/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % C y c l e C o l o r m a p I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % CycleColormap() displaces an image's colormap by a given number of % positions. If you cycle the colormap a number of times you can produce % a psychodelic effect. % % WARNING: this assumes an images colormap is in a well know and defined % order. Currently Imagemagick has no way of setting that order. % % The format of the CycleColormapImage method is: % % MagickBooleanType CycleColormapImage(Image *image,const ssize_t displace, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o displace: displace the colormap this amount. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType CycleColormapImage(Image *image, const ssize_t displace,ExceptionInfo *exception) { CacheView *image_view; MagickBooleanType status; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (image->storage_class == DirectClass) (void) SetImageType(image,PaletteType,exception); status=MagickTrue; image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) \ magick_threads(image,image,1,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register ssize_t x; register Quantum *restrict q; ssize_t index; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { index=(ssize_t) (GetPixelIndex(image,q)+displace) % image->colors; if (index < 0) index+=(ssize_t) image->colors; SetPixelIndex(image,(Quantum) index,q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) index,q); q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); return(status); }
MAGICK_NET_EXPORT CacheView *PixelCollection_Create(const Image *image, ExceptionInfo **exception) { CacheView *result; MAGICK_NET_GET_EXCEPTION; result = AcquireAuthenticCacheView(image, exceptionInfo); MAGICK_NET_SET_EXCEPTION; return result; }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S e p a r a t e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SeparateImage() separates a channel from the image and returns it as a % grayscale image. % % The format of the SeparateImage method is: % % Image *SeparateImage(const Image *image,const ChannelType channel, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o channel: the image channel. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *SeparateImage(const Image *image, const ChannelType channel_type,ExceptionInfo *exception) { #define GetChannelBit(mask,bit) (((size_t) (mask) >> (size_t) (bit)) & 0x01) #define SeparateImageTag "Separate/Image" CacheView *image_view, *separate_view; Image *separate_image; MagickBooleanType status; MagickOffsetType progress; ssize_t y; /* Initialize separate image attributes. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); separate_image=CloneImage(image,image->columns,image->rows,MagickTrue, exception); if (separate_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(separate_image,DirectClass,exception) == MagickFalse) { separate_image=DestroyImage(separate_image); return((Image *) NULL); } (void) SetImageColorspace(separate_image,GRAYColorspace,exception); separate_image->alpha_trait=UndefinedPixelTrait; /* Separate image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); separate_view=AcquireAuthenticCacheView(separate_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *restrict p; register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(separate_view,0,y,separate_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; if (GetPixelReadMask(image,p) == 0) { SetPixelBackgoundColor(separate_image,q); p+=GetPixelChannels(image); q+=GetPixelChannels(separate_image); continue; } SetPixelChannel(separate_image,GrayPixelChannel,0,q); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if ((traits == UndefinedPixelTrait) || (GetChannelBit(channel_type,channel) == 0)) continue; SetPixelChannel(separate_image,GrayPixelChannel,p[i],q); } p+=GetPixelChannels(image); q+=GetPixelChannels(separate_image); } if (SyncCacheViewAuthenticPixels(separate_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_SeparateImage) #endif proceed=SetImageProgress(image,SeparateImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } separate_view=DestroyCacheView(separate_view); image_view=DestroyCacheView(image_view); if (status == MagickFalse) separate_image=DestroyImage(separate_image); return(separate_image); }
static MagickBooleanType ChannelImage(Image *destination_image, const PixelChannel destination_channel,const ChannelFx channel_op, const Image *source_image,const PixelChannel source_channel, const Quantum pixel,ExceptionInfo *exception) { CacheView *source_view, *destination_view; MagickBooleanType status; size_t height, width; ssize_t y; status=MagickTrue; source_view=AcquireVirtualCacheView(source_image,exception); destination_view=AcquireAuthenticCacheView(destination_image,exception); height=MagickMin(source_image->rows,destination_image->rows); width=MagickMin(source_image->columns,destination_image->columns); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(source_image,source_image,height,1) #endif for (y=0; y < (ssize_t) height; y++) { PixelTrait destination_traits, source_traits; register const Quantum *restrict p; register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(source_view,0,y,source_image->columns,1, exception); q=GetCacheViewAuthenticPixels(destination_view,0,y, destination_image->columns,1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } destination_traits=GetPixelChannelTraits(destination_image, destination_channel); source_traits=GetPixelChannelTraits(source_image,source_channel); if ((destination_traits == UndefinedPixelTrait) || (source_traits == UndefinedPixelTrait)) continue; for (x=0; x < (ssize_t) width; x++) { if (channel_op == AssignChannelOp) SetPixelChannel(destination_image,destination_channel,pixel,q); else SetPixelChannel(destination_image,destination_channel, GetPixelChannel(source_image,source_channel,p),q); p+=GetPixelChannels(source_image); q+=GetPixelChannels(destination_image); } if (SyncCacheViewAuthenticPixels(destination_view,exception) == MagickFalse) status=MagickFalse; } destination_view=DestroyCacheView(destination_view); source_view=DestroyCacheView(source_view); return(status); }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % C o m b i n e I m a g e s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % CombineImages() combines one or more images into a single image. The % grayscale value of the pixels of each image in the sequence is assigned in % order to the specified channels of the combined image. The typical % ordering would be image 1 => Red, 2 => Green, 3 => Blue, etc. % % The format of the CombineImages method is: % % Image *CombineImages(const Image *images,const ColorspaceType colorspace, % ExceptionInfo *exception) % % A description of each parameter follows: % % o images: the image sequence. % % o colorspace: the image colorspace. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *CombineImages(const Image *image, const ColorspaceType colorspace,ExceptionInfo *exception) { #define CombineImageTag "Combine/Image" CacheView *combine_view; Image *combine_image; MagickBooleanType status; MagickOffsetType progress; ssize_t y; /* Ensure the image are the same size. */ assert(image != (const Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); combine_image=CloneImage(image,0,0,MagickTrue,exception); if (combine_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(combine_image,DirectClass,exception) == MagickFalse) { combine_image=DestroyImage(combine_image); return((Image *) NULL); } (void) SetImageColorspace(combine_image,colorspace,exception); if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) combine_image->alpha_trait=BlendPixelTrait; /* Combine images. */ status=MagickTrue; progress=0; combine_view=AcquireAuthenticCacheView(combine_image,exception); for (y=0; y < (ssize_t) combine_image->rows; y++) { CacheView *image_view; const Image *next; Quantum *pixels; register const Quantum *restrict p; register Quantum *restrict q; register ssize_t i; if (status == MagickFalse) continue; pixels=GetCacheViewAuthenticPixels(combine_view,0,y,combine_image->columns, 1,exception); if (pixels == (Quantum *) NULL) { status=MagickFalse; continue; } next=image; for (i=0; i < (ssize_t) GetPixelChannels(combine_image); i++) { register ssize_t x; PixelChannel channel=GetPixelChannelChannel(combine_image,i); PixelTrait traits=GetPixelChannelTraits(combine_image,channel); if (traits == UndefinedPixelTrait) continue; if (next == (Image *) NULL) continue; image_view=AcquireVirtualCacheView(next,exception); p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception); if (p == (const Quantum *) NULL) continue; q=pixels; for (x=0; x < (ssize_t) combine_image->columns; x++) { if (x < (ssize_t) next->columns) { q[i]=GetPixelGray(next,p); p+=GetPixelChannels(next); } q+=GetPixelChannels(combine_image); } image_view=DestroyCacheView(image_view); next=GetNextImageInList(next); } if (SyncCacheViewAuthenticPixels(combine_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; proceed=SetImageProgress(image,CombineImageTag,progress++, combine_image->rows); if (proceed == MagickFalse) status=MagickFalse; } } combine_view=DestroyCacheView(combine_view); if (status == MagickFalse) combine_image=DestroyImage(combine_image); return(combine_image); }
static MagickBooleanType MergeConnectedComponents(Image *image, const size_t number_objects,const double area_threshold, ExceptionInfo *exception) { CacheView *image_view; CCObject *object; MagickBooleanType status; register ssize_t i; ssize_t y; /* Collect statistics on unique objects. */ object=(CCObject *) AcquireQuantumMemory(number_objects,sizeof(*object)); if (object == (CCObject *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(), ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); return(MagickFalse); } (void) ResetMagickMemory(object,0,number_objects*sizeof(*object)); for (i=0; i < (ssize_t) number_objects; i++) { object[i].id=i; object[i].bounding_box.x=(ssize_t) image->columns; object[i].bounding_box.y=(ssize_t) image->rows; } status=MagickTrue; image_view=AcquireVirtualCacheView(image,exception); for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *restrict p; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const PixelPacket *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { i=(ssize_t) p->red; if (x < object[i].bounding_box.x) object[i].bounding_box.x=x; if (x > (ssize_t) object[i].bounding_box.width) object[i].bounding_box.width=(size_t) x; if (y < object[i].bounding_box.y) object[i].bounding_box.y=y; if (y > (ssize_t) object[i].bounding_box.height) object[i].bounding_box.height=(size_t) y; object[i].area++; p++; } } image_view=DestroyCacheView(image_view); for (i=0; i < (ssize_t) number_objects; i++) { object[i].bounding_box.width-=(object[i].bounding_box.x-1); object[i].bounding_box.height-=(object[i].bounding_box.y-1); } /* Merge objects below area threshold. */ image_view=AcquireAuthenticCacheView(image,exception); for (i=0; i < (ssize_t) number_objects; i++) { double census; RectangleInfo bounding_box; register ssize_t j; size_t id; if (status == MagickFalse) continue; if ((double) object[i].area >= area_threshold) continue; for (j=0; j < (ssize_t) number_objects; j++) object[j].census=0; bounding_box=object[i].bounding_box; for (y=0; y < (ssize_t) bounding_box.height+2; y++) { register const PixelPacket *restrict p; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,bounding_box.x-1,bounding_box.y+y- 1,bounding_box.width+2,1,exception); if (p == (const PixelPacket *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) bounding_box.width+2; x++) { j=(ssize_t) p->red; if (j != i) object[j].census++; p++; } } census=0; id=0; for (j=0; j < (ssize_t) number_objects; j++) if (census < object[j].census) { census=object[j].census; id=(size_t) j; } object[id].area+=object[i].area; for (y=0; y < (ssize_t) bounding_box.height; y++) { register PixelPacket *restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,bounding_box.x,bounding_box.y+y, bounding_box.width,1,exception); if (q == (PixelPacket *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) bounding_box.width; x++) { if ((ssize_t) q->red == i) { q->red=(Quantum) id; q->green=q->red; q->blue=q->red; } q++; } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); object=(CCObject *) RelinquishMagickMemory(object); return(status); }
MagickExport MagickBooleanType SortColormapByIntensity(Image *image, ExceptionInfo *exception) { CacheView *image_view; MagickBooleanType status; register ssize_t i; ssize_t y; unsigned short *pixels; assert(image != (Image *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); assert(image->signature == MagickCoreSignature); if (image->storage_class != PseudoClass) return(MagickTrue); /* Allocate memory for pixel indexes. */ pixels=(unsigned short *) AcquireQuantumMemory((size_t) image->colors, sizeof(*pixels)); if (pixels == (unsigned short *) NULL) ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); /* Assign index values to colormap entries. */ #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,1,1) #endif for (i=0; i < (ssize_t) image->colors; i++) image->colormap[i].alpha=(double) i; /* Sort image colormap by decreasing color popularity. */ qsort((void *) image->colormap,(size_t) image->colors, sizeof(*image->colormap),IntensityCompare); /* Update image colormap indexes to sorted colormap order. */ #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) #endif for (i=0; i < (ssize_t) image->colors; i++) pixels[(ssize_t) image->colormap[i].alpha]=(unsigned short) i; status=MagickTrue; image_view=AcquireAuthenticCacheView(image,exception); for (y=0; y < (ssize_t) image->rows; y++) { Quantum index; register ssize_t x; register Quantum *restrict q; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; break; } for (x=0; x < (ssize_t) image->columns; x++) { index=(Quantum) pixels[(ssize_t) GetPixelIndex(image,q)]; SetPixelIndex(image,index,q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) index,q); q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (status == MagickFalse) break; } image_view=DestroyCacheView(image_view); pixels=(unsigned short *) RelinquishMagickMemory(pixels); return(status); }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % F l o o d f i l l P a i n t I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % FloodfillPaintImage() changes the color value of any pixel that matches % target and is an immediate neighbor. If the method FillToBorderMethod is % specified, the color value is changed for any neighbor pixel that does not % match the bordercolor member of image. % % By default target must match a particular pixel color exactly. However, % in many cases two colors may differ by a small amount. The fuzz member of % image defines how much tolerance is acceptable to consider two colors as % the same. For example, set fuzz to 10 and the color red at intensities of % 100 and 102 respectively are now interpreted as the same color for the % purposes of the floodfill. % % The format of the FloodfillPaintImage method is: % % MagickBooleanType FloodfillPaintImage(Image *image, % const DrawInfo *draw_info,const PixelInfo target, % const ssize_t x_offset,const ssize_t y_offset, % const MagickBooleanType invert,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o draw_info: the draw info. % % o target: the RGB value of the target color. % % o x_offset,y_offset: the starting location of the operation. % % o invert: paint any pixel that does not match the target color. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType FloodfillPaintImage(Image *image, const DrawInfo *draw_info,const PixelInfo *target,const ssize_t x_offset, const ssize_t y_offset,const MagickBooleanType invert, ExceptionInfo *exception) { #define MaxStacksize 262144UL #define PushSegmentStack(up,left,right,delta) \ { \ if (s >= (segment_stack+MaxStacksize)) \ ThrowBinaryException(DrawError,"SegmentStackOverflow",image->filename) \ else \ { \ if ((((up)+(delta)) >= 0) && (((up)+(delta)) < (ssize_t) image->rows)) \ { \ s->x1=(double) (left); \ s->y1=(double) (up); \ s->x2=(double) (right); \ s->y2=(double) (delta); \ s++; \ } \ } \ } CacheView *floodplane_view, *image_view; Image *floodplane_image; MagickBooleanType skip, status; MemoryInfo *segment_info; PixelInfo fill_color, pixel; register SegmentInfo *s; SegmentInfo *segment_stack; ssize_t offset, start, x, x1, x2, y; /* Check boundary conditions. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(draw_info != (DrawInfo *) NULL); assert(draw_info->signature == MagickCoreSignature); if ((x_offset < 0) || (x_offset >= (ssize_t) image->columns)) return(MagickFalse); if ((y_offset < 0) || (y_offset >= (ssize_t) image->rows)) return(MagickFalse); if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse) return(MagickFalse); if (IsGrayColorspace(image->colorspace) != MagickFalse) (void) SetImageColorspace(image,sRGBColorspace,exception); if ((image->alpha_trait == UndefinedPixelTrait) && (draw_info->fill.alpha_trait != UndefinedPixelTrait)) (void) SetImageAlpha(image,OpaqueAlpha,exception); /* Set floodfill state. */ floodplane_image=CloneImage(image,image->columns,image->rows,MagickTrue, exception); if (floodplane_image == (Image *) NULL) return(MagickFalse); floodplane_image->alpha_trait=UndefinedPixelTrait; floodplane_image->colorspace=GRAYColorspace; (void) QueryColorCompliance("#000",AllCompliance, &floodplane_image->background_color,exception); (void) SetImageBackgroundColor(floodplane_image,exception); segment_info=AcquireVirtualMemory(MaxStacksize,sizeof(*segment_stack)); if (segment_info == (MemoryInfo *) NULL) { floodplane_image=DestroyImage(floodplane_image); ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); } segment_stack=(SegmentInfo *) GetVirtualMemoryBlob(segment_info); /* Push initial segment on stack. */ status=MagickTrue; x=x_offset; y=y_offset; start=0; s=segment_stack; PushSegmentStack(y,x,x,1); PushSegmentStack(y+1,x,x,-1); GetPixelInfo(image,&pixel); image_view=AcquireVirtualCacheView(image,exception); floodplane_view=AcquireAuthenticCacheView(floodplane_image,exception); while (s > segment_stack) { register const Quantum *restrict p; register Quantum *restrict q; register ssize_t x; /* Pop segment off stack. */ s--; x1=(ssize_t) s->x1; x2=(ssize_t) s->x2; offset=(ssize_t) s->y2; y=(ssize_t) s->y1+offset; /* Recolor neighboring pixels. */ p=GetCacheViewVirtualPixels(image_view,0,y,(size_t) (x1+1),1,exception); q=GetCacheViewAuthenticPixels(floodplane_view,0,y,(size_t) (x1+1),1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) break; p+=x1*GetPixelChannels(image); q+=x1*GetPixelChannels(floodplane_image); for (x=x1; x >= 0; x--) { if (GetPixelGray(floodplane_image,q) != 0) break; GetPixelInfoPixel(image,p,&pixel); if (IsFuzzyEquivalencePixelInfo(&pixel,target) == invert) break; SetPixelGray(floodplane_image,QuantumRange,q); p-=GetPixelChannels(image); q-=GetPixelChannels(floodplane_image); } if (SyncCacheViewAuthenticPixels(floodplane_view,exception) == MagickFalse) break; skip=x >= x1 ? MagickTrue : MagickFalse; if (skip == MagickFalse) { start=x+1; if (start < x1) PushSegmentStack(y,start,x1-1,-offset); x=x1+1; } do { if (skip == MagickFalse) { if (x < (ssize_t) image->columns) { p=GetCacheViewVirtualPixels(image_view,x,y,image->columns-x,1, exception); q=GetCacheViewAuthenticPixels(floodplane_view,x,y,image->columns- x,1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) break; for ( ; x < (ssize_t) image->columns; x++) { if (GetPixelGray(floodplane_image,q) != 0) break; GetPixelInfoPixel(image,p,&pixel); if (IsFuzzyEquivalencePixelInfo(&pixel,target) == invert) break; SetPixelGray(floodplane_image,QuantumRange,q); p+=GetPixelChannels(image); q+=GetPixelChannels(floodplane_image); } status=SyncCacheViewAuthenticPixels(floodplane_view,exception); if (status == MagickFalse) break; } PushSegmentStack(y,start,x-1,offset); if (x > (x2+1)) PushSegmentStack(y,x2+1,x-1,-offset); } skip=MagickFalse; x++; if (x <= x2) { p=GetCacheViewVirtualPixels(image_view,x,y,(size_t) (x2-x+1),1, exception); q=GetCacheViewAuthenticPixels(floodplane_view,x,y,(size_t) (x2-x+1),1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) break; for ( ; x <= x2; x++) { if (GetPixelGray(floodplane_image,q) != 0) break; GetPixelInfoPixel(image,p,&pixel); if (IsFuzzyEquivalencePixelInfo(&pixel,target) != invert) break; p+=GetPixelChannels(image); q+=GetPixelChannels(floodplane_image); } } start=x; } while (x <= x2); } status=MagickTrue; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(floodplane_image,image,floodplane_image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *restrict p; register Quantum *restrict q; register ssize_t x; /* Tile fill color onto floodplane. */ if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(floodplane_view,0,y,image->columns,1,exception); q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { if (GetPixelGray(floodplane_image,p) != 0) { (void) GetFillColor(draw_info,x,y,&fill_color,exception); SetPixelViaPixelInfo(image,&fill_color,q); } p+=GetPixelChannels(floodplane_image); q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } floodplane_view=DestroyCacheView(floodplane_view); image_view=DestroyCacheView(image_view); segment_info=RelinquishVirtualMemory(segment_info); floodplane_image=DestroyImage(floodplane_image); return(status); }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S e t I m a g e A l p h a C h a n n e l % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SetImageAlphaChannel() activates, deactivates, resets, or sets the alpha % channel. % % The format of the SetImageAlphaChannel method is: % % MagickBooleanType SetImageAlphaChannel(Image *image, % const AlphaChannelType alpha_type) % % A description of each parameter follows: % % o image: the image. % % o alpha_type: The alpha channel type: ActivateAlphaChannel, % CopyAlphaChannel, DeactivateAlphaChannel, ExtractAlphaChannel, % OpaqueAlphaChannel, ResetAlphaChannel, SetAlphaChannel, % ShapeAlphaChannel, and TransparentAlphaChannel. % */ MagickExport MagickBooleanType SetImageAlphaChannel(Image *image, const AlphaChannelType alpha_type) { MagickBooleanType status; assert(image != (Image *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); assert(image->signature == MagickSignature); status=MagickTrue; switch (alpha_type) { case ActivateAlphaChannel: { image->matte=MagickTrue; break; } case BackgroundAlphaChannel: { CacheView *image_view; ExceptionInfo *exception; IndexPacket index; MagickBooleanType status; MagickPixelPacket background; PixelPacket pixel; ssize_t y; /* Set transparent pixels to background color. */ if (image->matte == MagickFalse) break; if (SetImageStorageClass(image,DirectClass) == MagickFalse) break; GetMagickPixelPacket(image,&background); SetMagickPixelPacket(image,&image->background_color,(const IndexPacket *) NULL,&background); if (image->colorspace == CMYKColorspace) ConvertRGBToCMYK(&background); index=0; SetPixelPacket(image,&background,&pixel,&index); status=MagickTrue; exception=(&image->exception); image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register IndexPacket *restrict indexes; register PixelPacket *restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (PixelPacket *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { if (q->opacity == TransparentOpacity) { SetPixelRed(q,pixel.red); SetPixelGreen(q,pixel.green); SetPixelBlue(q,pixel.blue); } q++; } if (image->colorspace == CMYKColorspace) { indexes=GetCacheViewAuthenticIndexQueue(image_view); for (x=0; x < (ssize_t) image->columns; x++) SetPixelIndex(indexes+x,index); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); return(status); } case CopyAlphaChannel: case ShapeAlphaChannel: { /* Special usage case for SeparateImageChannel(): copy grayscale color to the alpha channel. */ status=SeparateImageChannel(image,GrayChannels); image->matte=MagickTrue; /* make sure transparency is now on! */ if (alpha_type == ShapeAlphaChannel) { MagickPixelPacket background; /* Reset all color channels to background color. */ GetMagickPixelPacket(image,&background); SetMagickPixelPacket(image,&(image->background_color),(IndexPacket *) NULL,&background); (void) LevelColorsImage(image,&background,&background,MagickTrue); } break; } case DeactivateAlphaChannel: { image->matte=MagickFalse; break; } case ExtractAlphaChannel: { status=SeparateImageChannel(image,TrueAlphaChannel); image->matte=MagickFalse; break; } case RemoveAlphaChannel: case FlattenAlphaChannel: { CacheView *image_view; ExceptionInfo *exception; IndexPacket index; MagickBooleanType status; MagickPixelPacket background; PixelPacket pixel; ssize_t y; /* Flatten image pixels over the background pixels. */ if (image->matte == MagickFalse) break; if (SetImageStorageClass(image,DirectClass) == MagickFalse) break; GetMagickPixelPacket(image,&background); SetMagickPixelPacket(image,&image->background_color,(const IndexPacket *) NULL,&background); if (image->colorspace == CMYKColorspace) ConvertRGBToCMYK(&background); index=0; SetPixelPacket(image,&background,&pixel,&index); status=MagickTrue; exception=(&image->exception); image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register IndexPacket *restrict indexes; register PixelPacket *restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (PixelPacket *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { double gamma, opacity; gamma=1.0-QuantumScale*QuantumScale*q->opacity*pixel.opacity; opacity=(double) QuantumRange*(1.0-gamma); gamma=PerceptibleReciprocal(gamma); q->red=ClampToQuantum(gamma*MagickOver_((MagickRealType) q->red, (MagickRealType) q->opacity,(MagickRealType) pixel.red, (MagickRealType) pixel.opacity)); q->green=ClampToQuantum(gamma*MagickOver_((MagickRealType) q->green, (MagickRealType) q->opacity,(MagickRealType) pixel.green, (MagickRealType) pixel.opacity)); q->blue=ClampToQuantum(gamma*MagickOver_((MagickRealType) q->blue, (MagickRealType) q->opacity,(MagickRealType) pixel.blue, (MagickRealType) pixel.opacity)); q->opacity=ClampToQuantum(opacity); q++; } if (image->colorspace == CMYKColorspace) { indexes=GetCacheViewAuthenticIndexQueue(image_view); for (x=0; x < (ssize_t) image->columns; x++) SetPixelIndex(indexes+x,index); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); return(status); } case ResetAlphaChannel: /* deprecated */ case OpaqueAlphaChannel: { status=SetImageOpacity(image,OpaqueOpacity); break; } case SetAlphaChannel: { if (image->matte == MagickFalse) status=SetImageOpacity(image,OpaqueOpacity); break; } case TransparentAlphaChannel: { status=SetImageOpacity(image,TransparentOpacity); break; } case UndefinedAlphaChannel: break; } if (status == MagickFalse) return(status); return(SyncImagePixelCache(image,&image->exception)); }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % T r a n s p a r e n t P a i n t I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % TransparentPaintImage() changes the opacity value associated with any pixel % that matches color to the value defined by opacity. % % By default color must match a particular pixel color exactly. However, % in many cases two colors may differ by a small amount. Fuzz defines % how much tolerance is acceptable to consider two colors as the same. % For example, set fuzz to 10 and the color red at intensities of 100 and % 102 respectively are now interpreted as the same color. % % The format of the TransparentPaintImage method is: % % MagickBooleanType TransparentPaintImage(Image *image, % const MagickPixelPacket *target,const Quantum opacity, % const MagickBooleanType invert) % % A description of each parameter follows: % % o image: the image. % % o target: the target color. % % o opacity: the replacement opacity value. % % o invert: paint any pixel that does not match the target color. % */ MagickExport MagickBooleanType TransparentPaintImage(Image *image, const MagickPixelPacket *target,const Quantum opacity, const MagickBooleanType invert) { #define TransparentPaintImageTag "Transparent/Image" CacheView *image_view; ExceptionInfo *exception; MagickBooleanType status; MagickOffsetType progress; MagickPixelPacket zero; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); assert(target != (MagickPixelPacket *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (SetImageStorageClass(image,DirectClass) == MagickFalse) return(MagickFalse); if (image->matte == MagickFalse) (void) SetImageAlphaChannel(image,OpaqueAlphaChannel); /* Make image color transparent. */ status=MagickTrue; progress=0; exception=(&image->exception); GetMagickPixelPacket(image,&zero); image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ IsConcurrentDos(image->columns,image->rows,64) #endif for (y=0; y < (ssize_t) image->rows; y++) { MagickPixelPacket pixel; register IndexPacket *restrict indexes; register ssize_t x; register PixelPacket *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (PixelPacket *) NULL) { status=MagickFalse; continue; } indexes=GetCacheViewAuthenticIndexQueue(image_view); pixel=zero; for (x=0; x < (ssize_t) image->columns; x++) { SetMagickPixelPacket(image,q,indexes+x,&pixel); if (IsMagickColorSimilar(&pixel,target) != invert) q->opacity=opacity; q++; } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_TransparentPaintImage) #endif proceed=SetImageProgress(image,TransparentPaintImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); return(status); }
static MagickBooleanType ForwardFourier(const FourierInfo *fourier_info, Image *image,double *magnitude,double *phase,ExceptionInfo *exception) { CacheView *magnitude_view, *phase_view; double *magnitude_source, *phase_source; Image *magnitude_image, *phase_image; MagickBooleanType status; register IndexPacket *indexes; register ssize_t x; register PixelPacket *q; ssize_t i, y; magnitude_image=GetFirstImageInList(image); phase_image=GetNextImageInList(image); if (phase_image == (Image *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ImageSequenceRequired","`%s'",image->filename); return(MagickFalse); } /* Create "Fourier Transform" image from constituent arrays. */ magnitude_source=(double *) AcquireQuantumMemory((size_t) fourier_info->height,fourier_info->width*sizeof(*magnitude_source)); if (magnitude_source == (double *) NULL) return(MagickFalse); (void) ResetMagickMemory(magnitude_source,0,fourier_info->height* fourier_info->width*sizeof(*magnitude_source)); phase_source=(double *) AcquireQuantumMemory((size_t) fourier_info->height, fourier_info->width*sizeof(*phase_source)); if (phase_source == (double *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(), ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); magnitude_source=(double *) RelinquishMagickMemory(magnitude_source); return(MagickFalse); } status=ForwardQuadrantSwap(fourier_info->height,fourier_info->height, magnitude,magnitude_source); if (status != MagickFalse) status=ForwardQuadrantSwap(fourier_info->height,fourier_info->height,phase, phase_source); CorrectPhaseLHS(fourier_info->height,fourier_info->height,phase_source); if (fourier_info->modulus != MagickFalse) { i=0L; for (y=0L; y < (ssize_t) fourier_info->height; y++) for (x=0L; x < (ssize_t) fourier_info->width; x++) { phase_source[i]/=(2.0*MagickPI); phase_source[i]+=0.5; i++; } } magnitude_view=AcquireAuthenticCacheView(magnitude_image,exception); i=0L; for (y=0L; y < (ssize_t) fourier_info->height; y++) { q=GetCacheViewAuthenticPixels(magnitude_view,0L,y,fourier_info->height,1UL, exception); if (q == (PixelPacket *) NULL) break; indexes=GetCacheViewAuthenticIndexQueue(magnitude_view); for (x=0L; x < (ssize_t) fourier_info->width; x++) { switch (fourier_info->channel) { case RedChannel: default: { SetPixelRed(q,ClampToQuantum(QuantumRange* magnitude_source[i])); break; } case GreenChannel: { SetPixelGreen(q,ClampToQuantum(QuantumRange* magnitude_source[i])); break; } case BlueChannel: { SetPixelBlue(q,ClampToQuantum(QuantumRange* magnitude_source[i])); break; } case OpacityChannel: { SetPixelOpacity(q,ClampToQuantum(QuantumRange* magnitude_source[i])); break; } case IndexChannel: { SetPixelIndex(indexes+x,ClampToQuantum(QuantumRange* magnitude_source[i])); break; } case GrayChannels: { SetPixelGray(q,ClampToQuantum(QuantumRange* magnitude_source[i])); break; } } i++; q++; } status=SyncCacheViewAuthenticPixels(magnitude_view,exception); if (status == MagickFalse) break; } magnitude_view=DestroyCacheView(magnitude_view); i=0L; phase_view=AcquireAuthenticCacheView(phase_image,exception); for (y=0L; y < (ssize_t) fourier_info->height; y++) { q=GetCacheViewAuthenticPixels(phase_view,0L,y,fourier_info->height,1UL, exception); if (q == (PixelPacket *) NULL) break; indexes=GetCacheViewAuthenticIndexQueue(phase_view); for (x=0L; x < (ssize_t) fourier_info->width; x++) { switch (fourier_info->channel) { case RedChannel: default: { SetPixelRed(q,ClampToQuantum(QuantumRange*phase_source[i])); break; } case GreenChannel: { SetPixelGreen(q,ClampToQuantum(QuantumRange*phase_source[i])); break; } case BlueChannel: { SetPixelBlue(q,ClampToQuantum(QuantumRange*phase_source[i])); break; } case OpacityChannel: { SetPixelOpacity(q,ClampToQuantum(QuantumRange*phase_source[i])); break; } case IndexChannel: { SetPixelIndex(indexes+x,ClampToQuantum(QuantumRange*phase_source[i])); break; } case GrayChannels: { SetPixelGray(q,ClampToQuantum(QuantumRange*phase_source[i])); break; } } i++; q++; } status=SyncCacheViewAuthenticPixels(phase_view,exception); if (status == MagickFalse) break; } phase_view=DestroyCacheView(phase_view); phase_source=(double *) RelinquishMagickMemory(phase_source); magnitude_source=(double *) RelinquishMagickMemory(magnitude_source); return(status); }
MagickExport Image *OilPaintImage(const Image *image,const double radius, ExceptionInfo *exception) { #define NumberPaintBins 256 #define OilPaintImageTag "OilPaint/Image" CacheView *image_view, *paint_view; Image *paint_image; MagickBooleanType status; MagickOffsetType progress; size_t **restrict histograms, width; ssize_t y; /* Initialize painted image attributes. */ assert(image != (const Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); width=GetOptimalKernelWidth2D(radius,0.5); paint_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception); if (paint_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(paint_image,DirectClass) == MagickFalse) { InheritException(exception,&paint_image->exception); paint_image=DestroyImage(paint_image); return((Image *) NULL); } histograms=AcquireHistogramThreadSet(NumberPaintBins); if (histograms == (size_t **) NULL) { paint_image=DestroyImage(paint_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } /* Oil paint image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); paint_view=AcquireAuthenticCacheView(paint_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ IsConcurrentDos(image->columns,image->rows,64) #endif for (y=0; y < (ssize_t) image->rows; y++) { register const IndexPacket *restrict indexes; register const PixelPacket *restrict p; register IndexPacket *restrict paint_indexes; register ssize_t x; register PixelPacket *restrict q; register size_t *histogram; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,-((ssize_t) width/2L),y-(ssize_t) (width/2L),image->columns+width,width,exception); q=QueueCacheViewAuthenticPixels(paint_view,0,y,paint_image->columns,1, exception); if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) { status=MagickFalse; continue; } indexes=GetCacheViewVirtualIndexQueue(image_view); paint_indexes=GetCacheViewAuthenticIndexQueue(paint_view); histogram=histograms[GetOpenMPThreadId()]; for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i, u; size_t count; ssize_t j, k, v; /* Assign most frequent color. */ i=0; j=0; count=0; (void) ResetMagickMemory(histogram,0,NumberPaintBins*sizeof(*histogram)); for (v=0; v < (ssize_t) width; v++) { for (u=0; u < (ssize_t) width; u++) { k=(ssize_t) ScaleQuantumToChar(PixelIntensityToQuantum(p+u+i)); histogram[k]++; if (histogram[k] > count) { j=i+u; count=histogram[k]; } } i+=(ssize_t) (image->columns+width); } *q=(*(p+j)); if (image->colorspace == CMYKColorspace) SetPixelIndex(paint_indexes+x,GetPixelIndex( indexes+x+j)); p++; q++; } if (SyncCacheViewAuthenticPixels(paint_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_OilPaintImage) #endif proceed=SetImageProgress(image,OilPaintImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } paint_view=DestroyCacheView(paint_view); image_view=DestroyCacheView(image_view); histograms=DestroyHistogramThreadSet(histograms); if (status == MagickFalse) paint_image=DestroyImage(paint_image); return(paint_image); }
MagickExport MagickBooleanType OpaquePaintImageChannel(Image *image, const ChannelType channel,const MagickPixelPacket *target, const MagickPixelPacket *fill,const MagickBooleanType invert) { #define OpaquePaintImageTag "Opaque/Image" CacheView *image_view; ExceptionInfo *exception; MagickBooleanType status; MagickOffsetType progress; MagickPixelPacket zero; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); assert(target != (MagickPixelPacket *) NULL); assert(fill != (MagickPixelPacket *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (SetImageStorageClass(image,DirectClass) == MagickFalse) return(MagickFalse); if ((IsGrayColorspace(image->colorspace) != MagickFalse) && (IsMagickGray(fill) != MagickFalse)) (void) TransformImageColorspace(image,sRGBColorspace); if ((fill->opacity != OpaqueOpacity) && (image->matte == MagickFalse)) (void) SetImageAlphaChannel(image,OpaqueAlphaChannel); /* Make image color opaque. */ status=MagickTrue; progress=0; exception=(&image->exception); GetMagickPixelPacket(image,&zero); image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ IsConcurrentDos(image->columns,image->rows,64) #endif for (y=0; y < (ssize_t) image->rows; y++) { MagickPixelPacket pixel; register IndexPacket *restrict indexes; register ssize_t x; register PixelPacket *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (PixelPacket *) NULL) { status=MagickFalse; continue; } indexes=GetCacheViewAuthenticIndexQueue(image_view); pixel=zero; for (x=0; x < (ssize_t) image->columns; x++) { SetMagickPixelPacket(image,q,indexes+x,&pixel); if (IsMagickColorSimilar(&pixel,target) != invert) { if ((channel & RedChannel) != 0) SetPixelRed(q,ClampToQuantum(fill->red)); if ((channel & GreenChannel) != 0) SetPixelGreen(q,ClampToQuantum(fill->green)); if ((channel & BlueChannel) != 0) SetPixelBlue(q,ClampToQuantum(fill->blue)); if ((channel & OpacityChannel) != 0) SetPixelOpacity(q,ClampToQuantum(fill->opacity)); if (((channel & IndexChannel) != 0) && (image->colorspace == CMYKColorspace)) SetPixelIndex(indexes+x,ClampToQuantum(fill->index)); } q++; } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_OpaquePaintImageChannel) #endif proceed=SetImageProgress(image,OpaquePaintImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); return(status); }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % F l o o d f i l l P a i n t I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % FloodfillPaintImage() changes the color value of any pixel that matches % target and is an immediate neighbor. If the method FillToBorderMethod is % specified, the color value is changed for any neighbor pixel that does not % match the bordercolor member of image. % % By default target must match a particular pixel color exactly. % However, in many cases two colors may differ by a small amount. The % fuzz member of image defines how much tolerance is acceptable to % consider two colors as the same. For example, set fuzz to 10 and the % color red at intensities of 100 and 102 respectively are now % interpreted as the same color for the purposes of the floodfill. % % The format of the FloodfillPaintImage method is: % % MagickBooleanType FloodfillPaintImage(Image *image, % const ChannelType channel,const DrawInfo *draw_info, % const MagickPixelPacket target,const ssize_t x_offset, % const ssize_t y_offset,const MagickBooleanType invert) % % A description of each parameter follows: % % o image: the image. % % o channel: the channel(s). % % o draw_info: the draw info. % % o target: the RGB value of the target color. % % o x_offset,y_offset: the starting location of the operation. % % o invert: paint any pixel that does not match the target color. % */ MagickExport MagickBooleanType FloodfillPaintImage(Image *image, const ChannelType channel,const DrawInfo *draw_info, const MagickPixelPacket *target,const ssize_t x_offset,const ssize_t y_offset, const MagickBooleanType invert) { #define MaxStacksize (1UL << 15) #define PushSegmentStack(up,left,right,delta) \ { \ if (s >= (segment_stack+MaxStacksize)) \ ThrowBinaryException(DrawError,"SegmentStackOverflow",image->filename) \ else \ { \ if ((((up)+(delta)) >= 0) && (((up)+(delta)) < (ssize_t) image->rows)) \ { \ s->x1=(double) (left); \ s->y1=(double) (up); \ s->x2=(double) (right); \ s->y2=(double) (delta); \ s++; \ } \ } \ } CacheView *floodplane_view, *image_view; ExceptionInfo *exception; Image *floodplane_image; MagickBooleanType skip; MagickPixelPacket fill, pixel; PixelPacket fill_color; register SegmentInfo *s; SegmentInfo *segment_stack; ssize_t offset, start, x, x1, x2, y; /* Check boundary conditions. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(draw_info != (DrawInfo *) NULL); assert(draw_info->signature == MagickSignature); if ((x_offset < 0) || (x_offset >= (ssize_t) image->columns)) return(MagickFalse); if ((y_offset < 0) || (y_offset >= (ssize_t) image->rows)) return(MagickFalse); if (SetImageStorageClass(image,DirectClass) == MagickFalse) return(MagickFalse); if (IsGrayColorspace(image->colorspace) != MagickFalse) (void) TransformImageColorspace(image,sRGBColorspace); if ((image->matte == MagickFalse) && (draw_info->fill.opacity != OpaqueOpacity)) (void) SetImageAlphaChannel(image,OpaqueAlphaChannel); /* Set floodfill state. */ floodplane_image=CloneImage(image,0,0,MagickTrue,&image->exception); if (floodplane_image == (Image *) NULL) return(MagickFalse); (void) SetImageAlphaChannel(floodplane_image,OpaqueAlphaChannel); segment_stack=(SegmentInfo *) AcquireQuantumMemory(MaxStacksize, sizeof(*segment_stack)); if (segment_stack == (SegmentInfo *) NULL) { floodplane_image=DestroyImage(floodplane_image); ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); } /* Push initial segment on stack. */ exception=(&image->exception); x=x_offset; y=y_offset; start=0; s=segment_stack; PushSegmentStack(y,x,x,1); PushSegmentStack(y+1,x,x,-1); GetMagickPixelPacket(image,&fill); GetMagickPixelPacket(image,&pixel); image_view=AcquireVirtualCacheView(image,exception); floodplane_view=AcquireAuthenticCacheView(floodplane_image,exception); while (s > segment_stack) { register const IndexPacket *restrict indexes; register const PixelPacket *restrict p; register ssize_t x; register PixelPacket *restrict q; /* Pop segment off stack. */ s--; x1=(ssize_t) s->x1; x2=(ssize_t) s->x2; offset=(ssize_t) s->y2; y=(ssize_t) s->y1+offset; /* Recolor neighboring pixels. */ p=GetCacheViewVirtualPixels(image_view,0,y,(size_t) (x1+1),1,exception); q=GetCacheViewAuthenticPixels(floodplane_view,0,y,(size_t) (x1+1),1, exception); if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) break; indexes=GetCacheViewVirtualIndexQueue(image_view); p+=x1; q+=x1; for (x=x1; x >= 0; x--) { if (q->opacity == (Quantum) TransparentOpacity) break; SetMagickPixelPacket(image,p,indexes+x,&pixel); if (IsMagickColorSimilar(&pixel,target) == invert) break; q->opacity=(Quantum) TransparentOpacity; p--; q--; } if (SyncCacheViewAuthenticPixels(floodplane_view,exception) == MagickFalse) break; skip=x >= x1 ? MagickTrue : MagickFalse; if (skip == MagickFalse) { start=x+1; if (start < x1) PushSegmentStack(y,start,x1-1,-offset); x=x1+1; } do { if (skip == MagickFalse) { if (x < (ssize_t) image->columns) { p=GetCacheViewVirtualPixels(image_view,x,y,image->columns-x,1, exception); q=GetCacheViewAuthenticPixels(floodplane_view,x,y, image->columns-x,1,exception); if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) break; indexes=GetCacheViewVirtualIndexQueue(image_view); for ( ; x < (ssize_t) image->columns; x++) { if (q->opacity == (Quantum) TransparentOpacity) break; SetMagickPixelPacket(image,p,indexes+x,&pixel); if (IsMagickColorSimilar(&pixel,target) == invert) break; q->opacity=(Quantum) TransparentOpacity; p++; q++; } if (SyncCacheViewAuthenticPixels(floodplane_view,exception) == MagickFalse) break; } PushSegmentStack(y,start,x-1,offset); if (x > (x2+1)) PushSegmentStack(y,x2+1,x-1,-offset); } skip=MagickFalse; x++; if (x <= x2) { p=GetCacheViewVirtualPixels(image_view,x,y,(size_t) (x2-x+1),1, exception); q=GetCacheViewAuthenticPixels(floodplane_view,x,y,(size_t) (x2-x+1),1, exception); if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) break; indexes=GetCacheViewVirtualIndexQueue(image_view); for ( ; x <= x2; x++) { if (q->opacity == (Quantum) TransparentOpacity) break; SetMagickPixelPacket(image,p,indexes+x,&pixel); if (IsMagickColorSimilar(&pixel,target) != invert) break; p++; q++; } } start=x; } while (x <= x2); } for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *restrict p; register IndexPacket *restrict indexes; register ssize_t x; register PixelPacket *restrict q; /* Tile fill color onto floodplane. */ p=GetCacheViewVirtualPixels(floodplane_view,0,y,image->columns,1, exception); q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) break; indexes=GetCacheViewAuthenticIndexQueue(image_view); for (x=0; x < (ssize_t) image->columns; x++) { if (GetPixelOpacity(p) != OpaqueOpacity) { (void) GetFillColor(draw_info,x,y,&fill_color); SetMagickPixelPacket(image,&fill_color,(IndexPacket *) NULL,&fill); if (image->colorspace == CMYKColorspace) ConvertRGBToCMYK(&fill); if ((channel & RedChannel) != 0) SetPixelRed(q,ClampToQuantum(fill.red)); if ((channel & GreenChannel) != 0) SetPixelGreen(q,ClampToQuantum(fill.green)); if ((channel & BlueChannel) != 0) SetPixelBlue(q,ClampToQuantum(fill.blue)); if ((channel & OpacityChannel) != 0) SetPixelOpacity(q,ClampToQuantum(fill.opacity)); if (((channel & IndexChannel) != 0) && (image->colorspace == CMYKColorspace)) SetPixelIndex(indexes+x,ClampToQuantum(fill.index)); } p++; q++; } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) break; } floodplane_view=DestroyCacheView(floodplane_view); image_view=DestroyCacheView(image_view); segment_stack=(SegmentInfo *) RelinquishMagickMemory(segment_stack); floodplane_image=DestroyImage(floodplane_image); return(y == (ssize_t) image->rows ? MagickTrue : MagickFalse); }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % T r a n s p a r e n t P a i n t I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % TransparentPaintImage() changes the opacity value associated with any pixel % that matches color to the value defined by opacity. % % By default color must match a particular pixel color exactly. However, in % many cases two colors may differ by a small amount. Fuzz defines how much % tolerance is acceptable to consider two colors as the same. For example, % set fuzz to 10 and the color red at intensities of 100 and 102 respectively % are now interpreted as the same color. % % The format of the TransparentPaintImage method is: % % MagickBooleanType TransparentPaintImage(Image *image, % const PixelInfo *target,const Quantum opacity, % const MagickBooleanType invert,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o target: the target color. % % o opacity: the replacement opacity value. % % o invert: paint any pixel that does not match the target color. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType TransparentPaintImage(Image *image, const PixelInfo *target,const Quantum opacity,const MagickBooleanType invert, ExceptionInfo *exception) { #define TransparentPaintImageTag "Transparent/Image" CacheView *image_view; MagickBooleanType status; MagickOffsetType progress; PixelInfo zero; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); assert(target != (PixelInfo *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse) return(MagickFalse); if (image->alpha_trait == UndefinedPixelTrait) (void) SetImageAlphaChannel(image,OpaqueAlphaChannel,exception); /* Make image color transparent. */ status=MagickTrue; progress=0; GetPixelInfo(image,&zero); image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { PixelInfo pixel; register ssize_t x; register Quantum *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } pixel=zero; for (x=0; x < (ssize_t) image->columns; x++) { GetPixelInfoPixel(image,q,&pixel); if (IsFuzzyEquivalencePixelInfo(&pixel,target) != invert) SetPixelAlpha(image,opacity,q); q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_TransparentPaintImage) #endif proceed=SetImageProgress(image,TransparentPaintImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); return(status); }
MagickExport Image *OilPaintImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { #define NumberPaintBins 256 #define OilPaintImageTag "OilPaint/Image" CacheView *image_view, *paint_view; Image *linear_image, *paint_image; MagickBooleanType status; MagickOffsetType progress; size_t **histograms, width; ssize_t center, y; /* Initialize painted image attributes. */ assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); width=GetOptimalKernelWidth2D(radius,sigma); linear_image=CloneImage(image,0,0,MagickTrue,exception); paint_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception); if ((linear_image == (Image *) NULL) || (paint_image == (Image *) NULL)) { if (linear_image != (Image *) NULL) linear_image=DestroyImage(linear_image); if (paint_image != (Image *) NULL) linear_image=DestroyImage(paint_image); return((Image *) NULL); } if (SetImageStorageClass(paint_image,DirectClass,exception) == MagickFalse) { linear_image=DestroyImage(linear_image); paint_image=DestroyImage(paint_image); return((Image *) NULL); } histograms=AcquireHistogramThreadSet(NumberPaintBins); if (histograms == (size_t **) NULL) { linear_image=DestroyImage(linear_image); paint_image=DestroyImage(paint_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } /* Oil paint image. */ status=MagickTrue; progress=0; center=(ssize_t) GetPixelChannels(linear_image)*(linear_image->columns+width)* (width/2L)+GetPixelChannels(linear_image)*(width/2L); image_view=AcquireVirtualCacheView(linear_image,exception); paint_view=AcquireAuthenticCacheView(paint_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(linear_image,paint_image,linear_image->rows,1) #endif for (y=0; y < (ssize_t) linear_image->rows; y++) { register const Quantum *restrict p; register Quantum *restrict q; register size_t *histogram; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,-((ssize_t) width/2L),y-(ssize_t) (width/2L),linear_image->columns+width,width,exception); q=QueueCacheViewAuthenticPixels(paint_view,0,y,paint_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } histogram=histograms[GetOpenMPThreadId()]; for (x=0; x < (ssize_t) linear_image->columns; x++) { register ssize_t i, u; size_t count; ssize_t j, k, n, v; /* Assign most frequent color. */ k=0; j=0; count=0; (void) ResetMagickMemory(histogram,0,NumberPaintBins* sizeof(*histogram)); for (v=0; v < (ssize_t) width; v++) { for (u=0; u < (ssize_t) width; u++) { n=(ssize_t) ScaleQuantumToChar(ClampToQuantum(GetPixelIntensity( linear_image,p+GetPixelChannels(linear_image)*(u+k)))); histogram[n]++; if (histogram[n] > count) { j=k+u; count=histogram[n]; } } k+=(ssize_t) (linear_image->columns+width); } for (i=0; i < (ssize_t) GetPixelChannels(linear_image); i++) { PixelChannel channel=GetPixelChannelChannel(linear_image,i); PixelTrait traits=GetPixelChannelTraits(linear_image,channel); PixelTrait paint_traits=GetPixelChannelTraits(paint_image,channel); if ((traits == UndefinedPixelTrait) || (paint_traits == UndefinedPixelTrait)) continue; if (((paint_traits & CopyPixelTrait) != 0) || (GetPixelReadMask(linear_image,p) == 0)) { SetPixelChannel(paint_image,channel,p[center+i],q); continue; } SetPixelChannel(paint_image,channel,p[j*GetPixelChannels(linear_image)+ i],q); } p+=GetPixelChannels(linear_image); q+=GetPixelChannels(paint_image); } if (SyncCacheViewAuthenticPixels(paint_view,exception) == MagickFalse) status=MagickFalse; if (linear_image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_OilPaintImage) #endif proceed=SetImageProgress(linear_image,OilPaintImageTag,progress++, linear_image->rows); if (proceed == MagickFalse) status=MagickFalse; } } paint_view=DestroyCacheView(paint_view); image_view=DestroyCacheView(image_view); histograms=DestroyHistogramThreadSet(histograms); linear_image=DestroyImage(linear_image); if (status == MagickFalse) paint_image=DestroyImage(paint_image); return(paint_image); }
MagickExport MagickBooleanType SetImageAlphaChannel(Image *image, const AlphaChannelOption alpha_type,ExceptionInfo *exception) { CacheView *image_view; MagickBooleanType status; ssize_t y; assert(image != (Image *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); assert(image->signature == MagickSignature); status=MagickTrue; switch (alpha_type) { case ActivateAlphaChannel: { image->alpha_trait=BlendPixelTrait; break; } case AssociateAlphaChannel: { /* Associate alpha. */ status=SetImageStorageClass(image,DirectClass,exception); if (status == MagickFalse) break; image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { double Sa; register ssize_t i; if (GetPixelReadMask(image,q) == 0) { q+=GetPixelChannels(image); continue; } Sa=QuantumScale*GetPixelAlpha(image,q); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if ((traits & UpdatePixelTrait) == 0) continue; q[i]=ClampToQuantum(Sa*q[i]); } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); image->alpha_trait=CopyPixelTrait; return(status); } case BackgroundAlphaChannel: { /* Set transparent pixels to background color. */ if (image->alpha_trait != BlendPixelTrait) break; status=SetImageStorageClass(image,DirectClass,exception); if (status == MagickFalse) break; image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { if (GetPixelAlpha(image,q) == TransparentAlpha) { SetPixelInfoPixel(image,&image->background_color,q); SetPixelChannel(image,AlphaPixelChannel,TransparentAlpha,q); } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); return(status); } case CopyAlphaChannel: case ShapeAlphaChannel: { /* Copy pixel intensity to the alpha channel. */ status=CompositeImage(image,image,IntensityCompositeOp,MagickTrue,0,0, exception); if (alpha_type == ShapeAlphaChannel) (void) LevelImageColors(image,&image->background_color, &image->background_color,MagickTrue,exception); break; } case DeactivateAlphaChannel: { image->alpha_trait=CopyPixelTrait; break; } case DisassociateAlphaChannel: { /* Disassociate alpha. */ status=SetImageStorageClass(image,DirectClass,exception); if (status == MagickFalse) break; image->alpha_trait=BlendPixelTrait; image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { double gamma, Sa; register ssize_t i; if (GetPixelReadMask(image,q) == 0) { q+=GetPixelChannels(image); continue; } Sa=QuantumScale*GetPixelAlpha(image,q); gamma=PerceptibleReciprocal(Sa); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if ((traits & UpdatePixelTrait) == 0) continue; q[i]=ClampToQuantum(gamma*q[i]); } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); return(status); } case DiscreteAlphaChannel: { image->alpha_trait=UpdatePixelTrait; break; } case ExtractAlphaChannel: { status=CompositeImage(image,image,AlphaCompositeOp,MagickTrue,0,0, exception); image->alpha_trait=CopyPixelTrait; break; } case OpaqueAlphaChannel: { status=SetImageAlpha(image,OpaqueAlpha,exception); break; } case RemoveAlphaChannel: { /* Remove transparency. */ if (image->alpha_trait != BlendPixelTrait) break; status=SetImageStorageClass(image,DirectClass,exception); if (status == MagickFalse) break; image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { FlattenPixelInfo(image,&image->background_color, image->background_color.alpha,q,(double) GetPixelAlpha(image,q),q); q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); image->alpha_trait=image->background_color.alpha_trait; return(status); } case SetAlphaChannel: { if (image->alpha_trait != BlendPixelTrait) status=SetImageAlpha(image,OpaqueAlpha,exception); break; } case TransparentAlphaChannel: { status=SetImageAlpha(image,TransparentAlpha,exception); break; } case UndefinedAlphaChannel: break; } if (status == MagickFalse) return(status); return(SyncImagePixelCache(image,exception)); }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S e t I m a g e D e p t h % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SetImageDepth() sets the depth of the image. % % The format of the SetImageDepth method is: % % MagickBooleanType SetImageDepth(Image *image,const size_t depth, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o channel: the channel. % % o depth: the image depth. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType SetImageDepth(Image *image, const size_t depth,ExceptionInfo *exception) { CacheView *image_view; MagickBooleanType status; QuantumAny range; ssize_t y; assert(image != (Image *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); assert(image->signature == MagickSignature); if (depth >= MAGICKCORE_QUANTUM_DEPTH) { image->depth=depth; return(MagickTrue); } range=GetQuantumRange(depth); if (image->storage_class == PseudoClass) { register ssize_t i; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,1,1) #endif for (i=0; i < (ssize_t) image->colors; i++) { if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) image->colormap[i].red=(double) ScaleAnyToQuantum(ScaleQuantumToAny( ClampToQuantum(image->colormap[i].red),range),range); if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) image->colormap[i].green=(double) ScaleAnyToQuantum(ScaleQuantumToAny( ClampToQuantum(image->colormap[i].green),range),range); if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) image->colormap[i].blue=(double) ScaleAnyToQuantum(ScaleQuantumToAny( ClampToQuantum(image->colormap[i].blue),range),range); if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) image->colormap[i].alpha=(double) ScaleAnyToQuantum(ScaleQuantumToAny( ClampToQuantum(image->colormap[i].alpha),range),range); } } status=MagickTrue; image_view=AcquireAuthenticCacheView(image,exception); #if !defined(MAGICKCORE_HDRI_SUPPORT) if (QuantumRange <= MaxMap) { Quantum *depth_map; register ssize_t i; /* Scale pixels to desired (optimized with depth map). */ depth_map=(Quantum *) AcquireQuantumMemory(MaxMap+1,sizeof(*depth_map)); if (depth_map == (Quantum *) NULL) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); for (i=0; i <= (ssize_t) MaxMap; i++) depth_map[i]=ScaleAnyToQuantum(ScaleQuantumToAny((Quantum) i,range), range); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register ssize_t x; register Quantum *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; if (GetPixelReadMask(image,q) == 0) { q+=GetPixelChannels(image); continue; } for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel; PixelTrait traits; channel=GetPixelChannelChannel(image,i); traits=GetPixelChannelTraits(image,channel); if ((traits == UndefinedPixelTrait) || (channel == IndexPixelChannel) || (channel == ReadMaskPixelChannel)) continue; q[i]=depth_map[ScaleQuantumToMap(q[i])]; } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) { status=MagickFalse; continue; } } image_view=DestroyCacheView(image_view); depth_map=(Quantum *) RelinquishMagickMemory(depth_map); if (status != MagickFalse) image->depth=depth; return(status); }
static MagickBooleanType InverseFourierTransform(FourierInfo *fourier_info, fftw_complex *fourier,Image *image,ExceptionInfo *exception) { CacheView *image_view; double *source; fftw_plan fftw_c2r_plan; register IndexPacket *indexes; register PixelPacket *q; register ssize_t i, x; ssize_t y; source=(double *) AcquireQuantumMemory((size_t) fourier_info->height, fourier_info->width*sizeof(*source)); if (source == (double *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(), ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); return(MagickFalse); } #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_InverseFourierTransform) #endif { fftw_c2r_plan=fftw_plan_dft_c2r_2d(fourier_info->width,fourier_info->height, fourier,source,FFTW_ESTIMATE); fftw_execute(fftw_c2r_plan); fftw_destroy_plan(fftw_c2r_plan); } i=0L; image_view=AcquireAuthenticCacheView(image,exception); for (y=0L; y < (ssize_t) fourier_info->height; y++) { if (y >= (ssize_t) image->rows) break; q=GetCacheViewAuthenticPixels(image_view,0L,y,fourier_info->width > image->columns ? image->columns : fourier_info->width,1UL,exception); if (q == (PixelPacket *) NULL) break; indexes=GetCacheViewAuthenticIndexQueue(image_view); for (x=0L; x < (ssize_t) fourier_info->width; x++) { if (x < (ssize_t) image->columns) switch (fourier_info->channel) { case RedChannel: default: { SetPixelRed(q,ClampToQuantum(QuantumRange*source[i])); break; } case GreenChannel: { SetPixelGreen(q,ClampToQuantum(QuantumRange*source[i])); break; } case BlueChannel: { SetPixelBlue(q,ClampToQuantum(QuantumRange*source[i])); break; } case OpacityChannel: { SetPixelOpacity(q,ClampToQuantum(QuantumRange*source[i])); break; } case IndexChannel: { SetPixelIndex(indexes+x,ClampToQuantum(QuantumRange*source[i])); break; } case GrayChannels: { SetPixelGray(q,ClampToQuantum(QuantumRange*source[i])); break; } } i++; q++; } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) break; } image_view=DestroyCacheView(image_view); source=(double *) RelinquishMagickMemory(source); return(MagickTrue); }
MagickExport Image *ConnectedComponentsImage(const Image *image, const size_t connectivity,ExceptionInfo *exception) { #define ConnectedComponentsImageTag "ConnectedComponents/Image" CacheView *image_view, *component_view; const char *artifact; double area_threshold; Image *component_image; MagickBooleanType status; MagickOffsetType progress; MatrixInfo *equivalences; size_t size; ssize_t n, y; /* Initialize connected components image attributes. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); component_image=CloneImage(image,image->columns,image->rows,MagickTrue, exception); if (component_image == (Image *) NULL) return((Image *) NULL); component_image->depth=MAGICKCORE_QUANTUM_DEPTH; component_image->colorspace=GRAYColorspace; if (SetImageStorageClass(component_image,DirectClass) == MagickFalse) { component_image=DestroyImage(component_image); return((Image *) NULL); } /* Initialize connected components equivalences. */ size=image->columns*image->rows; if (image->columns != (size/image->rows)) { component_image=DestroyImage(component_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } equivalences=AcquireMatrixInfo(size,1,sizeof(ssize_t),exception); if (equivalences == (MatrixInfo *) NULL) { component_image=DestroyImage(component_image); return((Image *) NULL); } for (n=0; n < (ssize_t) (image->columns*image->rows); n++) (void) SetMatrixElement(equivalences,n,0,&n); /* Find connected components. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); for (n=0; n < (ssize_t) (connectivity > 4 ? 4 : 2); n++) { ssize_t connect4[2][2] = { { -1, 0 }, { 0, -1 } }, connect8[4][2] = { { -1, -1 }, { -1, 0 }, { -1, 1 }, { 0, -1 } }, dx, dy; if (status == MagickFalse) continue; dy=connectivity > 4 ? connect8[n][0] : connect4[n][0]; dx=connectivity > 4 ? connect8[n][1] : connect4[n][1]; for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *restrict p; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y-1,image->columns,3,exception); if (p == (const PixelPacket *) NULL) { status=MagickFalse; continue; } p+=image->columns; for (x=0; x < (ssize_t) image->columns; x++) { ssize_t neighbor_offset, object, offset, ox, oy, root; /* Is neighbor an authentic pixel and a different color than the pixel? */ neighbor_offset=dy*image->columns+dx; if (((x+dx) < 0) || ((x+dx) >= (ssize_t) image->columns) || ((y+dy) < 0) || ((y+dy) >= (ssize_t) image->rows) || (IsColorSimilar(image,p,p+neighbor_offset) == MagickFalse)) { p++; continue; } /* Resolve this equivalence. */ offset=y*image->columns+x; ox=offset; status=GetMatrixElement(equivalences,ox,0,&object); while (object != ox) { ox=object; status=GetMatrixElement(equivalences,ox,0,&object); } oy=offset+neighbor_offset; status=GetMatrixElement(equivalences,oy,0,&object); while (object != oy) { oy=object; status=GetMatrixElement(equivalences,oy,0,&object); } if (ox < oy) { status=SetMatrixElement(equivalences,oy,0,&ox); root=ox; } else { status=SetMatrixElement(equivalences,ox,0,&oy); root=oy; } ox=offset; status=GetMatrixElement(equivalences,ox,0,&object); while (object != root) { status=GetMatrixElement(equivalences,ox,0,&object); status=SetMatrixElement(equivalences,ox,0,&root); } oy=offset+neighbor_offset; status=GetMatrixElement(equivalences,oy,0,&object); while (object != root) { status=GetMatrixElement(equivalences,oy,0,&object); status=SetMatrixElement(equivalences,oy,0,&root); } status=SetMatrixElement(equivalences,y*image->columns+x,0,&root); p++; } } } image_view=DestroyCacheView(image_view); /* Label connected components. */ n=0; component_view=AcquireAuthenticCacheView(component_image,exception); for (y=0; y < (ssize_t) component_image->rows; y++) { register PixelPacket *restrict q; register ssize_t x; if (status == MagickFalse) continue; q=QueueCacheViewAuthenticPixels(component_view,0,y,component_image->columns, 1,exception); if (q == (PixelPacket *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) component_image->columns; x++) { ssize_t id, offset; offset=y*image->columns+x; status=GetMatrixElement(equivalences,offset,0,&id); if (id == offset) { id=n++; status=SetMatrixElement(equivalences,offset,0,&id); } else { status=GetMatrixElement(equivalences,id,0,&id); status=SetMatrixElement(equivalences,offset,0,&id); } q->red=(Quantum) (id > (ssize_t) QuantumRange ? (ssize_t) QuantumRange : id); q->green=q->red; q->blue=q->red; q++; } if (SyncCacheViewAuthenticPixels(component_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; proceed=SetImageProgress(image,ConnectedComponentsImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } component_view=DestroyCacheView(component_view); equivalences=DestroyMatrixInfo(equivalences); if (n > (ssize_t) QuantumRange) { component_image=DestroyImage(component_image); ThrowImageException(ResourceLimitError,"TooManyObjects"); } artifact=GetImageArtifact(image,"connected-components:area-threshold"); area_threshold=0.0; if (artifact != (const char *) NULL) area_threshold=StringToDouble(artifact,(char **) NULL); if (area_threshold > 0.0) status=MergeConnectedComponents(component_image,(size_t) n,area_threshold, exception); artifact=GetImageArtifact(image,"connected-components:verbose"); if (IsMagickTrue(artifact) != MagickFalse) status=StatisticsComponentsStatistics(image,component_image,(size_t) n, exception); if (status == MagickFalse) component_image=DestroyImage(component_image); return(component_image); }
MagickExport Image *ConnectedComponentsImage(const Image *image, const size_t connectivity,CCObjectInfo **objects,ExceptionInfo *exception) { #define ConnectedComponentsImageTag "ConnectedComponents/Image" CacheView *image_view, *component_view; CCObjectInfo *object; char *p; const char *artifact; double area_threshold; Image *component_image; MagickBooleanType status; MagickOffsetType progress; MatrixInfo *equivalences; register ssize_t i; size_t size; ssize_t first, last, n, step, y; /* Initialize connected components image attributes. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); if (objects != (CCObjectInfo **) NULL) *objects=(CCObjectInfo *) NULL; component_image=CloneImage(image,image->columns,image->rows,MagickTrue, exception); if (component_image == (Image *) NULL) return((Image *) NULL); component_image->depth=MAGICKCORE_QUANTUM_DEPTH; if (AcquireImageColormap(component_image,MaxColormapSize,exception) == MagickFalse) { component_image=DestroyImage(component_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } /* Initialize connected components equivalences. */ size=image->columns*image->rows; if (image->columns != (size/image->rows)) { component_image=DestroyImage(component_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } equivalences=AcquireMatrixInfo(size,1,sizeof(ssize_t),exception); if (equivalences == (MatrixInfo *) NULL) { component_image=DestroyImage(component_image); return((Image *) NULL); } for (n=0; n < (ssize_t) (image->columns*image->rows); n++) (void) SetMatrixElement(equivalences,n,0,&n); object=(CCObjectInfo *) AcquireQuantumMemory(MaxColormapSize,sizeof(*object)); if (object == (CCObjectInfo *) NULL) { equivalences=DestroyMatrixInfo(equivalences); component_image=DestroyImage(component_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } (void) ResetMagickMemory(object,0,MaxColormapSize*sizeof(*object)); for (i=0; i < (ssize_t) MaxColormapSize; i++) { object[i].id=i; object[i].bounding_box.x=(ssize_t) image->columns; object[i].bounding_box.y=(ssize_t) image->rows; GetPixelInfo(image,&object[i].color); } /* Find connected components. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); for (n=0; n < (ssize_t) (connectivity > 4 ? 4 : 2); n++) { ssize_t connect4[2][2] = { { -1, 0 }, { 0, -1 } }, connect8[4][2] = { { -1, -1 }, { -1, 0 }, { -1, 1 }, { 0, -1 } }, dx, dy; if (status == MagickFalse) continue; dy=connectivity > 4 ? connect8[n][0] : connect4[n][0]; dx=connectivity > 4 ? connect8[n][1] : connect4[n][1]; for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y-1,image->columns,3,exception); if (p == (const Quantum *) NULL) { status=MagickFalse; continue; } p+=GetPixelChannels(image)*image->columns; for (x=0; x < (ssize_t) image->columns; x++) { PixelInfo pixel, target; ssize_t neighbor_offset, object, offset, ox, oy, root; /* Is neighbor an authentic pixel and a different color than the pixel? */ GetPixelInfoPixel(image,p,&pixel); neighbor_offset=dy*(GetPixelChannels(image)*image->columns)+dx* GetPixelChannels(image); GetPixelInfoPixel(image,p+neighbor_offset,&target); if (((x+dx) < 0) || ((x+dx) >= (ssize_t) image->columns) || ((y+dy) < 0) || ((y+dy) >= (ssize_t) image->rows) || (IsFuzzyEquivalencePixelInfo(&pixel,&target) == MagickFalse)) { p+=GetPixelChannels(image); continue; } /* Resolve this equivalence. */ offset=y*image->columns+x; neighbor_offset=dy*image->columns+dx; ox=offset; status=GetMatrixElement(equivalences,ox,0,&object); while (object != ox) { ox=object; status=GetMatrixElement(equivalences,ox,0,&object); } oy=offset+neighbor_offset; status=GetMatrixElement(equivalences,oy,0,&object); while (object != oy) { oy=object; status=GetMatrixElement(equivalences,oy,0,&object); } if (ox < oy) { status=SetMatrixElement(equivalences,oy,0,&ox); root=ox; } else { status=SetMatrixElement(equivalences,ox,0,&oy); root=oy; } ox=offset; status=GetMatrixElement(equivalences,ox,0,&object); while (object != root) { status=GetMatrixElement(equivalences,ox,0,&object); status=SetMatrixElement(equivalences,ox,0,&root); } oy=offset+neighbor_offset; status=GetMatrixElement(equivalences,oy,0,&object); while (object != root) { status=GetMatrixElement(equivalences,oy,0,&object); status=SetMatrixElement(equivalences,oy,0,&root); } status=SetMatrixElement(equivalences,y*image->columns+x,0,&root); p+=GetPixelChannels(image); } } } image_view=DestroyCacheView(image_view); /* Label connected components. */ n=0; image_view=AcquireVirtualCacheView(image,exception); component_view=AcquireAuthenticCacheView(component_image,exception); for (y=0; y < (ssize_t) component_image->rows; y++) { register const Quantum *magick_restrict p; register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(component_view,0,y,component_image->columns, 1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) component_image->columns; x++) { ssize_t id, offset; offset=y*image->columns+x; status=GetMatrixElement(equivalences,offset,0,&id); if (id == offset) { id=n++; if (n > (ssize_t) MaxColormapSize) break; status=SetMatrixElement(equivalences,offset,0,&id); } else { status=GetMatrixElement(equivalences,id,0,&id); status=SetMatrixElement(equivalences,offset,0,&id); } if (x < object[id].bounding_box.x) object[id].bounding_box.x=x; if (x > (ssize_t) object[id].bounding_box.width) object[id].bounding_box.width=(size_t) x; if (y < object[id].bounding_box.y) object[id].bounding_box.y=y; if (y > (ssize_t) object[id].bounding_box.height) object[id].bounding_box.height=(size_t) y; object[id].color.red+=GetPixelRed(image,p); object[id].color.green+=GetPixelGreen(image,p); object[id].color.blue+=GetPixelBlue(image,p); object[id].color.black+=GetPixelBlack(image,p); object[id].color.alpha+=GetPixelAlpha(image,p); object[id].centroid.x+=x; object[id].centroid.y+=y; object[id].area++; SetPixelIndex(component_image,(Quantum) id,q); p+=GetPixelChannels(image); q+=GetPixelChannels(component_image); } if (n > (ssize_t) MaxColormapSize) break; if (SyncCacheViewAuthenticPixels(component_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; proceed=SetImageProgress(image,ConnectedComponentsImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } component_view=DestroyCacheView(component_view); image_view=DestroyCacheView(image_view); equivalences=DestroyMatrixInfo(equivalences); if (n > (ssize_t) MaxColormapSize) { object=(CCObjectInfo *) RelinquishMagickMemory(object); component_image=DestroyImage(component_image); ThrowImageException(ResourceLimitError,"TooManyObjects"); } component_image->colors=(size_t) n; for (i=0; i < (ssize_t) component_image->colors; i++) { object[i].bounding_box.width-=(object[i].bounding_box.x-1); object[i].bounding_box.height-=(object[i].bounding_box.y-1); object[i].color.red=object[i].color.red/object[i].area; object[i].color.green=object[i].color.green/object[i].area; object[i].color.blue=object[i].color.blue/object[i].area; object[i].color.alpha=object[i].color.alpha/object[i].area; object[i].color.black=object[i].color.black/object[i].area; object[i].centroid.x=object[i].centroid.x/object[i].area; object[i].centroid.y=object[i].centroid.y/object[i].area; } artifact=GetImageArtifact(image,"connected-components:area-threshold"); area_threshold=0.0; if (artifact != (const char *) NULL) area_threshold=StringToDouble(artifact,(char **) NULL); if (area_threshold > 0.0) { /* Merge object below area threshold. */ component_view=AcquireAuthenticCacheView(component_image,exception); for (i=0; i < (ssize_t) component_image->colors; i++) { double census; RectangleInfo bounding_box; register ssize_t j; size_t id; if (status == MagickFalse) continue; if ((double) object[i].area >= area_threshold) continue; for (j=0; j < (ssize_t) component_image->colors; j++) object[j].census=0; bounding_box=object[i].bounding_box; for (y=0; y < (ssize_t) bounding_box.height+2; y++) { register const Quantum *magick_restrict p; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(component_view,bounding_box.x-1, bounding_box.y+y-1,bounding_box.width+2,1,exception); if (p == (const Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) bounding_box.width+2; x++) { j=(ssize_t) GetPixelIndex(component_image,p); if (j != i) object[j].census++; } } census=0; id=0; for (j=0; j < (ssize_t) component_image->colors; j++) if (census < object[j].census) { census=object[j].census; id=(size_t) j; } object[id].area+=object[i].area; for (y=0; y < (ssize_t) bounding_box.height; y++) { register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(component_view,bounding_box.x, bounding_box.y+y,bounding_box.width,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) bounding_box.width; x++) { if ((ssize_t) GetPixelIndex(component_image,q) == i) SetPixelIndex(image,(Quantum) id,q); q+=GetPixelChannels(component_image); } if (SyncCacheViewAuthenticPixels(component_view,exception) == MagickFalse) status=MagickFalse; } } (void) SyncImage(component_image,exception); }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % F r a m e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % FrameImage() adds a simulated three-dimensional border around the image. % The color of the border is defined by the matte_color member of image. % Members width and height of frame_info specify the border width of the % vertical and horizontal sides of the frame. Members inner and outer % indicate the width of the inner and outer shadows of the frame. % % The format of the FrameImage method is: % % Image *FrameImage(const Image *image,const FrameInfo *frame_info, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o frame_info: Define the width and height of the frame and its bevels. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *FrameImage(const Image *image,const FrameInfo *frame_info, ExceptionInfo *exception) { #define FrameImageTag "Frame/Image" CacheView *image_view, *frame_view; Image *frame_image; MagickBooleanType status; MagickOffsetType progress; MagickPixelPacket accentuate, border, highlight, interior, matte, shadow, trough; register ssize_t x; size_t bevel_width, height, width; ssize_t y; /* Check frame geometry. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(frame_info != (FrameInfo *) NULL); if ((frame_info->outer_bevel < 0) || (frame_info->inner_bevel < 0)) ThrowImageException(OptionError,"FrameIsLessThanImageSize"); bevel_width=(size_t) (frame_info->outer_bevel+frame_info->inner_bevel); width=frame_info->width-frame_info->x-bevel_width; height=frame_info->height-frame_info->y-bevel_width; if ((width < image->columns) || (height < image->rows)) ThrowImageException(OptionError,"FrameIsLessThanImageSize"); /* Initialize framed image attributes. */ frame_image=CloneImage(image,frame_info->width,frame_info->height,MagickTrue, exception); if (frame_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(frame_image,DirectClass) == MagickFalse) { InheritException(exception,&frame_image->exception); frame_image=DestroyImage(frame_image); return((Image *) NULL); } if ((IsPixelGray(&frame_image->border_color) == MagickFalse) && (IsGrayColorspace(frame_image->colorspace) != MagickFalse)) (void) SetImageColorspace(frame_image,sRGBColorspace); if ((frame_image->border_color.opacity != OpaqueOpacity) && (frame_image->matte == MagickFalse)) (void) SetImageAlphaChannel(frame_image,OpaqueAlphaChannel); frame_image->page=image->page; if ((image->page.width != 0) && (image->page.height != 0)) { frame_image->page.width+=frame_image->columns-image->columns; frame_image->page.height+=frame_image->rows-image->rows; } /* Initialize 3D effects color. */ GetMagickPixelPacket(frame_image,&interior); SetMagickPixelPacket(frame_image,&image->border_color,(IndexPacket *) NULL, &interior); GetMagickPixelPacket(frame_image,&matte); matte.colorspace=sRGBColorspace; SetMagickPixelPacket(frame_image,&image->matte_color,(IndexPacket *) NULL, &matte); GetMagickPixelPacket(frame_image,&border); border.colorspace=sRGBColorspace; SetMagickPixelPacket(frame_image,&image->border_color,(IndexPacket *) NULL, &border); GetMagickPixelPacket(frame_image,&accentuate); accentuate.red=(MagickRealType) (QuantumScale*((QuantumRange- AccentuateModulate)*matte.red+(QuantumRange*AccentuateModulate))); accentuate.green=(MagickRealType) (QuantumScale*((QuantumRange- AccentuateModulate)*matte.green+(QuantumRange*AccentuateModulate))); accentuate.blue=(MagickRealType) (QuantumScale*((QuantumRange- AccentuateModulate)*matte.blue+(QuantumRange*AccentuateModulate))); accentuate.opacity=matte.opacity; GetMagickPixelPacket(frame_image,&highlight); highlight.red=(MagickRealType) (QuantumScale*((QuantumRange- HighlightModulate)*matte.red+(QuantumRange*HighlightModulate))); highlight.green=(MagickRealType) (QuantumScale*((QuantumRange- HighlightModulate)*matte.green+(QuantumRange*HighlightModulate))); highlight.blue=(MagickRealType) (QuantumScale*((QuantumRange- HighlightModulate)*matte.blue+(QuantumRange*HighlightModulate))); highlight.opacity=matte.opacity; GetMagickPixelPacket(frame_image,&shadow); shadow.red=QuantumScale*matte.red*ShadowModulate; shadow.green=QuantumScale*matte.green*ShadowModulate; shadow.blue=QuantumScale*matte.blue*ShadowModulate; shadow.opacity=matte.opacity; GetMagickPixelPacket(frame_image,&trough); trough.red=QuantumScale*matte.red*TroughModulate; trough.green=QuantumScale*matte.green*TroughModulate; trough.blue=QuantumScale*matte.blue*TroughModulate; trough.opacity=matte.opacity; if (image->colorspace == CMYKColorspace) { ConvertRGBToCMYK(&interior); ConvertRGBToCMYK(&matte); ConvertRGBToCMYK(&border); ConvertRGBToCMYK(&accentuate); ConvertRGBToCMYK(&highlight); ConvertRGBToCMYK(&shadow); ConvertRGBToCMYK(&trough); } status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); frame_view=AcquireAuthenticCacheView(frame_image,exception); height=(size_t) (frame_info->outer_bevel+(frame_info->y-bevel_width)+ frame_info->inner_bevel); if (height != 0) { register IndexPacket *restrict frame_indexes; register ssize_t x; register PixelPacket *restrict q; /* Draw top of ornamental border. */ q=QueueCacheViewAuthenticPixels(frame_view,0,0,frame_image->columns, height,exception); frame_indexes=GetCacheViewAuthenticIndexQueue(frame_view); if (q != (PixelPacket *) NULL) { /* Draw top of ornamental border. */ for (y=0; y < (ssize_t) frame_info->outer_bevel; y++) { for (x=0; x < (ssize_t) (frame_image->columns-y); x++) { if (x < y) SetPixelPacket(frame_image,&highlight,q,frame_indexes); else SetPixelPacket(frame_image,&accentuate,q,frame_indexes); q++; frame_indexes++; } for ( ; x < (ssize_t) frame_image->columns; x++) { SetPixelPacket(frame_image,&shadow,q,frame_indexes); q++; frame_indexes++; } } for (y=0; y < (ssize_t) (frame_info->y-bevel_width); y++) { for (x=0; x < (ssize_t) frame_info->outer_bevel; x++) { SetPixelPacket(frame_image,&highlight,q,frame_indexes); q++; frame_indexes++; } width=frame_image->columns-2*frame_info->outer_bevel; for (x=0; x < (ssize_t) width; x++) { SetPixelPacket(frame_image,&matte,q,frame_indexes); q++; frame_indexes++; } for (x=0; x < (ssize_t) frame_info->outer_bevel; x++) { SetPixelPacket(frame_image,&shadow,q,frame_indexes); q++; frame_indexes++; } } for (y=0; y < (ssize_t) frame_info->inner_bevel; y++) { for (x=0; x < (ssize_t) frame_info->outer_bevel; x++) { SetPixelPacket(frame_image,&highlight,q,frame_indexes); q++; frame_indexes++; } for (x=0; x < (ssize_t) (frame_info->x-bevel_width); x++) { SetPixelPacket(frame_image,&matte,q,frame_indexes); q++; frame_indexes++; } width=image->columns+((size_t) frame_info->inner_bevel << 1)- y; for (x=0; x < (ssize_t) width; x++) { if (x < y) SetPixelPacket(frame_image,&shadow,q,frame_indexes); else SetPixelPacket(frame_image,&trough,q,frame_indexes); q++; frame_indexes++; } for ( ; x < (ssize_t) (image->columns+2*frame_info->inner_bevel); x++) { SetPixelPacket(frame_image,&highlight,q,frame_indexes); q++; frame_indexes++; } width=frame_info->width-frame_info->x-image->columns-bevel_width; for (x=0; x < (ssize_t) width; x++) { SetPixelPacket(frame_image,&matte,q,frame_indexes); q++; frame_indexes++; } for (x=0; x < (ssize_t) frame_info->outer_bevel; x++) { SetPixelPacket(frame_image,&shadow,q,frame_indexes); q++; frame_indexes++; } } (void) SyncCacheViewAuthenticPixels(frame_view,exception); } } /* Draw sides of ornamental border. */ #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,frame_image,1,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register IndexPacket *restrict frame_indexes; register ssize_t x; register PixelPacket *restrict q; /* Initialize scanline with matte color. */ if (status == MagickFalse) continue; q=QueueCacheViewAuthenticPixels(frame_view,0,frame_info->y+y, frame_image->columns,1,exception); if (q == (PixelPacket *) NULL) { status=MagickFalse; continue; } frame_indexes=GetCacheViewAuthenticIndexQueue(frame_view); for (x=0; x < (ssize_t) frame_info->outer_bevel; x++) { SetPixelPacket(frame_image,&highlight,q,frame_indexes); q++; frame_indexes++; } for (x=0; x < (ssize_t) (frame_info->x-bevel_width); x++) { SetPixelPacket(frame_image,&matte,q,frame_indexes); q++; frame_indexes++; } for (x=0; x < (ssize_t) frame_info->inner_bevel; x++) { SetPixelPacket(frame_image,&shadow,q,frame_indexes); q++; frame_indexes++; } /* Set frame interior to interior color. */ if ((image->compose != CopyCompositeOp) && ((image->compose != OverCompositeOp) || (image->matte != MagickFalse))) for (x=0; x < (ssize_t) image->columns; x++) { SetPixelPacket(frame_image,&interior,q,frame_indexes); q++; frame_indexes++; } else { register const IndexPacket *indexes; register const PixelPacket *p; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const PixelPacket *) NULL) { status=MagickFalse; continue; } indexes=GetCacheViewVirtualIndexQueue(image_view); (void) CopyMagickMemory(q,p,image->columns*sizeof(*p)); if ((image->colorspace == CMYKColorspace) && (frame_image->colorspace == CMYKColorspace)) { (void) CopyMagickMemory(frame_indexes,indexes,image->columns* sizeof(*indexes)); frame_indexes+=image->columns; } q+=image->columns; } for (x=0; x < (ssize_t) frame_info->inner_bevel; x++) { SetPixelPacket(frame_image,&highlight,q,frame_indexes); q++; frame_indexes++; } width=frame_info->width-frame_info->x-image->columns-bevel_width; for (x=0; x < (ssize_t) width; x++) { SetPixelPacket(frame_image,&matte,q,frame_indexes); q++; frame_indexes++; } for (x=0; x < (ssize_t) frame_info->outer_bevel; x++) { SetPixelPacket(frame_image,&shadow,q,frame_indexes); q++; frame_indexes++; } if (SyncCacheViewAuthenticPixels(frame_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_FrameImage) #endif proceed=SetImageProgress(image,FrameImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } height=(size_t) (frame_info->inner_bevel+frame_info->height- frame_info->y-image->rows-bevel_width+frame_info->outer_bevel); if (height != 0) { register IndexPacket *restrict frame_indexes; register ssize_t x; register PixelPacket *restrict q; /* Draw bottom of ornamental border. */ q=QueueCacheViewAuthenticPixels(frame_view,0,(ssize_t) (frame_image->rows- height),frame_image->columns,height,exception); if (q != (PixelPacket *) NULL) { /* Draw bottom of ornamental border. */ frame_indexes=GetCacheViewAuthenticIndexQueue(frame_view); for (y=frame_info->inner_bevel-1; y >= 0; y--) { for (x=0; x < (ssize_t) frame_info->outer_bevel; x++) { SetPixelPacket(frame_image,&highlight,q,frame_indexes); q++; frame_indexes++; } for (x=0; x < (ssize_t) (frame_info->x-bevel_width); x++) { SetPixelPacket(frame_image,&matte,q,frame_indexes); q++; frame_indexes++; } for (x=0; x < y; x++) { SetPixelPacket(frame_image,&shadow,q,frame_indexes); q++; frame_indexes++; } for ( ; x < (ssize_t) (image->columns+2*frame_info->inner_bevel); x++) { if (x >= (ssize_t) (image->columns+2*frame_info->inner_bevel-y)) SetPixelPacket(frame_image,&highlight,q,frame_indexes); else SetPixelPacket(frame_image,&accentuate,q,frame_indexes); q++; frame_indexes++; } width=frame_info->width-frame_info->x-image->columns-bevel_width; for (x=0; x < (ssize_t) width; x++) { SetPixelPacket(frame_image,&matte,q,frame_indexes); q++; frame_indexes++; } for (x=0; x < (ssize_t) frame_info->outer_bevel; x++) { SetPixelPacket(frame_image,&shadow,q,frame_indexes); q++; frame_indexes++; } } height=frame_info->height-frame_info->y-image->rows-bevel_width; for (y=0; y < (ssize_t) height; y++) { for (x=0; x < (ssize_t) frame_info->outer_bevel; x++) { SetPixelPacket(frame_image,&highlight,q,frame_indexes); q++; frame_indexes++; } width=frame_image->columns-2*frame_info->outer_bevel; for (x=0; x < (ssize_t) width; x++) { SetPixelPacket(frame_image,&matte,q,frame_indexes); q++; frame_indexes++; } for (x=0; x < (ssize_t) frame_info->outer_bevel; x++) { SetPixelPacket(frame_image,&shadow,q,frame_indexes); q++; frame_indexes++; } } for (y=frame_info->outer_bevel-1; y >= 0; y--) { for (x=0; x < y; x++) { SetPixelPacket(frame_image,&highlight,q,frame_indexes); q++; frame_indexes++; } for ( ; x < (ssize_t) frame_image->columns; x++) { if (x >= (ssize_t) (frame_image->columns-y)) SetPixelPacket(frame_image,&shadow,q,frame_indexes); else SetPixelPacket(frame_image,&trough,q,frame_indexes); q++; frame_indexes++; } } (void) SyncCacheViewAuthenticPixels(frame_view,exception); } } frame_view=DestroyCacheView(frame_view); image_view=DestroyCacheView(image_view); if ((image->compose != CopyCompositeOp) && ((image->compose != OverCompositeOp) || (image->matte != MagickFalse))) { x=(ssize_t) (frame_info->outer_bevel+(frame_info->x-bevel_width)+ frame_info->inner_bevel); y=(ssize_t) (frame_info->outer_bevel+(frame_info->y-bevel_width)+ frame_info->inner_bevel); (void) CompositeImage(frame_image,image->compose,image,x,y); } if (status == MagickFalse) frame_image=DestroyImage(frame_image); return(frame_image); }
MagickExport MagickBooleanType SeparateImageChannel(Image *image, const ChannelType channel) { #define SeparateImageTag "Separate/Image" CacheView *image_view; ExceptionInfo *exception; MagickBooleanType status; MagickOffsetType progress; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (SetImageStorageClass(image,DirectClass) == MagickFalse) return(MagickFalse); if (channel == GrayChannels) image->matte=MagickTrue; /* Separate image channels. */ status=MagickTrue; progress=0; exception=(&image->exception); image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register IndexPacket *restrict indexes; register PixelPacket *restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (PixelPacket *) NULL) { status=MagickFalse; continue; } indexes=GetCacheViewAuthenticIndexQueue(image_view); switch (channel) { case RedChannel: { for (x=0; x < (ssize_t) image->columns; x++) { SetPixelGreen(q,GetPixelRed(q)); SetPixelBlue(q,GetPixelRed(q)); q++; } break; } case GreenChannel: { for (x=0; x < (ssize_t) image->columns; x++) { SetPixelRed(q,GetPixelGreen(q)); SetPixelBlue(q,GetPixelGreen(q)); q++; } break; } case BlueChannel: { for (x=0; x < (ssize_t) image->columns; x++) { SetPixelRed(q,GetPixelBlue(q)); SetPixelGreen(q,GetPixelBlue(q)); q++; } break; } case OpacityChannel: { for (x=0; x < (ssize_t) image->columns; x++) { SetPixelRed(q,GetPixelOpacity(q)); SetPixelGreen(q,GetPixelOpacity(q)); SetPixelBlue(q,GetPixelOpacity(q)); q++; } break; } case BlackChannel: { if ((image->storage_class != PseudoClass) && (image->colorspace != CMYKColorspace)) break; for (x=0; x < (ssize_t) image->columns; x++) { SetPixelRed(q,GetPixelIndex(indexes+x)); SetPixelGreen(q,GetPixelIndex(indexes+x)); SetPixelBlue(q,GetPixelIndex(indexes+x)); q++; } break; } case TrueAlphaChannel: { for (x=0; x < (ssize_t) image->columns; x++) { SetPixelRed(q,GetPixelAlpha(q)); SetPixelGreen(q,GetPixelAlpha(q)); SetPixelBlue(q,GetPixelAlpha(q)); q++; } break; } case GrayChannels: { for (x=0; x < (ssize_t) image->columns; x++) { SetPixelAlpha(q,ClampToQuantum(GetPixelIntensity(image,q))); q++; } break; } default: break; } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_SeparateImageChannel) #endif proceed=SetImageProgress(image,SeparateImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); if (channel != GrayChannels) image->matte=MagickFalse; (void) SetImageColorspace(image,GRAYColorspace); return(status); }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % R a i s e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % RaiseImage() creates a simulated three-dimensional button-like effect % by lightening and darkening the edges of the image. Members width and % height of raise_info define the width of the vertical and horizontal % edge of the effect. % % The format of the RaiseImage method is: % % MagickBooleanType RaiseImage(const Image *image, % const RectangleInfo *raise_info,const MagickBooleanType raise) % % A description of each parameter follows: % % o image: the image. % % o raise_info: Define the width and height of the raise area. % % o raise: A value other than zero creates a 3-D raise effect, % otherwise it has a lowered effect. % */ MagickExport MagickBooleanType RaiseImage(Image *image, const RectangleInfo *raise_info,const MagickBooleanType raise) { #define AccentuateFactor ScaleCharToQuantum(135) #define HighlightFactor ScaleCharToQuantum(190) #define ShadowFactor ScaleCharToQuantum(190) #define RaiseImageTag "Raise/Image" #define TroughFactor ScaleCharToQuantum(135) CacheView *image_view; ExceptionInfo *exception; MagickBooleanType status; MagickOffsetType progress; Quantum foreground, background; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(raise_info != (RectangleInfo *) NULL); if ((image->columns <= (raise_info->width << 1)) || (image->rows <= (raise_info->height << 1))) ThrowBinaryException(OptionError,"ImageSizeMustExceedBevelWidth", image->filename); foreground=QuantumRange; background=(Quantum) 0; if (raise == MagickFalse) { foreground=(Quantum) 0; background=QuantumRange; } if (SetImageStorageClass(image,DirectClass) == MagickFalse) return(MagickFalse); /* Raise image. */ status=MagickTrue; progress=0; exception=(&image->exception); image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,1,1) #endif for (y=0; y < (ssize_t) raise_info->height; y++) { register ssize_t x; register PixelPacket *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (PixelPacket *) NULL) { status=MagickFalse; continue; } for (x=0; x < y; x++) { SetPixelRed(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelRed(q)*HighlightFactor+(MagickRealType) foreground* (QuantumRange-HighlightFactor)))); SetPixelGreen(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelGreen(q)*HighlightFactor+(MagickRealType) foreground* (QuantumRange-HighlightFactor)))); SetPixelBlue(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelBlue(q)*HighlightFactor+(MagickRealType) foreground* (QuantumRange-HighlightFactor)))); q++; } for ( ; x < (ssize_t) (image->columns-y); x++) { SetPixelRed(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelRed(q)*AccentuateFactor+(MagickRealType) foreground* (QuantumRange-AccentuateFactor)))); SetPixelGreen(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelGreen(q)*AccentuateFactor+(MagickRealType) foreground* (QuantumRange-AccentuateFactor)))); SetPixelBlue(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelBlue(q)*AccentuateFactor+(MagickRealType) foreground* (QuantumRange-AccentuateFactor)))); q++; } for ( ; x < (ssize_t) image->columns; x++) { SetPixelRed(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelRed(q)*ShadowFactor+(MagickRealType) background* (QuantumRange-ShadowFactor)))); SetPixelGreen(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelGreen(q)*ShadowFactor+(MagickRealType) background* (QuantumRange-ShadowFactor)))); SetPixelBlue(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelBlue(q)*ShadowFactor+(MagickRealType) background* (QuantumRange-ShadowFactor)))); q++; } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_RaiseImage) #endif proceed=SetImageProgress(image,RaiseImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,1,1) #endif for (y=(ssize_t) raise_info->height; y < (ssize_t) (image->rows-raise_info->height); y++) { register ssize_t x; register PixelPacket *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (PixelPacket *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) raise_info->width; x++) { SetPixelRed(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelRed(q)*HighlightFactor+(MagickRealType) foreground* (QuantumRange-HighlightFactor)))); SetPixelGreen(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelGreen(q)*HighlightFactor+(MagickRealType) foreground* (QuantumRange-HighlightFactor)))); SetPixelBlue(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelBlue(q)*HighlightFactor+(MagickRealType) foreground* (QuantumRange-HighlightFactor)))); q++; } for ( ; x < (ssize_t) (image->columns-raise_info->width); x++) q++; for ( ; x < (ssize_t) image->columns; x++) { SetPixelRed(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelRed(q)*ShadowFactor+(MagickRealType) background* (QuantumRange-ShadowFactor)))); SetPixelGreen(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelGreen(q)*ShadowFactor+(MagickRealType) background* (QuantumRange-ShadowFactor)))); SetPixelBlue(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelBlue(q)*ShadowFactor+(MagickRealType) background* (QuantumRange-ShadowFactor)))); q++; } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_RaiseImage) #endif proceed=SetImageProgress(image,RaiseImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,1,1) #endif for (y=(ssize_t) (image->rows-raise_info->height); y < (ssize_t) image->rows; y++) { register ssize_t x; register PixelPacket *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (PixelPacket *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) (image->rows-y); x++) { SetPixelRed(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelRed(q)*HighlightFactor+(MagickRealType) foreground* (QuantumRange-HighlightFactor)))); SetPixelGreen(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelGreen(q)*HighlightFactor+(MagickRealType) foreground* (QuantumRange-HighlightFactor)))); SetPixelBlue(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelBlue(q)*HighlightFactor+(MagickRealType) foreground* (QuantumRange-HighlightFactor)))); q++; } for ( ; x < (ssize_t) (image->columns-(image->rows-y)); x++) { SetPixelRed(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelRed(q)*TroughFactor+(MagickRealType) background* (QuantumRange-TroughFactor)))); SetPixelGreen(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelGreen(q)*TroughFactor+(MagickRealType) background* (QuantumRange-TroughFactor)))); SetPixelBlue(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelBlue(q)*TroughFactor+(MagickRealType) background* (QuantumRange-TroughFactor)))); q++; } for ( ; x < (ssize_t) image->columns; x++) { SetPixelRed(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelRed(q)*ShadowFactor+(MagickRealType) background* (QuantumRange-ShadowFactor)))); SetPixelGreen(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelGreen(q)*ShadowFactor+(MagickRealType) background* (QuantumRange-ShadowFactor)))); SetPixelBlue(q,ClampToQuantum(QuantumScale*((MagickRealType) GetPixelBlue(q)*ShadowFactor+(MagickRealType) background* (QuantumRange-ShadowFactor)))); q++; } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_RaiseImage) #endif proceed=SetImageProgress(image,RaiseImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); return(status); }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % C o m b i n e I m a g e s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % CombineImages() combines one or more images into a single image. The % grayscale value of the pixels of each image in the sequence is assigned in % order to the specified channels of the combined image. The typical % ordering would be image 1 => Red, 2 => Green, 3 => Blue, etc. % % The format of the CombineImages method is: % % Image *CombineImages(const Image *image,const ChannelType channel, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *CombineImages(const Image *image,const ChannelType channel, ExceptionInfo *exception) { #define CombineImageTag "Combine/Image" CacheView *combine_view; const Image *next; Image *combine_image; MagickBooleanType status; MagickOffsetType progress; ssize_t y; /* Ensure the image are the same size. */ assert(image != (const Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); for (next=image; next != (Image *) NULL; next=GetNextImageInList(next)) { if ((next->columns != image->columns) || (next->rows != image->rows)) ThrowImageException(OptionError,"ImagesAreNotTheSameSize"); } combine_image=CloneImage(image,0,0,MagickTrue,exception); if (combine_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(combine_image,DirectClass) == MagickFalse) { InheritException(exception,&combine_image->exception); combine_image=DestroyImage(combine_image); return((Image *) NULL); } if (IssRGBCompatibleColorspace(image->colorspace) != MagickFalse) (void) SetImageColorspace(combine_image,sRGBColorspace); if ((channel & OpacityChannel) != 0) combine_image->matte=MagickTrue; (void) SetImageBackgroundColor(combine_image); /* Combine images. */ status=MagickTrue; progress=0; combine_view=AcquireAuthenticCacheView(combine_image,exception); for (y=0; y < (ssize_t) combine_image->rows; y++) { CacheView *image_view; const Image *next; PixelPacket *pixels; register const PixelPacket *restrict p; register PixelPacket *restrict q; register ssize_t x; if (status == MagickFalse) continue; pixels=GetCacheViewAuthenticPixels(combine_view,0,y,combine_image->columns, 1,exception); if (pixels == (PixelPacket *) NULL) { status=MagickFalse; continue; } next=image; if (((channel & RedChannel) != 0) && (next != (Image *) NULL)) { image_view=AcquireVirtualCacheView(next,exception); p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception); if (p == (const PixelPacket *) NULL) continue; q=pixels; for (x=0; x < (ssize_t) combine_image->columns; x++) { SetPixelRed(q,ClampToQuantum(GetPixelIntensity(image,p))); p++; q++; } image_view=DestroyCacheView(image_view); next=GetNextImageInList(next); } if (((channel & GreenChannel) != 0) && (next != (Image *) NULL)) { image_view=AcquireVirtualCacheView(next,exception); p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception); if (p == (const PixelPacket *) NULL) continue; q=pixels; for (x=0; x < (ssize_t) combine_image->columns; x++) { SetPixelGreen(q,ClampToQuantum(GetPixelIntensity(image,p))); p++; q++; } image_view=DestroyCacheView(image_view); next=GetNextImageInList(next); } if (((channel & BlueChannel) != 0) && (next != (Image *) NULL)) { image_view=AcquireVirtualCacheView(next,exception); p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception); if (p == (const PixelPacket *) NULL) continue; q=pixels; for (x=0; x < (ssize_t) combine_image->columns; x++) { SetPixelBlue(q,ClampToQuantum(GetPixelIntensity(image,p))); p++; q++; } image_view=DestroyCacheView(image_view); next=GetNextImageInList(next); } if (((channel & OpacityChannel) != 0) && (next != (Image *) NULL)) { image_view=AcquireVirtualCacheView(next,exception); p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception); if (p == (const PixelPacket *) NULL) continue; q=pixels; for (x=0; x < (ssize_t) combine_image->columns; x++) { SetPixelAlpha(q,ClampToQuantum(GetPixelIntensity(image,p))); p++; q++; } image_view=DestroyCacheView(image_view); next=GetNextImageInList(next); } if (((channel & IndexChannel) != 0) && (image->colorspace == CMYKColorspace) && (next != (Image *) NULL)) { IndexPacket *indexes; image_view=AcquireVirtualCacheView(next,exception); p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception); if (p == (const PixelPacket *) NULL) continue; indexes=GetCacheViewAuthenticIndexQueue(combine_view); for (x=0; x < (ssize_t) combine_image->columns; x++) { SetPixelIndex(indexes+x,ClampToQuantum(GetPixelIntensity(image,p))); p++; } image_view=DestroyCacheView(image_view); next=GetNextImageInList(next); } if (SyncCacheViewAuthenticPixels(combine_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; proceed=SetImageProgress(image,CombineImageTag,progress++, combine_image->rows); if (proceed == MagickFalse) status=MagickFalse; } } combine_view=DestroyCacheView(combine_view); if (IsGrayColorspace(combine_image->colorspace) != MagickFalse) (void) TransformImageColorspace(combine_image,sRGBColorspace); if (status == MagickFalse) combine_image=DestroyImage(combine_image); return(combine_image); }
static Image *MaskImage(const Image *image,ExceptionInfo *exception) { CacheView *image_view, *mask_view; Image *mask_image; MagickBooleanType status; ssize_t y; mask_image=CloneImage(image,image->columns,image->rows,MagickTrue, exception); if (mask_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(mask_image,DirectClass,exception) == MagickFalse) { mask_image=DestroyImage(mask_image); return((Image *) NULL); } mask_image->alpha_trait=UndefinedPixelTrait; (void) SetImageColorspace(mask_image,GRAYColorspace,exception); /* Mask image. */ status=MagickTrue; image_view=AcquireVirtualCacheView(image,exception); mask_view=AcquireAuthenticCacheView(mask_image,exception); for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *restrict p; register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(mask_view,0,y,mask_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { SetPixelChannel(mask_image,GrayPixelChannel,0,q); SetPixelChannel(mask_image,GrayPixelChannel,GetPixelReadMask(image,p),q); p+=GetPixelChannels(image); q+=GetPixelChannels(mask_image); } if (SyncCacheViewAuthenticPixels(mask_view,exception) == MagickFalse) status=MagickFalse; } mask_view=DestroyCacheView(mask_view); image_view=DestroyCacheView(image_view); if (status == MagickFalse) mask_image=DestroyImage(mask_image); return(mask_image); }