예제 #1
0
/* Fortran interface routine to re-initialize ARKode memory 
   structure for a problem with a new size but similar time 
   scale; functions as an all-in-one interface to the C 
   routines ARKodeResize (and potentially ARKodeSVtolerances); 
   see farkode.h for further details */
void FARK_RESIZE(realtype *t0, realtype *y0, realtype *hscale,
		 int *itol, realtype *rtol, realtype *atol, int *ier) {

  *ier = 0;

  /* Set data in F2C_ARKODE_vec to y0 */
  N_VSetArrayPointer(y0, F2C_ARKODE_vec);
  
  /* Call ARKodeResize (currently does not allow Fortran 
     user-supplied vector resize function) */
  *ier = ARKodeResize(ARK_arkodemem, F2C_ARKODE_vec, *hscale,
		      *t0, NULL, NULL);

  /* Reset data pointer */
  N_VSetArrayPointer(NULL, F2C_ARKODE_vec);

  /* On failure, exit */
  if (*ier != ARK_SUCCESS) {
    *ier = -1;
    return;
  }

  /* Set tolerances, based on itol argument */
  if (*itol) {
    N_Vector Vatol = NULL;
    Vatol = N_VCloneEmpty(F2C_ARKODE_vec);
    if (Vatol == NULL) {
      *ier = -1;
      return;
    }
    N_VSetArrayPointer(atol, Vatol);
    *ier = ARKodeSVtolerances(ARK_arkodemem, *rtol, Vatol);
    N_VDestroy(Vatol);
  }

  return;
}
예제 #2
0
void Arkode::initialize()
{
  _properties = dynamic_cast<ISystemProperties*>(_system);
  _continuous_system = dynamic_cast<IContinuous*>(_system);
  _event_system = dynamic_cast<IEvent*>(_system);
  _mixed_system = dynamic_cast<IMixedSystem*>(_system);
  _time_system = dynamic_cast<ITime*>(_system);
  IGlobalSettings* global_settings = dynamic_cast<ISolverSettings*>(_arkodesettings)->getGlobalSettings();
  // Kennzeichnung, dass initialize()() (vor der Integration) aufgerufen wurde
  _idid = 5000;
  _tLastEvent = 0.0;
  _event_n = 0;
  SolverDefaultImplementation::initialize();
  _dimSys = _continuous_system->getDimContinuousStates();
  _dimZeroFunc = _event_system->getDimZeroFunc();

  if (_dimSys == 0)
    _dimSys = 1; // introduce dummy state

  if (_dimSys <= 0)
  {
    _idid = -1;
    throw ModelicaSimulationError(SOLVER,"Cvode::initialize()");
  }
  else
  {
    // Allocate state vectors, stages and temporary arrays
    if (_z)
      delete[] _z;
    if (_zInit)
      delete[] _zInit;
    if (_zWrite)
      delete[] _zWrite;
    if (_zeroSign)
      delete[] _zeroSign;
    if (_absTol)
      delete[] _absTol;
  if(_delta)
    delete [] _delta;
    if(_deltaInv)
    delete [] _deltaInv;
    if(_ysave)
    delete [] _ysave;

    _z = new double[_dimSys];
    _zInit = new double[_dimSys];
    _zWrite = new double[_dimSys];
    _zeroSign = new int[_dimZeroFunc];
    _absTol = new double[_dimSys];
  _delta =new double[_dimSys];
    _deltaInv =new double[_dimSys];
  _ysave =new double[_dimSys];

    memset(_z, 0, _dimSys * sizeof(double));
    memset(_zInit, 0, _dimSys * sizeof(double));
  memset(_ysave, 0, _dimSys * sizeof(double));

    // Counter initialisieren
    _outStps = 0;

    if (_arkodesettings->getDenseOutput())
    {
      // Ausgabeschrittweite
      _hOut = global_settings->gethOutput();

    }

    // Allocate memory for the solver  //arkodeCreate
    _arkodeMem = ARKodeCreate();
    /*
    if (check_flag((void*) _cvodeMem, "CVodeCreate", 0))
    {
      _idid = -5;
      throw ModelicaSimulationError(SOLVER,"Cvode::initialize()");
    }
    */
    //
    // Make Cvode ready for integration
    //

    // Set initial values for CVODE
    _continuous_system->evaluateAll(IContinuous::CONTINUOUS);
    _continuous_system->getContinuousStates(_zInit);
    memcpy(_z, _zInit, _dimSys * sizeof(double));

    // Get nominal values
    _absTol[0] = 1.0; // in case of dummy state
    _continuous_system->getNominalStates(_absTol);
    for (int i = 0; i < _dimSys; i++)
      _absTol[i] *= dynamic_cast<ISolverSettings*>(_arkodesettings)->getATol();

    _ARK_y0 = N_VMake_Serial(_dimSys, _zInit);
    _ARK_y = N_VMake_Serial(_dimSys, _z);
    _ARK_yWrite = N_VMake_Serial(_dimSys, _zWrite);
    _ARK_absTol = N_VMake_Serial(_dimSys, _absTol);


    /*
    if (check_flag((void*) _CV_y0, "N_VMake_Serial", 0))
    {
      _idid = -5;
      throw ModelicaSimulationError(SOLVER,"Cvode::initialize()");
    }
    */
    // Initialize Cvode (Initial values are required)
    _idid = ARKodeInit(_arkodeMem, NULL, ARK_fCallback, _tCurrent, _ARK_y0);
    if (_idid < 0)
    {
      _idid = -5;
      throw ModelicaSimulationError(SOLVER,"Cvode::initialize()");
    }


    // Set Tolerances

    _idid = ARKodeSVtolerances(_arkodeMem, dynamic_cast<ISolverSettings*>(_arkodesettings)->getRTol(), _ARK_absTol);    // RTOL and ATOL
    if (_idid < 0)
      throw ModelicaSimulationError(SOLVER,"CVode::initialize()");

    // Set the pointer to user-defined data

    _idid = ARKodeSetUserData(_arkodeMem, _data);
    if (_idid < 0)
      throw ModelicaSimulationError(SOLVER,"Cvode::initialize()");

    _idid = ARKodeSetInitStep(_arkodeMem, 1e-6);    // INITIAL STEPSIZE
    if (_idid < 0)
      throw ModelicaSimulationError(SOLVER,"Cvode::initialize()");

    _idid = ARKodeSetMaxConvFails(_arkodeMem, 100);       // Maximale Fehler im Konvergenztest
    if (_idid < 0)
      throw ModelicaSimulationError(SOLVER,"CVoder::initialize()");

    _idid = ARKodeSetMinStep(_arkodeMem, dynamic_cast<ISolverSettings*>(_arkodesettings)->getLowerLimit());       // MINIMUM STEPSIZE
    if (_idid < 0)
      throw ModelicaSimulationError(SOLVER,"CVode::initialize()");

    _idid = ARKodeSetMaxStep(_arkodeMem, global_settings->getEndTime() / 10.0);       // MAXIMUM STEPSIZE
    if (_idid < 0)
      throw ModelicaSimulationError(SOLVER,"CVode::initialize()");

    _idid = ARKodeSetMaxNonlinIters(_arkodeMem, 5);      // Max number of iterations
    if (_idid < 0)
      throw ModelicaSimulationError(SOLVER,"CVode::initialize()");
    _idid = ARKodeSetMaxErrTestFails(_arkodeMem, 100);
    if (_idid < 0)
      throw ModelicaSimulationError(SOLVER,"CVode::initialize()");

    _idid = ARKodeSetMaxNumSteps(_arkodeMem, 1000);            // Max Number of steps
    if (_idid < 0)
      throw ModelicaSimulationError(SOLVER,"Cvode::initialize()");

    // Initialize linear solver
    /*
    #ifdef USE_SUNDIALS_LAPACK
      _idid = CVLapackDense(_cvodeMem, _dimSys);
    #else
    */
      _idid = ARKDense(_arkodeMem, _dimSys);
    /*
    #endif
    */
    if (_idid < 0)
      throw ModelicaSimulationError(SOLVER,"Cvode::initialize()");

  // Use own jacobian matrix
  // Check if Colored Jacobians are worth to use

  if (_idid < 0)
      throw ModelicaSimulationError(SOLVER,"ARKode::initialize()");

    if (_dimZeroFunc)
    {
      _idid = ARKodeRootInit(_arkodeMem, _dimZeroFunc, &ARK_ZerofCallback);

      memset(_zeroSign, 0, _dimZeroFunc * sizeof(int));
      _idid = ARKodeSetRootDirection(_arkodeMem, _zeroSign);
      if (_idid < 0)
        throw ModelicaSimulationError(SOLVER,"CVode::initialize()");
      memset(_zeroSign, -1, _dimZeroFunc * sizeof(int));
      memset(_zeroVal, -1, _dimZeroFunc * sizeof(int));

    }


    _arkode_initialized = true;

    //
    // CVODE is ready for integration
    //
    // BOOST_LOG_SEV(cvode_lg::get(), cvode_info) << "CVode initialized";
  }
}
예제 #3
0
/* Fortran interface routine to initialize ARKode memory 
   structure; functions as an all-in-one interface to the C 
   routines ARKodeCreate, ARKodeSetUserData, ARKodeInit, and 
   ARKodeSStolerances (or ARKodeSVtolerances); see farkode.h 
   for further details */
void FARK_MALLOC(realtype *t0, realtype *y0, int *imex, 
		 int *iatol, realtype *rtol, realtype *atol, 
		 long int *iout, realtype *rout, 
		 long int *ipar, realtype *rpar, int *ier) {

  N_Vector Vatol;
  FARKUserData ARK_userdata;
  realtype reltol, abstol;

  *ier = 0;

  /* Check for required vector operations */
  if(F2C_ARKODE_vec->ops->nvgetarraypointer == NULL) {
    *ier = -1;
    printf("Error: getarraypointer vector operation is not implemented.\n\n");
    return;
  }
  if(F2C_ARKODE_vec->ops->nvsetarraypointer == NULL) {
    *ier = -1;
    printf("Error: setarraypointer vector operation is not implemented.\n\n");
    return;
  }
  if(F2C_ARKODE_vec->ops->nvcloneempty == NULL) {
    *ier = -1;
    printf("Error: cloneempty vector operation is not implemented.\n\n");
    return;
  }

  /* Initialize all pointers to NULL */
  ARK_arkodemem = NULL;
  Vatol = NULL;

  /* initialize global constants to zero */
  ARK_nrtfn = 0;
  ARK_ls = 0;
  ARK_mass_ls = 0;

  /* Create ARKODE object */
  ARK_arkodemem = ARKodeCreate();
  if (ARK_arkodemem == NULL) {
    *ier = -1;
    return;
  }

  /* Set and attach user data */
  ARK_userdata = NULL;
  ARK_userdata = (FARKUserData) malloc(sizeof *ARK_userdata);
  if (ARK_userdata == NULL) {
    *ier = -1;
    return;
  }
  ARK_userdata->rpar = rpar;
  ARK_userdata->ipar = ipar;
  *ier = ARKodeSetUserData(ARK_arkodemem, ARK_userdata);
  if(*ier != ARK_SUCCESS) {
    free(ARK_userdata); ARK_userdata = NULL;
    *ier = -1;
    return;
  }

  /* Set data in F2C_ARKODE_vec to y0 */
  N_VSetArrayPointer(y0, F2C_ARKODE_vec);

  /* Call ARKodeInit based on imex argument */
  switch (*imex) {
  case 0:  /* purely implicit */
    *ier = ARKodeInit(ARK_arkodemem, NULL, FARKfi, 
		      *t0, F2C_ARKODE_vec);
    break;
  case 1:  /* purely explicit */
    *ier = ARKodeInit(ARK_arkodemem, FARKfe, NULL, 
		      *t0, F2C_ARKODE_vec);
    break;
  case 2:  /* imex */
    *ier = ARKodeInit(ARK_arkodemem, FARKfe, FARKfi, 
		      *t0, F2C_ARKODE_vec);
    break;
  }
    
  /* Reset data pointers */
  N_VSetArrayPointer(NULL, F2C_ARKODE_vec);

  /* On failure, exit */
  if(*ier != ARK_SUCCESS) {
    free(ARK_userdata);
    ARK_userdata = NULL;
    *ier = -1;
    return;
  }

  /* Set tolerances -- if <= 0, keep as defaults */
  reltol=1.e-4;
  abstol=1.e-9;
  if (*rtol > 0.0)  reltol = *rtol;
  switch (*iatol) {
  case 1:
    if (*atol > 0.0)  abstol = *atol;
    *ier = ARKodeSStolerances(ARK_arkodemem, reltol, abstol); 
    break;
  case 2:
    Vatol = N_VCloneEmpty(F2C_ARKODE_vec);
    if (Vatol == NULL) {
      free(ARK_userdata);
      ARK_userdata = NULL;
      *ier = -1;
      return;
    }
    N_VSetArrayPointer(atol, Vatol);
    if (N_VMin(Vatol) <= 0.0)  N_VConst(abstol, Vatol);
    *ier = ARKodeSVtolerances(ARK_arkodemem, reltol, Vatol);
    N_VDestroy(Vatol);
    break;
  }

  /* On failure, exit */
  if(*ier != ARK_SUCCESS) {
    free(ARK_userdata); 
    ARK_userdata = NULL;
    *ier = -1;
    return;
  }

  /* store pointers to optional output arrays in global vars */
  ARK_iout = iout;
  ARK_rout = rout;

  /* Store the unit roundoff in rout for user access */
  ARK_rout[5] = UNIT_ROUNDOFF;

  return;
}
예제 #4
0
/* Fortran interface routine to re-initialize ARKode memory 
   structure; functions as an all-in-one interface to the C 
   routines ARKodeReInit and ARKodeSStolerances (or 
   ARKodeSVtolerances); see farkode.h for further details */
void FARK_REINIT(realtype *t0, realtype *y0, int *imex, int *iatol, 
		 realtype *rtol, realtype *atol, int *ier) {

  N_Vector Vatol;
  realtype reltol, abstol;
  *ier = 0;

  /* Initialize all pointers to NULL */
  Vatol = NULL;

  /* Set data in F2C_ARKODE_vec to y0 */
  N_VSetArrayPointer(y0, F2C_ARKODE_vec);

  /* Call ARKodeReInit based on imex argument */
  switch (*imex) {
  case 0:  /* purely implicit */
    *ier = ARKodeReInit(ARK_arkodemem, NULL, FARKfi, 
			*t0, F2C_ARKODE_vec);
    break;
  case 1:  /* purely explicit */
    *ier = ARKodeReInit(ARK_arkodemem, FARKfe, NULL, 
			*t0, F2C_ARKODE_vec);
    break;
  case 2:  /* imex */
    *ier = ARKodeReInit(ARK_arkodemem, FARKfe, FARKfi, 
			*t0, F2C_ARKODE_vec);
    break;
  }

  /* Reset data pointers */
  N_VSetArrayPointer(NULL, F2C_ARKODE_vec);

  /* On failure, exit */
  if (*ier != ARK_SUCCESS) {
    *ier = -1;
    return;
  }

  /* Set tolerances */
  reltol=1.e-4;
  abstol=1.e-9;
  if (*rtol > 0.0)  reltol = *rtol;
  switch (*iatol) {
  case 1:
    if (*atol > 0.0)  abstol = *atol;
    *ier = ARKodeSStolerances(ARK_arkodemem, reltol, abstol); 
    break;
  case 2:
    Vatol = N_VCloneEmpty(F2C_ARKODE_vec);
    if (Vatol == NULL) {
      *ier = -1;
      return;
    }
    N_VSetArrayPointer(atol, Vatol);
    if (N_VMin(Vatol) <= 0.0)  N_VConst(abstol, Vatol);
    *ier = ARKodeSVtolerances(ARK_arkodemem, reltol, Vatol);
    N_VDestroy(Vatol);
    break;
  }

  /* On failure, exit */
  if (*ier != ARK_SUCCESS) {
    *ier = -1;
    return;
  }

  return;
}
예제 #5
0
/* Main Program */
int main()
{
  /* general problem parameters */
  realtype T0 = RCONST(0.0);     /* initial time */
  realtype T1 = RCONST(0.4);     /* first output time */
  realtype TMult = RCONST(10.0); /* output time multiplication factor */
  int Nt = 12;                   /* total number of output times */
  long int NEQ = 3;              /* number of dependent vars. */
  realtype reltol;
  int rootsfound[2];
  long int nst, nst_a, nfe, nfi, nsetups;
  long int nje, nfeLS, nni, ncfn, netf, nge;
  int flag, rtflag;              /* reusable error-checking flags */
  FILE *UFID;
  realtype t, tout;
  int iout;

  /* general problem variables */
  N_Vector y = NULL;             /* empty vector for storing solution */
  N_Vector atols = NULL;         /* empty vector for absolute tolerances */
  void *arkode_mem = NULL;       /* empty ARKode memory structure */

  /* set up the initial conditions */
  realtype u0 = RCONST(1.0);
  realtype v0 = RCONST(0.0);
  realtype w0 = RCONST(0.0);

  /* Initial problem output */
  printf("\nRobertson ODE test problem (with rootfinding):\n");
  printf("    initial conditions:  u0 = %g,  v0 = %g,  w0 = %g\n",u0,v0,w0);

  /* Initialize data structures */
  y = N_VNew_Serial(NEQ);        /* Create serial vector for solution */
  if (check_flag((void *) y, "N_VNew_Serial", 0)) return 1;
  atols = N_VNew_Serial(NEQ);    /* Create serial vector absolute tolerances */
  if (check_flag((void *) atols, "N_VNew_Serial", 0)) return 1;
  NV_Ith_S(y,0) = u0;            /* Set initial conditions into y */
  NV_Ith_S(y,1) = v0;
  NV_Ith_S(y,2) = w0;
  arkode_mem = ARKodeCreate();   /* Create the solver memory */
  if (check_flag((void *)arkode_mem, "ARKodeCreate", 0)) return 1;

  /* Call ARKodeInit to initialize the integrator memory and specify the
     hand-side side function in y'=f(t,y), the inital time T0, and
     the initial dependent variable vector y.  Note: since this
     problem is fully implicit, we set f_E to NULL and f_I to f. */
  flag = ARKodeInit(arkode_mem, NULL, f, T0, y);
  if (check_flag(&flag, "ARKodeInit", 1)) return 1;

  /* Set tolerances */
  reltol = RCONST(1.0e-4);
  NV_Ith_S(atols,0) = RCONST(1.0e-8);
  NV_Ith_S(atols,1) = RCONST(1.0e-11);
  NV_Ith_S(atols,2) = RCONST(1.0e-8);

  /* Set routines */
  flag = ARKodeSetMaxErrTestFails(arkode_mem, 20);        /* Increase max error test fails */
  if (check_flag(&flag, "ARKodeSetMaxErrTestFails", 1)) return 1;
  flag = ARKodeSetMaxNonlinIters(arkode_mem, 8);          /* Increase max nonlinear iterations  */
  if (check_flag(&flag, "ARKodeSetMaxNonlinIters", 1)) return 1;
  flag = ARKodeSetNonlinConvCoef(arkode_mem, 1.e-7);      /* Update nonlinear solver convergence coeff. */
  if (check_flag(&flag, "ARKodeSetNonlinConvCoef", 1)) return 1;
  flag = ARKodeSetMaxNumSteps(arkode_mem, 100000);        /* Increase max number of steps */
  if (check_flag(&flag, "ARKodeSetMaxNumSteps", 1)) return 1;
  flag = ARKodeSVtolerances(arkode_mem, reltol, atols);   /* Specify tolerances */
  if (check_flag(&flag, "ARKodeSStolerances", 1)) return 1;

  /* Specify the root-finding function, having 2 equations */
  flag = ARKodeRootInit(arkode_mem, 2, g);
  if (check_flag(&flag, "ARKodeRootInit", 1)) return 1;

  /* Linear solver specification */
  flag = ARKDense(arkode_mem, NEQ);                /* Specify dense linear solver */
  if (check_flag(&flag, "ARKDense", 1)) return 1;
  flag = ARKDlsSetDenseJacFn(arkode_mem, Jac);     /* Set the Jacobian routine */
  if (check_flag(&flag, "ARKDlsSetDenseJacFn", 1)) return 1;

  /* Open output stream for results, output comment line */
  UFID = fopen("solution.txt","w");
  fprintf(UFID,"# t u v w\n");

  /* output initial condition to disk */
  fprintf(UFID," %.16e %.16e %.16e %.16e\n", 
	  T0, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));  

  /* Main time-stepping loop: calls ARKode to perform the integration, then
     prints results.  Stops when the final time has been reached */
  t = T0;
  printf("        t             u             v             w\n");
  printf("   -----------------------------------------------------\n");
  printf("  %12.5e  %12.5e  %12.5e  %12.5e\n",
      t, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));
  tout = T1;
  iout = 0;
  while(1) {

    flag = ARKode(arkode_mem, tout, y, &t, ARK_NORMAL);     /* call integrator */
    if (check_flag(&flag, "ARKode", 1)) break;
    printf("  %12.5e  %12.5e  %12.5e  %12.5e\n",  t,        /* access/print solution */
        NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));
    fprintf(UFID," %.16e %.16e %.16e %.16e\n", 
	    t, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));  
    if (flag == ARK_ROOT_RETURN) {                          /* check if a root was found */
      rtflag = ARKodeGetRootInfo(arkode_mem, rootsfound);
      if (check_flag(&rtflag, "ARKodeGetRootInfo", 1)) return 1;
      printf("      rootsfound[] = %3d %3d\n",
          rootsfound[0], rootsfound[1]);
    }
    if (flag >= 0) {                                        /* successful solve: update output time */
      iout++;
      tout *= TMult;
    } else {                                                /* unsuccessful solve: break */
      fprintf(stderr,"Solver failure, stopping integration\n");
      break;
    }
    if (iout == Nt) break;                                  /* stop after enough outputs */
  }
  printf("   -----------------------------------------------------\n");
  fclose(UFID);

  /* Print some final statistics */
  flag = ARKodeGetNumSteps(arkode_mem, &nst);
  check_flag(&flag, "ARKodeGetNumSteps", 1);
  flag = ARKodeGetNumStepAttempts(arkode_mem, &nst_a);
  check_flag(&flag, "ARKodeGetNumStepAttempts", 1);
  flag = ARKodeGetNumRhsEvals(arkode_mem, &nfe, &nfi);
  check_flag(&flag, "ARKodeGetNumRhsEvals", 1);
  flag = ARKodeGetNumLinSolvSetups(arkode_mem, &nsetups);
  check_flag(&flag, "ARKodeGetNumLinSolvSetups", 1);
  flag = ARKodeGetNumErrTestFails(arkode_mem, &netf);
  check_flag(&flag, "ARKodeGetNumErrTestFails", 1);
  flag = ARKodeGetNumNonlinSolvIters(arkode_mem, &nni);
  check_flag(&flag, "ARKodeGetNumNonlinSolvIters", 1);
  flag = ARKodeGetNumNonlinSolvConvFails(arkode_mem, &ncfn);
  check_flag(&flag, "ARKodeGetNumNonlinSolvConvFails", 1);
  flag = ARKDlsGetNumJacEvals(arkode_mem, &nje);
  check_flag(&flag, "ARKDlsGetNumJacEvals", 1);
  flag = ARKDlsGetNumRhsEvals(arkode_mem, &nfeLS);
  check_flag(&flag, "ARKDlsGetNumRhsEvals", 1);
  flag = ARKodeGetNumGEvals(arkode_mem, &nge);
  check_flag(&flag, "ARKodeGetNumGEvals", 1);

  printf("\nFinal Solver Statistics:\n");
  printf("   Internal solver steps = %li (attempted = %li)\n", 
	 nst, nst_a);
  printf("   Total RHS evals:  Fe = %li,  Fi = %li\n", nfe, nfi);
  printf("   Total linear solver setups = %li\n", nsetups);
  printf("   Total RHS evals for setting up the linear system = %li\n", nfeLS);
  printf("   Total number of Jacobian evaluations = %li\n", nje);
  printf("   Total number of Newton iterations = %li\n", nni);
  printf("   Total root-function g evals = %li\n", nge);
  printf("   Total number of nonlinear solver convergence failures = %li\n", ncfn);
  printf("   Total number of error test failures = %li\n", netf);

  /* Clean up and return with successful completion */
  N_VDestroy_Serial(y);        /* Free y vector */
  ARKodeFree(&arkode_mem);     /* Free integrator memory */
  return 0;
}