const GRState* SimpleConstraintManager::AssumeSymInt(const GRState* St, bool Assumption, const SymIntExpr *SE, bool& isFeasible) { // Here we assume that LHS is a symbol. This is consistent with the // rest of the constraint manager logic. SymbolRef Sym = cast<SymbolData>(SE->getLHS()); const llvm::APSInt &Int = SE->getRHS(); switch (SE->getOpcode()) { default: // No logic yet for other operators. isFeasible = true; return St; case BinaryOperator::EQ: return Assumption ? AssumeSymEQ(St, Sym, Int, isFeasible) : AssumeSymNE(St, Sym, Int, isFeasible); case BinaryOperator::NE: return Assumption ? AssumeSymNE(St, Sym, Int, isFeasible) : AssumeSymEQ(St, Sym, Int, isFeasible); case BinaryOperator::GT: return Assumption ? AssumeSymGT(St, Sym, Int, isFeasible) : AssumeSymLE(St, Sym, Int, isFeasible); case BinaryOperator::GE: return Assumption ? AssumeSymGE(St, Sym, Int, isFeasible) : AssumeSymLT(St, Sym, Int, isFeasible); case BinaryOperator::LT: return Assumption ? AssumeSymLT(St, Sym, Int, isFeasible) : AssumeSymGE(St, Sym, Int, isFeasible); case BinaryOperator::LE: return Assumption ? AssumeSymLE(St, Sym, Int, isFeasible) : AssumeSymGT(St, Sym, Int, isFeasible); } // end switch }
const GRState *SimpleConstraintManager::AssumeSymRel(const GRState *state, const SymExpr *LHS, BinaryOperator::Opcode op, const llvm::APSInt& Int) { assert(BinaryOperator::isComparisonOp(op) && "Non-comparison ops should be rewritten as comparisons to zero."); // We only handle simple comparisons of the form "$sym == constant" // or "($sym+constant1) == constant2". // The adjustment is "constant1" in the above expression. It's used to // "slide" the solution range around for modular arithmetic. For example, // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to // the subclasses of SimpleConstraintManager to handle the adjustment. llvm::APSInt Adjustment; // First check if the LHS is a simple symbol reference. SymbolRef Sym = dyn_cast<SymbolData>(LHS); if (Sym) { Adjustment = 0; } else { // Next, see if it's a "($sym+constant1)" expression. const SymIntExpr *SE = dyn_cast<SymIntExpr>(LHS); // We don't handle "($sym1+$sym2)". // Give up and assume the constraint is feasible. if (!SE) return state; // We don't handle "(<expr>+constant1)". // Give up and assume the constraint is feasible. Sym = dyn_cast<SymbolData>(SE->getLHS()); if (!Sym) return state; // Get the constant out of the expression "($sym+constant1)". switch (SE->getOpcode()) { case BO_Add: Adjustment = SE->getRHS(); break; case BO_Sub: Adjustment = -SE->getRHS(); break; default: // We don't handle non-additive operators. // Give up and assume the constraint is feasible. return state; } } // FIXME: This next section is a hack. It silently converts the integers to // be of the same type as the symbol, which is not always correct. Really the // comparisons should be performed using the Int's type, then mapped back to // the symbol's range of values. GRStateManager &StateMgr = state->getStateManager(); ASTContext &Ctx = StateMgr.getContext(); QualType T = Sym->getType(Ctx); assert(T->isIntegerType() || Loc::IsLocType(T)); unsigned bitwidth = Ctx.getTypeSize(T); bool isSymUnsigned = T->isUnsignedIntegerType() || Loc::IsLocType(T); // Convert the adjustment. Adjustment.setIsUnsigned(isSymUnsigned); Adjustment.extOrTrunc(bitwidth); // Convert the right-hand side integer. llvm::APSInt ConvertedInt(Int, isSymUnsigned); ConvertedInt.extOrTrunc(bitwidth); switch (op) { default: // No logic yet for other operators. Assume the constraint is feasible. return state; case BO_EQ: return AssumeSymEQ(state, Sym, ConvertedInt, Adjustment); case BO_NE: return AssumeSymNE(state, Sym, ConvertedInt, Adjustment); case BO_GT: return AssumeSymGT(state, Sym, ConvertedInt, Adjustment); case BO_GE: return AssumeSymGE(state, Sym, ConvertedInt, Adjustment); case BO_LT: return AssumeSymLT(state, Sym, ConvertedInt, Adjustment); case BO_LE: return AssumeSymLE(state, Sym, ConvertedInt, Adjustment); } // end switch }