment); /* * start_field_bit_offset is the offset of the first bit of the field within * a field datum. */ obj_desc->common_field.start_field_bit_offset = (u8) (field_bit_position - ACPI_MUL_8 (obj_desc->common_field.base_byte_offset)); /* * Valid bits -- the number of bits that compose a partial datum, * 1) At the end of the field within the region (arbitrary starting bit * offset) * 2) At the end of a buffer used to contain the field (starting offset * always zero) */ obj_desc->common_field.end_field_valid_bits = (u8) ((obj_desc->common_field.start_field_bit_offset + field_bit_length) % access_bit_width); /* start_buffer_bit_offset always = 0 */ obj_desc->common_field.end_buffer_valid_bits = (u8) (field_bit_length % access_bit_width); /* * datum_valid_bits is the number of valid field bits in the first * field datum. */ obj_desc->common_field.datum_valid_bits = (u8) (access_bit_width - obj_desc->common_field.start_field_bit_offset); /* * Does the entire field fit within a single field access element? (datum) * (i.e., without crossing a datum boundary) */ if ((obj_desc->common_field.start_field_bit_offset + field_bit_length) <= (u16) access_bit_width) { obj_desc->common.flags |= AOPOBJ_SINGLE_DATUM; } return_ACPI_STATUS (AE_OK); }
ACPI_STATUS AcpiExAccessRegion ( ACPI_OPERAND_OBJECT *ObjDesc, UINT32 FieldDatumByteOffset, UINT64 *Value, UINT32 Function) { ACPI_STATUS Status; ACPI_OPERAND_OBJECT *RgnDesc; UINT32 RegionOffset; ACPI_FUNCTION_TRACE (ExAccessRegion); /* * Ensure that the region operands are fully evaluated and verify * the validity of the request */ Status = AcpiExSetupRegion (ObjDesc, FieldDatumByteOffset); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* * The physical address of this field datum is: * * 1) The base of the region, plus * 2) The base offset of the field, plus * 3) The current offset into the field */ RgnDesc = ObjDesc->CommonField.RegionObj; RegionOffset = ObjDesc->CommonField.BaseByteOffset + FieldDatumByteOffset; if ((Function & ACPI_IO_MASK) == ACPI_READ) { ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "[READ]")); } else { ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "[WRITE]")); } ACPI_DEBUG_PRINT_RAW ((ACPI_DB_BFIELD, " Region [%s:%X], Width %X, ByteBase %X, Offset %X at %8.8X%8.8X\n", AcpiUtGetRegionName (RgnDesc->Region.SpaceId), RgnDesc->Region.SpaceId, ObjDesc->CommonField.AccessByteWidth, ObjDesc->CommonField.BaseByteOffset, FieldDatumByteOffset, ACPI_FORMAT_UINT64 (RgnDesc->Region.Address + RegionOffset))); /* Invoke the appropriate AddressSpace/OpRegion handler */ Status = AcpiEvAddressSpaceDispatch (RgnDesc, ObjDesc, Function, RegionOffset, ACPI_MUL_8 (ObjDesc->CommonField.AccessByteWidth), Value); if (ACPI_FAILURE (Status)) { if (Status == AE_NOT_IMPLEMENTED) { ACPI_ERROR ((AE_INFO, "Region %s (ID=%u) not implemented", AcpiUtGetRegionName (RgnDesc->Region.SpaceId), RgnDesc->Region.SpaceId)); } else if (Status == AE_NOT_EXIST) { ACPI_ERROR ((AE_INFO, "Region %s (ID=%u) has no handler", AcpiUtGetRegionName (RgnDesc->Region.SpaceId), RgnDesc->Region.SpaceId)); } } return_ACPI_STATUS (Status); }
static void acpi_tb_validate_fadt(void) { char *name; struct acpi_generic_address *address64; u8 length; u32 i; /* * Check for FACS and DSDT address mismatches. An address mismatch between * the 32-bit and 64-bit address fields (FIRMWARE_CTRL/X_FIRMWARE_CTRL and * DSDT/X_DSDT) would indicate the presence of two FACS or two DSDT tables. */ if (acpi_gbl_FADT.facs && (acpi_gbl_FADT.Xfacs != (u64)acpi_gbl_FADT.facs)) { ACPI_BIOS_WARNING((AE_INFO, "32/64X FACS address mismatch in FADT - " "0x%8.8X/0x%8.8X%8.8X, using 32", acpi_gbl_FADT.facs, ACPI_FORMAT_UINT64(acpi_gbl_FADT.Xfacs))); acpi_gbl_FADT.Xfacs = (u64)acpi_gbl_FADT.facs; } if (acpi_gbl_FADT.dsdt && (acpi_gbl_FADT.Xdsdt != (u64)acpi_gbl_FADT.dsdt)) { ACPI_BIOS_WARNING((AE_INFO, "32/64X DSDT address mismatch in FADT - " "0x%8.8X/0x%8.8X%8.8X, using 32", acpi_gbl_FADT.dsdt, ACPI_FORMAT_UINT64(acpi_gbl_FADT.Xdsdt))); acpi_gbl_FADT.Xdsdt = (u64)acpi_gbl_FADT.dsdt; } /* If Hardware Reduced flag is set, we are all done */ if (acpi_gbl_reduced_hardware) { return; } /* Examine all of the 64-bit extended address fields (X fields) */ for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++) { /* * Generate pointer to the 64-bit address, get the register * length (width) and the register name */ address64 = ACPI_ADD_PTR(struct acpi_generic_address, &acpi_gbl_FADT, fadt_info_table[i].address64); length = *ACPI_ADD_PTR(u8, &acpi_gbl_FADT, fadt_info_table[i].length); name = fadt_info_table[i].name; /* * For each extended field, check for length mismatch between the * legacy length field and the corresponding 64-bit X length field. */ if (address64->address && (address64->bit_width != ACPI_MUL_8(length))) { ACPI_BIOS_WARNING((AE_INFO, "32/64X length mismatch in FADT/%s: %u/%u", name, ACPI_MUL_8(length), address64->bit_width)); } if (fadt_info_table[i].type & ACPI_FADT_REQUIRED) { /* * Field is required (Pm1a_event, Pm1a_control, pm_timer). * Both the address and length must be non-zero. */ if (!address64->address || !length) { ACPI_BIOS_ERROR((AE_INFO, "Required FADT field %s has zero address and/or length: " "0x%8.8X%8.8X/0x%X", name, ACPI_FORMAT_UINT64(address64-> address), length)); } } else if (fadt_info_table[i].type & ACPI_FADT_SEPARATE_LENGTH) { /* * Field is optional (Pm2_control, GPE0, GPE1) AND has its own * length field. If present, both the address and length must * be valid. */ if ((address64->address && !length) || (!address64->address && length)) { ACPI_BIOS_WARNING((AE_INFO, "Optional FADT field %s has zero address or length: " "0x%8.8X%8.8X/0x%X", name, ACPI_FORMAT_UINT64 (address64->address), length)); } } } }
ACPI_STATUS AeBuildLocalTables ( UINT32 TableCount, AE_TABLE_DESC *TableList) { ACPI_PHYSICAL_ADDRESS DsdtAddress = 0; UINT32 XsdtSize; AE_TABLE_DESC *NextTable; UINT32 NextIndex; ACPI_TABLE_FADT *ExternalFadt = NULL; /* * Update the table count. For DSDT, it is not put into the XSDT. For * FADT, this is already accounted for since we usually install a * local FADT. */ NextTable = TableList; while (NextTable) { if (ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_DSDT) || ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_FADT)) { TableCount--; } NextTable = NextTable->Next; } XsdtSize = BASE_XSDT_SIZE + (TableCount * sizeof (UINT64)); /* Build an XSDT */ LocalXSDT = AcpiOsAllocate (XsdtSize); if (!LocalXSDT) { return (AE_NO_MEMORY); } ACPI_MEMSET (LocalXSDT, 0, XsdtSize); ACPI_STRNCPY (LocalXSDT->Header.Signature, ACPI_SIG_XSDT, 4); LocalXSDT->Header.Length = XsdtSize; LocalXSDT->Header.Revision = 1; LocalXSDT->TableOffsetEntry[0] = ACPI_PTR_TO_PHYSADDR (&LocalTEST); LocalXSDT->TableOffsetEntry[1] = ACPI_PTR_TO_PHYSADDR (&LocalBADTABLE); LocalXSDT->TableOffsetEntry[2] = ACPI_PTR_TO_PHYSADDR (&LocalFADT); /* Install two SSDTs to test multiple table support */ LocalXSDT->TableOffsetEntry[3] = ACPI_PTR_TO_PHYSADDR (&Ssdt1Code); LocalXSDT->TableOffsetEntry[4] = ACPI_PTR_TO_PHYSADDR (&Ssdt2Code); /* Install the OEM1 table to test LoadTable */ LocalXSDT->TableOffsetEntry[5] = ACPI_PTR_TO_PHYSADDR (&Oem1Code); /* Install the OEMx table to test LoadTable */ LocalXSDT->TableOffsetEntry[6] = ACPI_PTR_TO_PHYSADDR (&OemxCode); /* Install the ECDT table to test _REG */ LocalXSDT->TableOffsetEntry[7] = ACPI_PTR_TO_PHYSADDR (&EcdtCode); /* * Install the user tables. The DSDT must be installed in the FADT. * All other tables are installed directly into the XSDT. */ NextIndex = BASE_XSDT_TABLES; NextTable = TableList; while (NextTable) { /* * Incoming DSDT or FADT are special cases. All other tables are * just immediately installed into the XSDT. */ if (ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_DSDT)) { if (DsdtAddress) { printf ("Already found a DSDT, only one allowed\n"); return (AE_ALREADY_EXISTS); } /* The incoming user table is a DSDT */ DsdtAddress = ACPI_PTR_TO_PHYSADDR (&DsdtCode); DsdtToInstallOverride = NextTable->Table; } else if (ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_FADT)) { ExternalFadt = ACPI_CAST_PTR (ACPI_TABLE_FADT, NextTable->Table); LocalXSDT->TableOffsetEntry[2] = ACPI_PTR_TO_PHYSADDR (NextTable->Table); } else { /* Install the table in the XSDT */ LocalXSDT->TableOffsetEntry[NextIndex] = ACPI_PTR_TO_PHYSADDR (NextTable->Table); NextIndex++; } NextTable = NextTable->Next; } /* Build an RSDP */ ACPI_MEMSET (&LocalRSDP, 0, sizeof (ACPI_TABLE_RSDP)); ACPI_MEMCPY (LocalRSDP.Signature, ACPI_SIG_RSDP, 8); ACPI_MEMCPY (LocalRSDP.OemId, "I_TEST", 6); LocalRSDP.Revision = 2; LocalRSDP.XsdtPhysicalAddress = ACPI_PTR_TO_PHYSADDR (LocalXSDT); LocalRSDP.Length = sizeof (ACPI_TABLE_XSDT); /* Set checksums for both XSDT and RSDP */ LocalXSDT->Header.Checksum = (UINT8) -AcpiTbChecksum ( (void *) LocalXSDT, LocalXSDT->Header.Length); LocalRSDP.Checksum = (UINT8) -AcpiTbChecksum ( (void *) &LocalRSDP, ACPI_RSDP_CHECKSUM_LENGTH); if (!DsdtAddress) { /* Use the local DSDT because incoming table(s) are all SSDT(s) */ DsdtAddress = ACPI_PTR_TO_PHYSADDR (LocalDsdtCode); DsdtToInstallOverride = ACPI_CAST_PTR (ACPI_TABLE_HEADER, LocalDsdtCode); } if (ExternalFadt) { /* * Use the external FADT, but we must update the DSDT/FACS addresses * as well as the checksum */ ExternalFadt->Dsdt = DsdtAddress; if (!AcpiGbl_ReducedHardware) { ExternalFadt->Facs = ACPI_PTR_TO_PHYSADDR (&LocalFACS); } if (ExternalFadt->Header.Length > ACPI_PTR_DIFF (&ExternalFadt->XDsdt, ExternalFadt)) { ExternalFadt->XDsdt = DsdtAddress; if (!AcpiGbl_ReducedHardware) { ExternalFadt->XFacs = ACPI_PTR_TO_PHYSADDR (&LocalFACS); } } /* Complete the FADT with the checksum */ ExternalFadt->Header.Checksum = 0; ExternalFadt->Header.Checksum = (UINT8) -AcpiTbChecksum ( (void *) ExternalFadt, ExternalFadt->Header.Length); } else if (AcpiGbl_UseHwReducedFadt) { ACPI_MEMCPY (&LocalFADT, HwReducedFadtCode, sizeof (ACPI_TABLE_FADT)); LocalFADT.Dsdt = DsdtAddress; LocalFADT.XDsdt = DsdtAddress; LocalFADT.Header.Checksum = 0; LocalFADT.Header.Checksum = (UINT8) -AcpiTbChecksum ( (void *) &LocalFADT, LocalFADT.Header.Length); } else { /* * Build a local FADT so we can test the hardware/event init */ ACPI_MEMSET (&LocalFADT, 0, sizeof (ACPI_TABLE_FADT)); ACPI_STRNCPY (LocalFADT.Header.Signature, ACPI_SIG_FADT, 4); /* Setup FADT header and DSDT/FACS addresses */ LocalFADT.Dsdt = 0; LocalFADT.Facs = 0; LocalFADT.XDsdt = DsdtAddress; LocalFADT.XFacs = ACPI_PTR_TO_PHYSADDR (&LocalFACS); LocalFADT.Header.Revision = 3; LocalFADT.Header.Length = sizeof (ACPI_TABLE_FADT); /* Miscellaneous FADT fields */ LocalFADT.Gpe0BlockLength = 16; LocalFADT.Gpe0Block = 0x00001234; LocalFADT.Gpe1BlockLength = 6; LocalFADT.Gpe1Block = 0x00005678; LocalFADT.Gpe1Base = 96; LocalFADT.Pm1EventLength = 4; LocalFADT.Pm1aEventBlock = 0x00001aaa; LocalFADT.Pm1bEventBlock = 0x00001bbb; LocalFADT.Pm1ControlLength = 2; LocalFADT.Pm1aControlBlock = 0xB0; LocalFADT.PmTimerLength = 4; LocalFADT.PmTimerBlock = 0xA0; LocalFADT.Pm2ControlBlock = 0xC0; LocalFADT.Pm2ControlLength = 1; /* Setup one example X-64 field */ LocalFADT.XPm1bEventBlock.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO; LocalFADT.XPm1bEventBlock.Address = LocalFADT.Pm1bEventBlock; LocalFADT.XPm1bEventBlock.BitWidth = (UINT8) ACPI_MUL_8 (LocalFADT.Pm1EventLength); /* Complete the FADT with the checksum */ LocalFADT.Header.Checksum = 0; LocalFADT.Header.Checksum = (UINT8) -AcpiTbChecksum ( (void *) &LocalFADT, LocalFADT.Header.Length); } /* Build a FACS */ ACPI_MEMSET (&LocalFACS, 0, sizeof (ACPI_TABLE_FACS)); ACPI_STRNCPY (LocalFACS.Signature, ACPI_SIG_FACS, 4); LocalFACS.Length = sizeof (ACPI_TABLE_FACS); LocalFACS.GlobalLock = 0x11AA0011; /* * Build a fake table [TEST] so that we make sure that the * ACPICA core ignores it */ ACPI_MEMSET (&LocalTEST, 0, sizeof (ACPI_TABLE_HEADER)); ACPI_STRNCPY (LocalTEST.Signature, "TEST", 4); LocalTEST.Revision = 1; LocalTEST.Length = sizeof (ACPI_TABLE_HEADER); LocalTEST.Checksum = (UINT8) -AcpiTbChecksum ( (void *) &LocalTEST, LocalTEST.Length); /* * Build a fake table with a bad signature [BAD!] so that we make * sure that the ACPICA core ignores it */ ACPI_MEMSET (&LocalBADTABLE, 0, sizeof (ACPI_TABLE_HEADER)); ACPI_STRNCPY (LocalBADTABLE.Signature, "BAD!", 4); LocalBADTABLE.Revision = 1; LocalBADTABLE.Length = sizeof (ACPI_TABLE_HEADER); LocalBADTABLE.Checksum = (UINT8) -AcpiTbChecksum ( (void *) &LocalBADTABLE, LocalBADTABLE.Length); return (AE_OK); }