int tclcommand_inter_parse_harmonic_dumbbell(Tcl_Interp *interp, int bond_type, int argc, char **argv)
{
  double k1, k2, r, r_cut;

  if (argc < 4) {
    Tcl_AppendResult(interp, "harmonic dumbbell needs at least 3 parameters: "
		     "<k1> <k2> <r> [<r_cut>]", (char *) NULL);
    return TCL_ERROR;
  }

  if ((! ARG_IS_D(1, k1)) || (! ARG_IS_D(2, k2)) || (! ARG_IS_D(3, r))) {
    Tcl_AppendResult(interp, "harmonic dumbbell needs at least 3 DOUBLE parameters: "
		     "<k1> <k2> <r> [<r_cut>]", (char *) NULL);
    return TCL_ERROR;
  }

  if (argc < 5) {
    r_cut = -1.0;
  } else if (! ARG_IS_D(4, r_cut))  {
    Tcl_AppendResult(interp, "<r_cut> should be DOUBLE", (char *) NULL);
    return TCL_ERROR;
  }

  CHECK_VALUE(harmonic_dumbbell_set_params(bond_type, k1, k2, r, r_cut), "bond type must be nonnegative");
}
예제 #2
0
int tclcommand_inter_parse_cos2(Tcl_Interp * interp,
		       int part_type_a, int part_type_b,
		       int argc, char ** argv)
{
  /* parameters needed for cos2 */
  double eps, offset, w;
  int change;

  /* get cos2 interaction type */
  if (argc < 4) {
    Tcl_AppendResult(interp, "cos2 needs 3 parameters: "
		     "<cos2_eps> <cos2_offset> <cos2_w>",
		     (char *) NULL);
    return 0;
  }

  /* copy cos2 parameters */
  if ((! ARG_IS_D(1, eps))    ||
      (! ARG_IS_D(2, offset)) ||
      (! ARG_IS_D(3, w))) {
    Tcl_AppendResult(interp, "cos2 needs 3 DOUBLE parameters: "
		     "<cos2_eps> <cos2_offset> <cos2_w>",
		     (char *) NULL);
    return 0;
  }
  change = 4;

  if (cos2_set_params(part_type_a, part_type_b,
			       eps, offset, w
			       ) == ES_ERROR) {
    Tcl_AppendResult(interp, "particle types must be non-negative", (char *) NULL);
    return 0;
  }
  return change;
}
예제 #3
0
int tclcommand_inter_parse_hat(Tcl_Interp * interp,
				int part_type_a, int part_type_b,
				int argc, char ** argv)
{
  /* parameters needed for hat */
  double Fmax, r;
  int change;

  /* get hat interaction type */
  if (argc < 3) {
    Tcl_AppendResult(interp, "hat potential needs 2 parameters: "
		     "<hat_Fmax> <hat_r>",
		     (char *) NULL);
    return 0;
  }

  /* copy soft-sphere parameters */
  if ((! ARG_IS_D(1, Fmax))     ||
      (! ARG_IS_D(2, r))  ) {
    Tcl_AppendResult(interp, "hat potential needs 2 parameters: "
		     "<hat_Fmax> <hat_r>",
		     (char *) NULL);
    return 0;
  }
  change = 3;
	
  
  Tcl_ResetResult(interp);
  if (hat_set_params(part_type_a, part_type_b, Fmax, r) == ES_ERROR) {
    Tcl_AppendResult(interp, "particle types must be non-negative", (char *) NULL);
    return 0;
  }
  return change;
}
예제 #4
0
int tclcommand_inter_parse_gaussian(Tcl_Interp * interp,
                                    int part_type_a, int part_type_b,
                                    int argc, char ** argv)
{
    /* parameters needed for Gaussian */
    double eps, sig, cut;

    /* copy parameters */
    if ((argc < 4) ||
            (! ARG_IS_D(1, eps)) ||
            (! ARG_IS_D(2, sig)) ||
            (! ARG_IS_D(3, cut))) {
        Tcl_AppendResult(interp, "Gaussian potential needs 3 parameters: "
                         "<epsilon> <sigma> <cut>", (char *) NULL);
        return 0;
    }

    Tcl_ResetResult(interp);
    if (gaussian_set_params(part_type_a, part_type_b,
                            eps, sig, cut) == ES_ERROR) {
        Tcl_AppendResult(interp, "particle types must be non-negative", (char *) NULL);
        return 0;
    }
    /* return number of used parameters */
    return 4;
}
예제 #5
0
int tclcommand_thermostat_parse_npt_isotropic(Tcl_Interp *interp, int argc, char **argv) 
{
  double temp, gamma0, gammav;
  /* check number of arguments */
  if (argc < 5) {
    Tcl_AppendResult(interp, "wrong # args:  should be \n\"",
		     argv[0]," set ",argv[1]," <temp> <gamma0> <gammav>\"", (char *)NULL);
    return (TCL_ERROR);
  }
  /* check argument types */
  if ( !ARG_IS_D(2, temp) || !ARG_IS_D(3, gamma0) || !ARG_IS_D(4, gammav) ) {
    Tcl_AppendResult(interp, argv[0]," ",argv[1]," needs four DOUBLES", (char *)NULL);
    return (TCL_ERROR);
  }
  /* broadcast parameters */
  temperature = temp;
  nptiso_gamma0 = gamma0;
  nptiso_gammav = gammav;

  thermo_switch = ( thermo_switch | THERMO_NPT_ISO );
  mpi_bcast_parameter(FIELD_THERMO_SWITCH);
  mpi_bcast_parameter(FIELD_TEMPERATURE);
  mpi_bcast_parameter(FIELD_NPTISO_G0);
  mpi_bcast_parameter(FIELD_NPTISO_GV);
  return (TCL_OK);
}
예제 #6
0
/// parse parameters for the angle potential
int tclcommand_inter_parse_angle(Tcl_Interp *interp, int bond_type, int argc, char **argv)
{
  double bend, phi0;

  /* the optional parameter phi0 is due to backwards compatibility and is set to PI if not given */
  if (argc != 2 && argc != 3) {
    Tcl_AppendResult(interp, "angle needs 1 or 2 parameters: "
		     "<bend> [<phi0>]", (char *) NULL);
    return (TCL_ERROR);
  }

  if (! ARG_IS_D(1, bend)) {
    Tcl_AppendResult(interp, "angle needs a DOUBLE parameter: "
		     "<bend> ", (char *) NULL);
    return TCL_ERROR;
  }

  /* special treatment of the optional parameter phi0 */
  if (argc == 3) {
    if (! ARG_IS_D(2, phi0)) {
      Tcl_AppendResult(interp, "angle needs a DOUBLE parameter: "
		       "<phi0> ", (char *) NULL);
      return TCL_ERROR;
    }
  } else {
    phi0 = PI;
  }
  CHECK_VALUE(angle_set_params(bond_type, bend, phi0), "bond type must be nonnegative");
}
예제 #7
0
파일: lb_tcl.c 프로젝트: andmi/espresso
static int lbnode_parse_set(Tcl_Interp *interp, int argc, char **argv, int *ind) {
  double f[3];
  
  while (argc > 0) {
    if(ARG0_IS_S("force")){
      if (argc < 4 ||
 	  !ARG_IS_D(1, f[0]) ||
 	  !ARG_IS_D(2, f[1]) ||
 	  !ARG_IS_D(3, f[2])
	  ) {
	Tcl_AppendResult(interp, "force expects three doubles as argument", (char *)NULL);
	return TCL_ERROR;
      }
      argc -= 4;
      argv += 4;
      if (argc > 0) {
	Tcl_ResetResult(interp);
	Tcl_AppendResult(interp, "Error in lbnode_extforce force. You can only change one field at the same time.", (char *)NULL);
	return ES_ERROR;
      }
    }
    else {
      Tcl_AppendResult(interp, "unknown parameter \"", argv[0], "\" to set", (char *)NULL);
      return TCL_ERROR;
    }
  }

  if (lb_lbnode_set_extforce_GPU(ind, f) == ES_ERROR) {
    Tcl_AppendResult(interp, "position is not in the LB lattice", (char *)NULL);
    return TCL_ERROR;
  }

  return ES_OK;
}
예제 #8
0
/* ############### */
int tclcommand_rotate_system(ClientData data, Tcl_Interp * interp, int argc, char ** argv) {
    double alpha,theta,phi;
    if (argc != 4) {
        fprintf(stderr,"needs 3 angles\n");
        return ES_ERROR;
    }
    if (! (ARG_IS_D(1,phi)))
    {
        fprintf(stderr,"Expects 3 floats\n");
        return ES_ERROR;
    }

    if (!(ARG_IS_D(2,theta)))
    {
        fprintf(stderr,"Expects 3 floats\n");
        return ES_ERROR;
    }
    if (! (ARG_IS_D(3,alpha)))
    {
        fprintf(stderr,"Expects 3 floats\n");
        return ES_ERROR;
    }


    rotate_system(phi,theta,alpha);

    return ES_OK;
}
예제 #9
0
int tclcommand_minimize_energy(ClientData data, Tcl_Interp *interp, int argc, char **argv) 
{
  int  max_steps;
  double f_max, gamma, max_displacement;
  
  if (argc != 5) {
    Tcl_AppendResult(interp, "wrong # args: \n\"", (char *) NULL);
    return usage(interp);
  }
  else {
    if(!ARG_IS_D(1,f_max)) {
      return usage(interp);      
    }
    if(!ARG_IS_I(2,max_steps)) {
      return usage(interp);      
    }
    if(!ARG_IS_D(3,gamma)) {
      return usage(interp);      
    }
    if(!ARG_IS_D(4,max_displacement)) {
      return usage(interp);      
    }
  }

  minimize_energy_init(f_max, gamma, max_steps, max_displacement);
  mpi_minimize_energy();

  return TCL_OK;
}
예제 #10
0
/** parse TCL command.
    number of parameters is checked and maggs_set_parameters function is called.
    @return zero if successful
    @param interp  TCL interpreter handle
    @param argc    number of arguments given
    @param argv    array of arguments given
*/
int tclcommand_inter_coulomb_parse_maggs(Tcl_Interp * interp, int argc, char ** argv)
{
    int mesh;
    double f_mass;
    double epsilon = 1.0;
    int finite_epsilon_flag = 1;
	
    /* if the command is localeps, call function */
    if ( (argc > 0) && (ARG_IS_S(0, "localeps")) )
        return tclcommand_localeps(interp, argc, argv);
    
    if(argc < 2) {
        Tcl_AppendResult(interp, "Not enough parameters: inter coulomb <bjerrum> memd <f_mass> <mesh>", (char *) NULL);
        return TCL_ERROR;
    }
	
    if(! ARG_IS_D(0, f_mass))
        return TCL_ERROR;
	
    if(! ARG_IS_I(1, mesh)) {
        Tcl_AppendResult(interp, "integer expected", (char *) NULL);
        return TCL_ERROR;
    }
	
    if(argc > 4) {
        Tcl_AppendResult(interp, "Too many parameters: inter coulomb memd <f_mass> <mesh> [epsilon <eps>]", (char *) NULL);
        return TCL_ERROR;
    }
    if(argc == 3) {
        Tcl_AppendResult(interp, "Usage: inter coulomb memd <f_mass> <mesh> [epsilon <eps>]", (char *) NULL);
        return TCL_ERROR;
    }
    if(argc == 4) {
        if (ARG_IS_S(2, "epsilon")) {
            if(! (ARG_IS_D(3, epsilon) && epsilon > 0.0)) {
                Tcl_AppendResult(interp, "epsilon expects a positive double",
                             (char *) NULL);
                return TCL_ERROR;
            }
        }
    } else finite_epsilon_flag=1;

  coulomb.method = COULOMB_MAGGS;
	
  int res = maggs_set_parameters(coulomb.bjerrum, f_mass, mesh,
                                 finite_epsilon_flag, epsilon);
  switch (res) {
  case -1:
    Tcl_AppendResult(interp, "mass of the field is negative", (char *)NULL);
    return TCL_ERROR;
  case -2:
    Tcl_AppendResult(interp, "mesh must be positive", (char *) NULL);
    return TCL_ERROR;
  case ES_OK:
    return TCL_OK;
  }
  Tcl_AppendResult(interp, "unknown error", (char *) NULL);
  return TCL_ERROR;
}
예제 #11
0
int tclcommand_inter_coulomb_parse_elc_params(Tcl_Interp * interp, int argc, char ** argv)
{
  double pwerror;
  double gap_size;
  double far_cut = -1;
  double top = 1, mid = 1, bot = 1;
  int neutralize = 1;

  if (argc < 2) {
    Tcl_AppendResult(interp, "either nothing or elc <pwerror> <minimal layer distance> {<cutoff>}  {dielectric <di_top> <di_mid> <di_bottom>} {noneutralization} expected, not \"",
		     argv[0], "\"", (char *)NULL);
    return TCL_ERROR;
  }
  if (!ARG0_IS_D(pwerror))
    return TCL_ERROR;
  if (!ARG1_IS_D(gap_size))
    return TCL_ERROR;

  argc -= 2; argv += 2;

  if (argc > 0) {
    // if there, parse away manual cutoff
    if(ARG0_IS_D(far_cut)) {
      argc--; argv++;
    }
    else
      Tcl_ResetResult(interp);

    while (argc > 0) {
      if (ARG0_IS_S("noneutralization") || ARG0_IS_S("-noneutralization")) {
	neutralize = 0;
	argc--; argv++;
      }
      else if (argc >= 4 && ARG0_IS_S("dielectric")) {
	// just a dummy, not used, as it is only printed for information
	// purposes. We need to calculate it
	double space_layer_dummy;

	if (!ARG_IS_D(1,top) || !ARG_IS_D(2,mid) || !ARG_IS_D(3,bot))
	  return TCL_ERROR;
	argc -= 4; argv += 4;

	if (argc > 0 && ARG_IS_D(4, space_layer_dummy)) {
	  argc--; argv++;
	}
      }
      else {
	Tcl_AppendResult(interp, "either nothing or elc <pwerror> <minimal layer distance> {<cutoff>}  {dielectric <di_top> <di_mid> <di_bottom>} {noneutralization} expected, not \"",
			 argv[0], "\"", (char *)NULL);
	return TCL_ERROR;
      }
    }
  }
  CHECK_VALUE(ELC_set_params(pwerror, gap_size, far_cut, neutralize, top, mid, bot),
	      "choose a 3d electrostatics method prior to ELC");
}
예제 #12
0
파일: mmm2d_tcl.c 프로젝트: andmi/espresso
int tclcommand_inter_coulomb_parse_mmm2d(Tcl_Interp * interp, int argc, char ** argv)
{
  int err;
  double maxPWerror;
  double far_cut = -1;
  double top = 1, mid = 1, bot = 1;
  double delta_top = 0, delta_bot = 0;

  if (argc < 1) {
    Tcl_AppendResult(interp, "wrong # arguments: inter coulomb mmm2d <maximal pairwise error> "
		     "{<fixed far cutoff>} {dielectric <e1> <e2> <e3>} | {dielectric-contrasts <d1> <d2>}", (char *) NULL);
    return TCL_ERROR;
  }
  
  if (! ARG0_IS_D(maxPWerror))
    return TCL_ERROR;
  --argc; ++argv;
  
  if (argc >= 1) {
    if (ARG0_IS_D(far_cut)){
      --argc; ++argv;
    } else {
      Tcl_ResetResult(interp);
    }
  }
  
  if (argc != 0) {
    if (argc == 4 && ARG0_IS_S("dielectric")) {
      if (!ARG_IS_D(1,top) || !ARG_IS_D(2,mid) || !ARG_IS_D(3,bot))
	return TCL_ERROR;

      delta_top = (mid - top)/(mid + top);
      delta_bot = (mid - bot)/(mid + bot);
    }
    else if (argc == 3 && ARG0_IS_S("dielectric-contrasts")) {
      if (!ARG_IS_D(1,delta_top) || !ARG_IS_D(2,delta_bot))
	return TCL_ERROR;
    } else {
      Tcl_AppendResult(interp, "wrong # arguments: inter coulomb mmm2d <maximal pairwise error> "
		       "{<fixed far cutoff>} {dielectric <e1> <e2> <e3>} | {dielectric-contrasts <d1> <d2>}", (char *) NULL);
      return TCL_ERROR;
    }
  }

  if (cell_structure.type != CELL_STRUCTURE_NSQUARE &&
      cell_structure.type != CELL_STRUCTURE_LAYERED) {
    Tcl_AppendResult(interp, "MMM2D requires layered of nsquare cell structure", (char *)NULL);
    return TCL_ERROR;
  }

  if ((err = MMM2D_set_params(maxPWerror, far_cut, delta_top, delta_bot)) > 0) {
    Tcl_AppendResult(interp, mmm2d_errors[err], (char *)NULL);
    return TCL_ERROR;
  }
  return TCL_OK;
}
예제 #13
0
int tclcommand_thermostat_parse_inter_dpd(Tcl_Interp *interp, int argc, char ** argv)
{
  double temp;

  if (argc < 2) {
    Tcl_AppendResult(interp, "thermostat needs 1 parameter: "
		     "<temperature>",
		     (char *) NULL);
    return TCL_ERROR;
  }

  if (argc>2 && ARG_IS_S(2, "ignore_fixed_particles")) {
    if (argc == 3)
      dpd_ignore_fixed_particles=1;
    else if (argc!= 4 || (!ARG_IS_I(3, dpd_ignore_fixed_particles))) 
      return TCL_ERROR;
    mpi_bcast_parameter(FIELD_DPD_IGNORE_FIXED_PARTICLES);
    return TCL_OK;
  }

  /* copy lattice-boltzmann parameters */
  if (! ARG_IS_D(2, temp)) { return TCL_ERROR; }

  if ( temp < 0.0 ) {
    Tcl_AppendResult(interp, "temperature must be non-negative", (char *) NULL);
    return TCL_ERROR;
  }
  temperature = temp;
  thermo_switch = ( thermo_switch | THERMO_INTER_DPD );
  mpi_bcast_parameter(FIELD_THERMO_SWITCH);
  mpi_bcast_parameter(FIELD_TEMPERATURE);
  return (TCL_OK);
}
예제 #14
0
int tclcommand_thermostat_parse_lb(Tcl_Interp *interp, int argc, char ** argv)
{

#if defined(LB) || defined(LB_GPU)
  double temp;

  /* get lb interaction type */
  if (argc < 2) {
    Tcl_AppendResult(interp, "lb needs 1 parameter: "
		     "<temperature>",
		     (char *) NULL);
    return TCL_ERROR;
  }

  /* copy lattice-boltzmann parameters */
  if (! ARG_IS_D(1, temp)) { return TCL_ERROR; }

  if ( temp < 0.0 ) {
    Tcl_AppendResult(interp, "temperature must be non-negative", (char *) NULL);
    return TCL_ERROR;
  }
  temperature = temp;
  thermo_switch = ( thermo_switch | THERMO_LB );
  mpi_bcast_parameter(FIELD_THERMO_SWITCH);
  mpi_bcast_parameter(FIELD_TEMPERATURE);
  
#endif
  return TCL_OK;
}
예제 #15
0
int tclcommand_thermostat_parse_bd(Tcl_Interp *interp, int argc, char **argv) 
{
  double temp;

  /* check number of arguments */
  if (argc < 3) {
    Tcl_AppendResult(interp, "wrong # args:  should be \n\"",
		     argv[0]," ",argv[1]," <temp>\"", (char *)NULL);
    return (TCL_ERROR);
  }

  /* check argument types */
  if ( !ARG_IS_D(2, temp) ) {
    Tcl_AppendResult(interp, argv[0]," ",argv[1]," needs a  DOUBLE", (char *)NULL);
    return (TCL_ERROR);
  }

  if (temp < 0) {
    Tcl_AppendResult(interp, "temperature must be positive", (char *)NULL);
    return (TCL_ERROR);
  }

  /* broadcast parameters */
  temperature = temp;
  thermo_switch = ( thermo_switch | THERMO_BD );
  mpi_bcast_parameter(FIELD_THERMO_SWITCH);
  mpi_bcast_parameter(FIELD_TEMPERATURE);
  return (TCL_OK);
}
예제 #16
0
int tclcommand_metadynamics_parse_relative_z(Tcl_Interp *interp, int argc, char **argv)
{
  int    pid1, pid2, dbins, numrelaxationsteps;
  double dmin, dmax, bheight, bwidth, fbound;

  /* check number of arguments */
  if (argc < 11) {
    Tcl_AppendResult(interp, "wrong # args:  should be \n\"",
                     argv[0]," ",argv[1]," <pid1> <pid2> <z_min> <z_max> <b_height> <b_width> <f_bound> <z_bins> <num_relaxation_steps>\"", (char *)NULL);
    return (TCL_ERROR);
  }

  /* check argument types */
  if ( !ARG_IS_I(2, pid1) || !ARG_IS_I(3, pid2) || !ARG_IS_D(4, dmin) || !ARG_IS_D(5, dmax) ||
       !ARG_IS_D(6, bheight) || !ARG_IS_D(7, bwidth) || !ARG_IS_D(8, fbound) || !ARG_IS_I(9, dbins) || !ARG_IS_I(10, numrelaxationsteps) ) {
    Tcl_AppendResult(interp, argv[0]," ",argv[1]," needs two INTS, five DOUBLES, and two INTS in this order", (char *)NULL);
    return (TCL_ERROR);
  }

  if (pid1 < 0 || pid1 > max_seen_particle || pid2 < 0 || pid2 > max_seen_particle) {
    Tcl_AppendResult(interp, "pid1 and/or pid2 out of range", (char *)NULL);
    return (TCL_ERROR);
  }

  if (dmax < dmin || bheight < 0 || bwidth < 0 || fbound < 0 || dbins < 0 || numrelaxationsteps <0) {
    Tcl_AppendResult(interp, "check parameters: inconcistency somewhere", (char *)NULL);
    return (TCL_ERROR);
  }

  free(meta_acc_force);
  free(meta_acc_fprofile);

  /* broadcast parameters */
  meta_pid1         = pid1;
  meta_pid2         = pid2;
  meta_bias_height  = bheight;
  meta_bias_width   = bwidth;
  meta_xi_min       = dmin;
  meta_xi_max       = dmax;
  meta_f_bound      = fbound;
  meta_xi_num_bins  = dbins;

  meta_switch = META_REL_Z;
  meta_num_relaxation_steps = numrelaxationsteps;

  return (TCL_OK);
}
예제 #17
0
파일: ewald.c 프로젝트: adolfom/espresso
int tclcommand_inter_coulomb_parse_ewald(Tcl_Interp * interp, int argc, char ** argv)
{
  double r_cut, alpha;
  int i, kmax;

  coulomb.method = COULOMB_EWALD;
    
#ifdef PARTIAL_PERIODIC
  if(PERIODIC(0) == 0 ||
     PERIODIC(1) == 0 ||
     PERIODIC(2) == 0)
    {
      Tcl_AppendResult(interp, "Need periodicity (1,1,1) with Coulomb EWALD",
		       (char *) NULL);
      return TCL_ERROR;  
    }
#endif

  if (argc < 2) {
    Tcl_AppendResult(interp, "expected: inter coulomb <bjerrum> ewald <r_cut> <alpha> <kmax>",
		     (char *) NULL);
    return TCL_ERROR;  
  }

  if(! ARG0_IS_D(r_cut))
    return TCL_ERROR;  

  if(argc != 3) {
    Tcl_AppendResult(interp, "wrong # arguments: inter coulomb <bjerrum> ewald <r_cut> <alpha> <kmax>",
		     (char *) NULL);
    return TCL_ERROR;  
  }

  if(! ARG_IS_D(1, alpha))
    return TCL_ERROR;

  if(! ARG_IS_I(2, kmax))
    return TCL_ERROR;

  if ((i = ewald_set_params(r_cut, alpha, kmax)) < 0) {
    switch (i) {
    case -1:
      Tcl_AppendResult(interp, "r_cut must be positive", (char *) NULL);
      break;
    case -4:
      Tcl_AppendResult(interp, "alpha must be positive", (char *) NULL);
      break;
    case -5:
      Tcl_AppendResult(interp, "kmax must be greater than zero", (char *) NULL);
    default:;
      Tcl_AppendResult(interp, "unspecified error", (char *) NULL);
    }

    return TCL_ERROR;

  }

  return TCL_OK;
}
예제 #18
0
/// parse parameters for the bending_force potential
int tclcommand_inter_parse_bending_force(Tcl_Interp *interp, int bond_type, int argc, char **argv)
{
  double phi0, kb;

  if (argc != 3 ) {
    Tcl_AppendResult(interp, "bending_force needs 2 parameters: "
		     "<phi0> <kb>", (char *) NULL);
    return (TCL_ERROR);
  }
  if (!ARG_IS_D(1, phi0) || !ARG_IS_D(2, kb) ) {
    Tcl_AppendResult(interp, "bending_force needs 2 parameters of types DOUBLE: "
		     "<phi0> <kb>", (char *) NULL);
    return TCL_ERROR;
  }
  
  CHECK_VALUE(bending_force_set_params(bond_type, phi0, kb), "bond type must be nonnegative");
}
예제 #19
0
int tclcommand_inter_coulomb_parse_mmm1d(Tcl_Interp *interp, int argc, char **argv)
{
  double switch_rad, maxPWerror;

  if (argc < 2) {
    Tcl_AppendResult(interp, "wrong # arguments: inter coulomb mmm1d <switch radius> "
		     "{<bessel cutoff>} <maximal error for near formula> | tune  <maximal pairwise error>", (char *) NULL);
    return TCL_ERROR;
  }

  if (ARG0_IS_S("tune")) {
    /* autodetermine bessel cutoff AND switching radius */
    if (! ARG_IS_D(1, maxPWerror))
      return TCL_ERROR;
    switch_rad = -1;
  }
  else {
    if (argc == 2) {
      /* autodetermine bessel cutoff */
      if ((! ARG_IS_D(0, switch_rad)) ||
	  (! ARG_IS_D(1, maxPWerror))) 
	return TCL_ERROR;
    }
    else {
      Tcl_AppendResult(interp, "wrong # arguments: inter coulomb mmm1d <switch radius> "
		       "<maximal error for near formula> | tune  <maximal pairwise error>", (char *) NULL);
      return TCL_ERROR;
    }
    
    if (switch_rad <= 0 || switch_rad > box_l[2]) {
      Tcl_AppendResult(interp, "switching radius is not between 0 and box_l[2]", (char *)NULL);
      return TCL_ERROR;
    }
  }

  MMM1D_set_params(switch_rad, maxPWerror);

  char *log = NULL;
  int result = mmm1d_tune(&log) == ES_OK ? TCL_OK : TCL_ERROR;

  Tcl_AppendResult(interp, log, NULL);
  if (log)
    free(log);

  return gather_runtime_errors(interp, result);
}
예제 #20
0
int tclcommand_inter_parse_inter_dpd(Tcl_Interp * interp,
		       int part_type_a, int part_type_b,
		       int argc, char ** argv)
{
  /* parameters needed for LJ */
  extern double temperature;
  double gamma,r_c,tgamma,tr_c;
  int wf,twf;
  int change;

  /* get inter_dpd interaction type */
  if (argc < 7) {
    Tcl_AppendResult(interp, "inter_dpd needs 6 parameters: "
		     "<gamma> <r_cut> <wf> <tgamma> <tr_cut> <twf>",
		     (char *) NULL);
    return 0;
  }
  if (temperature == -1) {
    Tcl_AppendResult(interp, "Please set temperature first:  temperature inter_dpd temp",(char *) NULL);
    return 0;
  }

  /* copy lennard-jones parameters */
  if ((! ARG_IS_D(1, gamma))  ||
      (! ARG_IS_D(2, r_c))    ||
      (! ARG_IS_I(3, wf))     ||
      (! ARG_IS_D(4, tgamma)) ||
      (! ARG_IS_D(5, tr_c))    ||
      (! ARG_IS_I(6, twf))    ) {
    Tcl_AppendResult(interp, "inter_dpd needs 6 parameters: "
		     "<gamma> <r_cut> <wf> <tgamma> <tr_cut> <twf> ",
		     (char *) NULL);
    return 0;
  }
  change = 7;
	
  if (inter_dpd_set_params(part_type_a, part_type_b,
			       gamma,r_c,wf,tgamma,tr_c,twf) == ES_ERROR) {
    Tcl_AppendResult(interp, "particle types must be non-negative", (char *) NULL);
    return 0;
  }
  inter_dpd_init();

  return change;

}
예제 #21
0
/// parse parameters for the dihedral potential
int tclcommand_inter_parse_dihedral(Tcl_Interp *interp, int bond_type, int argc, char **argv)
{
  int mult;
  double bend, phase;

  if (argc < 4 ) {
    Tcl_AppendResult(interp, "dihedral needs 3 parameters: "
		     "<mult> <bend> <phase>", (char *) NULL);
    return (TCL_ERROR);
  }
  if ( !ARG_IS_I(1, mult) || !ARG_IS_D(2, bend) || !ARG_IS_D(3, phase) ) {
    Tcl_AppendResult(interp, "dihedral needs 3 parameters of types INT DOUBLE DOUBLE: "
		     "<mult> <bend> <phase> ", (char *) NULL);
    return TCL_ERROR;
  }
  
  CHECK_VALUE(dihedral_set_params(bond_type, mult, bend, phase), "bond type must be nonnegative");
}
예제 #22
0
int tclcommand_inter_parse_subt_lj(Tcl_Interp *interp, int bond_type,
				   int argc, char **argv)
{
  double k, r;
  if (argc != 3) {
    Tcl_AppendResult(interp, "subt_lj needs 2 dummy parameters: "
		     "<k_subt_lj> <r_subt_lj>", (char *) NULL);
    return TCL_ERROR;
  }

  if ((! ARG_IS_D(1, k)) || (! ARG_IS_D(2, r))) {
    Tcl_AppendResult(interp, "subt_lj needs 2 dummy DOUBLE parameters: "
		     "<k_subt_lj> <r_subt_lj>", (char *) NULL);
    return TCL_ERROR;
  }

  CHECK_VALUE(subt_lj_set_params(bond_type, k, r), "bond type must be nonnegative");
}
예제 #23
0
int tclcommand_inter_parse_angledist(Tcl_Interp *interp, int bond_type, int argc, char **argv)
{
  double bend, phimin, distmin, phimax, distmax;

  if (argc != 6) {
    Tcl_AppendResult(interp, "angledist needs 5 parameters: "
		     "<bend> <phimin> <distmin> <phimax> <distmax>", (char *) NULL);
    printf ("argc=%d\n",argc);
    return (TCL_ERROR);
  }

  if (! ARG_IS_D(1, bend)) {
    Tcl_AppendResult(interp, "angledist needs a DOUBLE parameter: "
		     "<bend> ", (char *) NULL);
    return TCL_ERROR;
  }

  if (! ARG_IS_D(2, phimin)) {
    Tcl_AppendResult(interp, "angledist needs a DOUBLE parameter: "
                     "<phimin> ", (char *) NULL);
    return TCL_ERROR;
  }

  if (! ARG_IS_D(3, distmin)) {
    Tcl_AppendResult(interp, "angledist needs a DOUBLE parameter: "
		     "<distmin> ", (char *) NULL);
    return TCL_ERROR;
  }

  if (! ARG_IS_D(4, phimax)) {
    Tcl_AppendResult(interp, "angledist needs a DOUBLE parameter: "
                     "<phimax> ", (char *) NULL);
    return TCL_ERROR;
  }

  if (! ARG_IS_D(5, distmax)) {
    Tcl_AppendResult(interp, "angledist needs a DOUBLE parameter: "
		     "<distmax> ", (char *) NULL);
    return TCL_ERROR;
  }


  CHECK_VALUE(angledist_set_params(bond_type, bend, phimin, distmin, phimax, distmax), "bond type must be nonnegative");
}
예제 #24
0
/// parse parameters for the volume_force potential
int tclcommand_inter_parse_volume_force(Tcl_Interp *interp, int bond_type, int argc, char **argv)
{
  double V0, kv;//drvmax;

  if (argc != 3) {
    Tcl_AppendResult(interp, "volume_force needs 2 parameters: "
		     "<V0> <kv>", (char *) NULL);
    return (TCL_ERROR);
  }

 if ((! ARG_IS_D(1, V0)) || (! ARG_IS_D(2, kv)))// || (! ARG_IS_D(3, drvmax)))
    {
      Tcl_AppendResult(interp, "volume needs 2 DOUBLE parameters: "
		       "<V0> <kv>", (char *) NULL);
      return TCL_ERROR;
    }

  CHECK_VALUE(volume_force_set_params(bond_type, V0, kv), "bond type must be nonnegative");
}
예제 #25
0
파일: ljcos2.c 프로젝트: roehm/cython
int tclcommand_inter_parse_ljcos2(Tcl_Interp * interp,
		       int part_type_a, int part_type_b,
		       int argc, char ** argv)
{
  /* parameters needed for lj-cos2 */
  double eps, sig, offset, w, cap_radius;
  int change;

  /* get lj-cos2 interaction type */
  if (argc < 5) {
    Tcl_AppendResult(interp, "ljcos2 needs 4 parameters: "
		     "<ljcos2_eps> <ljcos2_sig> <ljcos2_offset> <ljcos2_w>",
		     (char *) NULL);
    return 0;
  }

  /* copy lj-cos2 parameters */
  if ((! ARG_IS_D(1, eps))    ||
      (! ARG_IS_D(2, sig))    ||
      (! ARG_IS_D(3, offset)) ||
      (! ARG_IS_D(4, w))) {
    Tcl_AppendResult(interp, "ljcos2 needs 4 DOUBLE parameters: "
		     "<ljcos2_eps> <ljcos2_sig> <ljcos2_offset> <ljcos2_w>",
		     (char *) NULL);
    return TCL_ERROR;
  }
  change = 5;

  cap_radius = -1;
  /* check wether there is an additional double, cap radius, and parse in */
  if (argc >= 6 && ARG_IS_D(5, cap_radius))
    change++;
  else
    Tcl_ResetResult(interp);

  if (ljcos2_set_params(part_type_a, part_type_b,
			       eps, sig, offset, w
			       ) == TCL_ERROR) {
    Tcl_AppendResult(interp, "particle types must be non-negative", (char *) NULL);
    return 0;
  }
  return change;
}
/// parse parameters for the area_force_local potential
int tclcommand_inter_parse_area_force_local(Tcl_Interp *interp, int bond_type, int argc, char **argv)
{
  double A0_l, ka_l;

  if (argc != 3) {
    Tcl_AppendResult(interp, "area_force_local needs 2 parameters: "
		     "<A0> <ka>", (char *) NULL);
    return (TCL_ERROR);
  }

 if ((! ARG_IS_D(1, A0_l)) || (! ARG_IS_D(2, ka_l)))
    {
      Tcl_AppendResult(interp, "area_force_local needs 2 DOUBLE parameters: "
		       "<A0_l> <ka_l>", (char *) NULL);
      return TCL_ERROR;
    }

  CHECK_VALUE(area_force_local_set_params(bond_type, A0_l, ka_l), "bond type must be nonnegative");
}
예제 #27
0
int tclcommand_localeps(Tcl_Interp* interp, int argc, char** argv)
{
    int mesh = maggs_get_mesh_1D();
    int node_x, node_y, node_z, direction;
    double relative_epsilon;
	
    /* number of arguments has to be 8 */
    if(argc != 9) {
        Tcl_AppendResult(interp, "Wrong number of paramters. Usage: \n", (char *) NULL);
        Tcl_AppendResult(interp, "inter coulomb <bjerrum> memd localeps node <x> <y> <z> dir <X/Y/Z> eps <epsilon>", (char *) NULL);
        return TCL_ERROR;
    }
	
    /* first argument should be "node" */
    if(! ARG_IS_S(1, "node")) return TCL_ERROR;
    
    /* arguments 2-4 should be integers */
    if(! ARG_IS_I(2, node_x)) {
        Tcl_AppendResult(interp, "integer expected", (char *) NULL);
        return TCL_ERROR; }
    if(! ARG_IS_I(3, node_y)) {
        Tcl_AppendResult(interp, "integer expected", (char *) NULL);
        return TCL_ERROR; }
    if(! ARG_IS_I(4, node_z)) {
        Tcl_AppendResult(interp, "integer expected", (char *) NULL);
        return TCL_ERROR; }
    /* check if mesh position is in range */
    if ( (node_x < 0) || (node_y < 0) || (node_z < 0) || (node_x > mesh) || (node_y > mesh) || (node_z > mesh) ) {
        char buffer[TCL_INTEGER_SPACE];
        sprintf(buffer, "%d", mesh);
        Tcl_AppendResult(interp, "epsilon position out of mesh range. Mesh in each dimension is ", buffer, ".", (char *) NULL);
        return TCL_ERROR;
    }
    
    /* parse fifth and sixth argument (e.g. dir X) */
    if(! ARG_IS_S(5, "dir")) return TCL_ERROR;
    if ( (! ARG_IS_S(6, "X")) && (! ARG_IS_S(6, "Y")) && (! ARG_IS_S(6, "Z")) ) {
        Tcl_AppendResult(interp, "Parameter dir should be 'X', 'Y' or 'Z'.", (char *) NULL);
        return TCL_ERROR; }
    if(ARG_IS_S(6, "X")) direction = 0;
    if(ARG_IS_S(6, "Y")) direction = 1;
    if(ARG_IS_S(6, "Z")) direction = 2;
    
    /* parse seventh and eight argument (e.g. eps 0.5) */
    if(! ARG_IS_S(7, "eps")) return TCL_ERROR;
    if ( (! ARG_IS_D(8, relative_epsilon)) || (relative_epsilon < 0.0) ) {
        Tcl_AppendResult(interp, "eps expects a positive double", (char *) NULL);
        return TCL_ERROR; }
    
    double eps_before = maggs_set_permittivity(node_x, node_y, node_z, direction, relative_epsilon);
    
    if (eps_before == 1.0) return TCL_OK;
    else return TCL_OK;
}
예제 #28
0
int tclcommand_inter_parse_morse(Tcl_Interp * interp,
                                 int part_type_a, int part_type_b,
                                 int argc, char ** argv)
{
    /* parameters needed for MORSE */
    double eps, alpha, rmin, cut, cap_radius;
    int change;

    /* get morse interaction type */
    if (argc < 5) {
        Tcl_AppendResult(interp, "morse needs 4 parameters: "
                         "<morse_eps> <morse_alpha> <morse_rmin> <morse_cut>",
                         (char *) NULL);
        return 0;
    }

    /* copy morse parameters */
    if ((! ARG_IS_D(1, eps))   ||
            (! ARG_IS_D(2, alpha))   ||
            (! ARG_IS_D(3, rmin))   ||
            (! ARG_IS_D(4, cut)   )) {
        Tcl_AppendResult(interp, "morse needs 4 DOUBLE parameters: "
                         "<morse_eps> <morse_alpha> <morse_rmin> <morse_cut>",
                         (char *) NULL);
        return 0;
    }
    change = 5;

    cap_radius = -1.0;
    /* check wether there is an additional double, cap radius, and parse in */
    if (argc >= 6 && ARG_IS_D(5, cap_radius))
        change++;
    else
        Tcl_ResetResult(interp);
    if (morse_set_params(part_type_a, part_type_b,
                         eps, alpha, rmin, cut, cap_radius) == ES_ERROR) {
        Tcl_AppendResult(interp, "particle types must be non-negative", (char *) NULL);
        return 0;
    }
    return change;
}
예제 #29
0
int tclcommand_inter_parse_gb(Tcl_Interp * interp,
			      int part_type_a, int part_type_b,
			      int argc, char ** argv)
{
  double tmp;
  double eps, sig, cut;
  double k1, k2, mu, nu;
  int change;

  /* there are 9 parameters for gay-berne, but you read in only 7 of them.
     The rest is calculated in gay_berne_set_params.
  */

  if (argc < 8) {
    Tcl_AppendResult(interp, "gay-berne needs 7 parameters: "
		     "<gb_eps> <gb_sig> <gb_cut> <gb_k1> <gb_k2> <gb_mu> <gb_nu>",
		     (char *) NULL);
    return 0;
  }

  /* copy gay-berne parameters */
  if ((! ARG_IS_D(1, eps))   ||
      (! ARG_IS_D(2, sig))   ||
      (! ARG_IS_D(3, cut))   ||
      (! ARG_IS_D(4, k1 ))   ||
      (! ARG_IS_D(5, k2 ))   ||
      (! ARG_IS_D(6, mu ))   ||	
      (! ARG_IS_D(7, nu )    )) {
    Tcl_AppendResult(interp, "gay-berne needs 7 DOUBLE parameters: "
		     "<gb_eps> <gb_sig> <gb_cut> <gb_k1> <gb_k2> <gb_mu> <gb_nu>",
		     (char *) NULL);
    return 0;
  }
  change = 8;

  if (argc >= 10 && ARG_IS_D(8, tmp) && ARG_IS_D(9, tmp))
    change += 2;
  else
    Tcl_ResetResult(interp);

  if (gay_berne_set_params(part_type_a, part_type_b, eps, sig, cut, k1, k2, mu, nu) == ES_ERROR) {
    Tcl_AppendResult(interp, "particle types must be non-negative", (char *) NULL);
    return 0;
  }
  return change;
}
int tclcommand_inter_coulomb_parse_rf(Tcl_Interp * interp,
				      int argc, char ** argv,int method)
{
  double kappa,epsilon1,epsilon2, r_cut;
  int i;

  if(argc < 4) {
    Tcl_AppendResult(interp, "rf needs 4 parameters: "
                               "<kappa> <epsilon1> <epsilon2> <r_cut>",(char *) NULL);
    return TCL_ERROR;
  }

  coulomb.method = method;

  if ((! ARG_IS_D(0, kappa))      ||
      (! ARG_IS_D(1, epsilon1))   ||
      (! ARG_IS_D(2, epsilon2))   ||
      (! ARG_IS_D(3, r_cut)        )) {
      Tcl_AppendResult(interp, "rf needs 4 parameters: "
                               "<kappa> <epsilon1> <epsilon2> <r_cut>",(char *) NULL);
       return TCL_ERROR;
  }

  if ( (i = rf_set_params(kappa,epsilon1,epsilon2,r_cut)) < 0) {
    switch (i) {
    case -1:
      Tcl_AppendResult(interp, "rf eps must be positive.",(char *) NULL);
      break;
    case -2:
      Tcl_AppendResult(interp, "rf r_cut must be positive.",(char *) NULL);
      break;
    default:
      Tcl_AppendResult(interp, "unspecified error",(char *) NULL);
    }
    
    return TCL_ERROR;
  }

  return TCL_OK;
}