void BKE_maskrasterize_handle_init(MaskRasterHandle *mr_handle, struct Mask *mask, const int width, const int height, const bool do_aspect_correct, const bool do_mask_aa, const bool do_feather) { const rctf default_bounds = {0.0f, 1.0f, 0.0f, 1.0f}; const float pixel_size = 1.0f / (float)min_ii(width, height); const float asp_xy[2] = {(do_aspect_correct && width > height) ? (float)height / (float)width : 1.0f, (do_aspect_correct && width < height) ? (float)width / (float)height : 1.0f}; const float zvec[3] = {0.0f, 0.0f, 1.0f}; MaskLayer *masklay; unsigned int masklay_index; MemArena *sf_arena; mr_handle->layers_tot = (unsigned int)BLI_countlist(&mask->masklayers); mr_handle->layers = MEM_mallocN(sizeof(MaskRasterLayer) * mr_handle->layers_tot, "MaskRasterLayer"); BLI_rctf_init_minmax(&mr_handle->bounds); sf_arena = BLI_memarena_new(BLI_SCANFILL_ARENA_SIZE, __func__); for (masklay = mask->masklayers.first, masklay_index = 0; masklay; masklay = masklay->next, masklay_index++) { /* we need to store vertex ranges for open splines for filling */ unsigned int tot_splines; MaskRasterSplineInfo *open_spline_ranges; unsigned int open_spline_index = 0; MaskSpline *spline; /* scanfill */ ScanFillContext sf_ctx; ScanFillVert *sf_vert = NULL; ScanFillVert *sf_vert_next = NULL; ScanFillFace *sf_tri; unsigned int sf_vert_tot = 0; unsigned int tot_feather_quads = 0; #ifdef USE_SCANFILL_EDGE_WORKAROUND unsigned int tot_boundary_used = 0; unsigned int tot_boundary_found = 0; #endif if (masklay->restrictflag & MASK_RESTRICT_RENDER) { /* skip the layer */ mr_handle->layers_tot--; masklay_index--; continue; } tot_splines = (unsigned int)BLI_countlist(&masklay->splines); open_spline_ranges = MEM_callocN(sizeof(*open_spline_ranges) * tot_splines, __func__); BLI_scanfill_begin_arena(&sf_ctx, sf_arena); for (spline = masklay->splines.first; spline; spline = spline->next) { const bool is_cyclic = (spline->flag & MASK_SPLINE_CYCLIC) != 0; const bool is_fill = (spline->flag & MASK_SPLINE_NOFILL) == 0; float (*diff_points)[2]; unsigned int tot_diff_point; float (*diff_feather_points)[2]; float (*diff_feather_points_flip)[2]; unsigned int tot_diff_feather_points; const unsigned int resol_a = BKE_mask_spline_resolution(spline, width, height) / 4; const unsigned int resol_b = BKE_mask_spline_feather_resolution(spline, width, height) / 4; const unsigned int resol = CLAMPIS(MAX2(resol_a, resol_b), 4, 512); diff_points = BKE_mask_spline_differentiate_with_resolution( spline, &tot_diff_point, resol); if (do_feather) { diff_feather_points = BKE_mask_spline_feather_differentiated_points_with_resolution( spline, &tot_diff_feather_points, resol, FALSE); BLI_assert(diff_feather_points); } else { tot_diff_feather_points = 0; diff_feather_points = NULL; } if (tot_diff_point > 3) { ScanFillVert *sf_vert_prev; unsigned int j; float co[3]; co[2] = 0.0f; sf_ctx.poly_nr++; if (do_aspect_correct) { if (width != height) { float *fp; float *ffp; unsigned int i; float asp; if (width < height) { fp = &diff_points[0][0]; ffp = tot_diff_feather_points ? &diff_feather_points[0][0] : NULL; asp = (float)width / (float)height; } else { fp = &diff_points[0][1]; ffp = tot_diff_feather_points ? &diff_feather_points[0][1] : NULL; asp = (float)height / (float)width; } for (i = 0; i < tot_diff_point; i++, fp += 2) { (*fp) = (((*fp) - 0.5f) / asp) + 0.5f; } if (tot_diff_feather_points) { for (i = 0; i < tot_diff_feather_points; i++, ffp += 2) { (*ffp) = (((*ffp) - 0.5f) / asp) + 0.5f; } } } } /* fake aa, using small feather */ if (do_mask_aa == TRUE) { if (do_feather == FALSE) { tot_diff_feather_points = tot_diff_point; diff_feather_points = MEM_mallocN(sizeof(*diff_feather_points) * (size_t)tot_diff_feather_points, __func__); /* add single pixel feather */ maskrasterize_spline_differentiate_point_outset(diff_feather_points, diff_points, tot_diff_point, pixel_size, FALSE); } else { /* ensure single pixel feather, on any zero feather areas */ maskrasterize_spline_differentiate_point_outset(diff_feather_points, diff_points, tot_diff_point, pixel_size, TRUE); } } if (is_fill) { /* applt intersections depending on fill settings */ if (spline->flag & MASK_SPLINE_NOINTERSECT) { BKE_mask_spline_feather_collapse_inner_loops(spline, diff_feather_points, tot_diff_feather_points); } copy_v2_v2(co, diff_points[0]); sf_vert_prev = BLI_scanfill_vert_add(&sf_ctx, co); sf_vert_prev->tmp.u = sf_vert_tot; sf_vert_prev->keyindex = sf_vert_tot + tot_diff_point; /* absolute index of feather vert */ sf_vert_tot++; /* TODO, an alternate functions so we can avoid double vector copy! */ for (j = 1; j < tot_diff_point; j++) { copy_v2_v2(co, diff_points[j]); sf_vert = BLI_scanfill_vert_add(&sf_ctx, co); sf_vert->tmp.u = sf_vert_tot; sf_vert->keyindex = sf_vert_tot + tot_diff_point; /* absolute index of feather vert */ sf_vert_tot++; } sf_vert = sf_vert_prev; sf_vert_prev = sf_ctx.fillvertbase.last; for (j = 0; j < tot_diff_point; j++) { ScanFillEdge *sf_edge = BLI_scanfill_edge_add(&sf_ctx, sf_vert_prev, sf_vert); #ifdef USE_SCANFILL_EDGE_WORKAROUND if (diff_feather_points) { sf_edge->tmp.c = SF_EDGE_IS_BOUNDARY; tot_boundary_used++; } #else (void)sf_edge; #endif sf_vert_prev = sf_vert; sf_vert = sf_vert->next; } if (diff_feather_points) { float co_feather[3]; co_feather[2] = 1.0f; BLI_assert(tot_diff_feather_points == tot_diff_point); /* note: only added for convenience, we don't infact use these to scanfill, * only to create feather faces after scanfill */ for (j = 0; j < tot_diff_feather_points; j++) { copy_v2_v2(co_feather, diff_feather_points[j]); sf_vert = BLI_scanfill_vert_add(&sf_ctx, co_feather); /* no need for these attrs */ #if 0 sf_vert->tmp.u = sf_vert_tot; sf_vert->keyindex = sf_vert_tot + tot_diff_point; /* absolute index of feather vert */ #endif sf_vert->keyindex = SF_KEYINDEX_TEMP_ID; sf_vert_tot++; } tot_feather_quads += tot_diff_point; } } else { /* unfilled spline */ if (diff_feather_points) { float co_diff[2]; float co_feather[3]; co_feather[2] = 1.0f; if (spline->flag & MASK_SPLINE_NOINTERSECT) { diff_feather_points_flip = MEM_mallocN(sizeof(float) * 2 * tot_diff_feather_points, "diff_feather_points_flip"); for (j = 0; j < tot_diff_point; j++) { sub_v2_v2v2(co_diff, diff_points[j], diff_feather_points[j]); add_v2_v2v2(diff_feather_points_flip[j], diff_points[j], co_diff); } BKE_mask_spline_feather_collapse_inner_loops(spline, diff_feather_points, tot_diff_feather_points); BKE_mask_spline_feather_collapse_inner_loops(spline, diff_feather_points_flip, tot_diff_feather_points); } else { diff_feather_points_flip = NULL; } open_spline_ranges[open_spline_index].vertex_offset = sf_vert_tot; open_spline_ranges[open_spline_index].vertex_total = tot_diff_point; /* TODO, an alternate functions so we can avoid double vector copy! */ for (j = 0; j < tot_diff_point; j++) { /* center vert */ copy_v2_v2(co, diff_points[j]); sf_vert = BLI_scanfill_vert_add(&sf_ctx, co); sf_vert->tmp.u = sf_vert_tot; sf_vert->keyindex = SF_KEYINDEX_TEMP_ID; sf_vert_tot++; /* feather vert A */ copy_v2_v2(co_feather, diff_feather_points[j]); sf_vert = BLI_scanfill_vert_add(&sf_ctx, co_feather); sf_vert->tmp.u = sf_vert_tot; sf_vert->keyindex = SF_KEYINDEX_TEMP_ID; sf_vert_tot++; /* feather vert B */ if (diff_feather_points_flip) { copy_v2_v2(co_feather, diff_feather_points_flip[j]); } else { sub_v2_v2v2(co_diff, co, co_feather); add_v2_v2v2(co_feather, co, co_diff); } sf_vert = BLI_scanfill_vert_add(&sf_ctx, co_feather); sf_vert->tmp.u = sf_vert_tot; sf_vert->keyindex = SF_KEYINDEX_TEMP_ID; sf_vert_tot++; tot_feather_quads += 2; } if (!is_cyclic) { tot_feather_quads -= 2; } if (diff_feather_points_flip) { MEM_freeN(diff_feather_points_flip); diff_feather_points_flip = NULL; } /* cap ends */ /* dummy init value */ open_spline_ranges[open_spline_index].vertex_total_cap_head = 0; open_spline_ranges[open_spline_index].vertex_total_cap_tail = 0; if (!is_cyclic) { float *fp_cent; float *fp_turn; unsigned int k; fp_cent = diff_points[0]; fp_turn = diff_feather_points[0]; #define CALC_CAP_RESOL \ clampis_uint((unsigned int )(len_v2v2(fp_cent, fp_turn) / \ (pixel_size * SPLINE_RESOL_CAP_PER_PIXEL)), \ SPLINE_RESOL_CAP_MIN, SPLINE_RESOL_CAP_MAX) { const unsigned int vertex_total_cap = CALC_CAP_RESOL; for (k = 1; k < vertex_total_cap; k++) { const float angle = (float)k * (1.0f / (float)vertex_total_cap) * (float)M_PI; rotate_point_v2(co_feather, fp_turn, fp_cent, angle, asp_xy); sf_vert = BLI_scanfill_vert_add(&sf_ctx, co_feather); sf_vert->tmp.u = sf_vert_tot; sf_vert->keyindex = SF_KEYINDEX_TEMP_ID; sf_vert_tot++; } tot_feather_quads += vertex_total_cap; open_spline_ranges[open_spline_index].vertex_total_cap_head = vertex_total_cap; } fp_cent = diff_points[tot_diff_point - 1]; fp_turn = diff_feather_points[tot_diff_point - 1]; { const unsigned int vertex_total_cap = CALC_CAP_RESOL; for (k = 1; k < vertex_total_cap; k++) { const float angle = (float)k * (1.0f / (float)vertex_total_cap) * (float)M_PI; rotate_point_v2(co_feather, fp_turn, fp_cent, -angle, asp_xy); sf_vert = BLI_scanfill_vert_add(&sf_ctx, co_feather); sf_vert->tmp.u = sf_vert_tot; sf_vert->keyindex = SF_KEYINDEX_TEMP_ID; sf_vert_tot++; } tot_feather_quads += vertex_total_cap; open_spline_ranges[open_spline_index].vertex_total_cap_tail = vertex_total_cap; } } open_spline_ranges[open_spline_index].is_cyclic = is_cyclic; open_spline_index++; #undef CALC_CAP_RESOL /* end capping */ } } } if (diff_points) { MEM_freeN(diff_points); } if (diff_feather_points) { MEM_freeN(diff_feather_points); } } { unsigned int (*face_array)[4], *face; /* access coords */ float (*face_coords)[3], *cos; /* xy, z 0-1 (1.0 == filled) */ unsigned int sf_tri_tot; rctf bounds; unsigned int face_index; int scanfill_flag = 0; bool is_isect = false; ListBase isect_remvertbase = {NULL, NULL}; ListBase isect_remedgebase = {NULL, NULL}; /* now we have all the splines */ face_coords = MEM_mallocN((sizeof(float) * 3) * sf_vert_tot, "maskrast_face_coords"); /* init bounds */ BLI_rctf_init_minmax(&bounds); /* coords */ cos = (float *)face_coords; for (sf_vert = sf_ctx.fillvertbase.first; sf_vert; sf_vert = sf_vert_next) { sf_vert_next = sf_vert->next; copy_v3_v3(cos, sf_vert->co); /* remove so as not to interfere with fill (called after) */ if (sf_vert->keyindex == SF_KEYINDEX_TEMP_ID) { BLI_remlink(&sf_ctx.fillvertbase, sf_vert); } /* bounds */ BLI_rctf_do_minmax_v(&bounds, cos); cos += 3; } /* --- inefficient self-intersect case --- */ /* if self intersections are found, its too trickty to attempt to map vertices * so just realloc and add entirely new vertices - the result of the self-intersect check */ if ((masklay->flag & MASK_LAYERFLAG_FILL_OVERLAP) && (is_isect = BLI_scanfill_calc_self_isect(&sf_ctx, &isect_remvertbase, &isect_remedgebase))) { unsigned int sf_vert_tot_isect = (unsigned int)BLI_countlist(&sf_ctx.fillvertbase); unsigned int i = sf_vert_tot; face_coords = MEM_reallocN(face_coords, sizeof(float[3]) * (sf_vert_tot + sf_vert_tot_isect)); cos = (float *)&face_coords[sf_vert_tot][0]; for (sf_vert = sf_ctx.fillvertbase.first; sf_vert; sf_vert = sf_vert->next) { copy_v3_v3(cos, sf_vert->co); sf_vert->tmp.u = i++; cos += 3; } sf_vert_tot += sf_vert_tot_isect; /* we need to calc polys after self intersect */ scanfill_flag |= BLI_SCANFILL_CALC_POLYS; } /* --- end inefficient code --- */ /* main scan-fill */ if ((masklay->flag & MASK_LAYERFLAG_FILL_DISCRETE) == 0) scanfill_flag |= BLI_SCANFILL_CALC_HOLES; sf_tri_tot = (unsigned int)BLI_scanfill_calc_ex(&sf_ctx, scanfill_flag, zvec); if (is_isect) { /* add removed data back, we only need edges for feather, * but add verts back so they get freed along with others */ BLI_movelisttolist(&sf_ctx.fillvertbase, &isect_remvertbase); BLI_movelisttolist(&sf_ctx.filledgebase, &isect_remedgebase); } face_array = MEM_mallocN(sizeof(*face_array) * ((size_t)sf_tri_tot + (size_t)tot_feather_quads), "maskrast_face_index"); face_index = 0; /* faces */ face = (unsigned int *)face_array; for (sf_tri = sf_ctx.fillfacebase.first; sf_tri; sf_tri = sf_tri->next) { *(face++) = sf_tri->v3->tmp.u; *(face++) = sf_tri->v2->tmp.u; *(face++) = sf_tri->v1->tmp.u; *(face++) = TRI_VERT; face_index++; FACE_ASSERT(face - 4, sf_vert_tot); } /* start of feather faces... if we have this set, * 'face_index' is kept from loop above */ BLI_assert(face_index == sf_tri_tot); if (tot_feather_quads) { ScanFillEdge *sf_edge; for (sf_edge = sf_ctx.filledgebase.first; sf_edge; sf_edge = sf_edge->next) { if (sf_edge->tmp.c == SF_EDGE_IS_BOUNDARY) { *(face++) = sf_edge->v1->tmp.u; *(face++) = sf_edge->v2->tmp.u; *(face++) = sf_edge->v2->keyindex; *(face++) = sf_edge->v1->keyindex; face_index++; FACE_ASSERT(face - 4, sf_vert_tot); #ifdef USE_SCANFILL_EDGE_WORKAROUND tot_boundary_found++; #endif } } } #ifdef USE_SCANFILL_EDGE_WORKAROUND if (tot_boundary_found != tot_boundary_used) { BLI_assert(tot_boundary_found < tot_boundary_used); } #endif /* feather only splines */ while (open_spline_index > 0) { const unsigned int vertex_offset = open_spline_ranges[--open_spline_index].vertex_offset; unsigned int vertex_total = open_spline_ranges[ open_spline_index].vertex_total; unsigned int vertex_total_cap_head = open_spline_ranges[ open_spline_index].vertex_total_cap_head; unsigned int vertex_total_cap_tail = open_spline_ranges[ open_spline_index].vertex_total_cap_tail; unsigned int k, j; j = vertex_offset; /* subtract one since we reference next vertex triple */ for (k = 0; k < vertex_total - 1; k++, j += 3) { BLI_assert(j == vertex_offset + (k * 3)); *(face++) = j + 3; /* next span */ /* z 1 */ *(face++) = j + 0; /* z 1 */ *(face++) = j + 1; /* z 0 */ *(face++) = j + 4; /* next span */ /* z 0 */ face_index++; FACE_ASSERT(face - 4, sf_vert_tot); *(face++) = j + 0; /* z 1 */ *(face++) = j + 3; /* next span */ /* z 1 */ *(face++) = j + 5; /* next span */ /* z 0 */ *(face++) = j + 2; /* z 0 */ face_index++; FACE_ASSERT(face - 4, sf_vert_tot); } if (open_spline_ranges[open_spline_index].is_cyclic) { *(face++) = vertex_offset + 0; /* next span */ /* z 1 */ *(face++) = j + 0; /* z 1 */ *(face++) = j + 1; /* z 0 */ *(face++) = vertex_offset + 1; /* next span */ /* z 0 */ face_index++; FACE_ASSERT(face - 4, sf_vert_tot); *(face++) = j + 0; /* z 1 */ *(face++) = vertex_offset + 0; /* next span */ /* z 1 */ *(face++) = vertex_offset + 2; /* next span */ /* z 0 */ *(face++) = j + 2; /* z 0 */ face_index++; FACE_ASSERT(face - 4, sf_vert_tot); } else { unsigned int midvidx = vertex_offset; /*************** * cap end 'a' */ j = midvidx + (vertex_total * 3); for (k = 0; k < vertex_total_cap_head - 2; k++, j++) { *(face++) = midvidx + 0; /* z 1 */ *(face++) = midvidx + 0; /* z 1 */ *(face++) = j + 0; /* z 0 */ *(face++) = j + 1; /* z 0 */ face_index++; FACE_ASSERT(face - 4, sf_vert_tot); } j = vertex_offset + (vertex_total * 3); /* 2 tris that join the original */ *(face++) = midvidx + 0; /* z 1 */ *(face++) = midvidx + 0; /* z 1 */ *(face++) = midvidx + 1; /* z 0 */ *(face++) = j + 0; /* z 0 */ face_index++; FACE_ASSERT(face - 4, sf_vert_tot); *(face++) = midvidx + 0; /* z 1 */ *(face++) = midvidx + 0; /* z 1 */ *(face++) = j + vertex_total_cap_head - 2; /* z 0 */ *(face++) = midvidx + 2; /* z 0 */ face_index++; FACE_ASSERT(face - 4, sf_vert_tot); /*************** * cap end 'b' */ /* ... same as previous but v 2-3 flipped, and different initial offsets */ j = vertex_offset + (vertex_total * 3) + (vertex_total_cap_head - 1); midvidx = vertex_offset + (vertex_total * 3) - 3; for (k = 0; k < vertex_total_cap_tail - 2; k++, j++) { *(face++) = midvidx; /* z 1 */ *(face++) = midvidx; /* z 1 */ *(face++) = j + 1; /* z 0 */ *(face++) = j + 0; /* z 0 */ face_index++; FACE_ASSERT(face - 4, sf_vert_tot); } j = vertex_offset + (vertex_total * 3) + (vertex_total_cap_head - 1); /* 2 tris that join the original */ *(face++) = midvidx + 0; /* z 1 */ *(face++) = midvidx + 0; /* z 1 */ *(face++) = j + 0; /* z 0 */ *(face++) = midvidx + 1; /* z 0 */ face_index++; FACE_ASSERT(face - 4, sf_vert_tot); *(face++) = midvidx + 0; /* z 1 */ *(face++) = midvidx + 0; /* z 1 */ *(face++) = midvidx + 2; /* z 0 */ *(face++) = j + vertex_total_cap_tail - 2; /* z 0 */ face_index++; FACE_ASSERT(face - 4, sf_vert_tot); } } MEM_freeN(open_spline_ranges); // fprintf(stderr, "%u %u (%u %u), %u\n", face_index, sf_tri_tot + tot_feather_quads, sf_tri_tot, tot_feather_quads, tot_boundary_used - tot_boundary_found); #ifdef USE_SCANFILL_EDGE_WORKAROUND BLI_assert(face_index + (tot_boundary_used - tot_boundary_found) == sf_tri_tot + tot_feather_quads); #else BLI_assert(face_index == sf_tri_tot + tot_feather_quads); #endif { MaskRasterLayer *layer = &mr_handle->layers[masklay_index]; if (BLI_rctf_isect(&default_bounds, &bounds, &bounds)) { #ifdef USE_SCANFILL_EDGE_WORKAROUND layer->face_tot = (sf_tri_tot + tot_feather_quads) - (tot_boundary_used - tot_boundary_found); #else layer->face_tot = (sf_tri_tot + tot_feather_quads); #endif layer->face_coords = face_coords; layer->face_array = face_array; layer->bounds = bounds; layer_bucket_init(layer, pixel_size); BLI_rctf_union(&mr_handle->bounds, &bounds); } else { MEM_freeN(face_coords); MEM_freeN(face_array); layer_bucket_init_dummy(layer); } /* copy as-is */ layer->alpha = masklay->alpha; layer->blend = masklay->blend; layer->blend_flag = masklay->blend_flag; layer->falloff = masklay->falloff; } /* printf("tris %d, feather tris %d\n", sf_tri_tot, tot_feather_quads); */ } /* add trianges */ BLI_scanfill_end_arena(&sf_ctx, sf_arena); } BLI_memarena_free(sf_arena); }
/** * \param normal_proj Optional normal thats used to project the scanfill verts into 2d coords. * Pass this along if known since it saves time calculating the normal. * \param flipnormal Flip the normal (same as passing \a normal_proj negated) */ void BKE_displist_fill(ListBase *dispbase, ListBase *to, const float normal_proj[3], const bool flipnormal) { ScanFillContext sf_ctx; ScanFillVert *sf_vert, *sf_vert_new, *sf_vert_last; ScanFillFace *sf_tri; MemArena *sf_arena; DispList *dlnew = NULL, *dl; float *f1; int colnr = 0, charidx = 0, cont = 1, tot, a, *index, nextcol = 0; int totvert; const int scanfill_flag = BLI_SCANFILL_CALC_REMOVE_DOUBLES | BLI_SCANFILL_CALC_POLYS | BLI_SCANFILL_CALC_HOLES; if (dispbase == NULL) return; if (BLI_listbase_is_empty(dispbase)) return; sf_arena = BLI_memarena_new(BLI_SCANFILL_ARENA_SIZE, __func__); while (cont) { int dl_flag_accum = 0; cont = 0; totvert = 0; nextcol = 0; BLI_scanfill_begin_arena(&sf_ctx, sf_arena); dl = dispbase->first; while (dl) { if (dl->type == DL_POLY) { if (charidx < dl->charidx) cont = 1; else if (charidx == dl->charidx) { /* character with needed index */ if (colnr == dl->col) { sf_ctx.poly_nr++; /* make editverts and edges */ f1 = dl->verts; a = dl->nr; sf_vert = sf_vert_new = NULL; while (a--) { sf_vert_last = sf_vert; sf_vert = BLI_scanfill_vert_add(&sf_ctx, f1); totvert++; if (sf_vert_last == NULL) sf_vert_new = sf_vert; else { BLI_scanfill_edge_add(&sf_ctx, sf_vert_last, sf_vert); } f1 += 3; } if (sf_vert != NULL && sf_vert_new != NULL) { BLI_scanfill_edge_add(&sf_ctx, sf_vert, sf_vert_new); } } else if (colnr < dl->col) { /* got poly with next material at current char */ cont = 1; nextcol = 1; } } dl_flag_accum |= dl->flag; } dl = dl->next; } /* XXX (obedit && obedit->actcol) ? (obedit->actcol - 1) : 0)) { */ if (totvert && (tot = BLI_scanfill_calc_ex(&sf_ctx, scanfill_flag, normal_proj))) { if (tot) { dlnew = MEM_callocN(sizeof(DispList), "filldisplist"); dlnew->type = DL_INDEX3; dlnew->flag = (dl_flag_accum & (DL_BACK_CURVE | DL_FRONT_CURVE)); dlnew->col = colnr; dlnew->nr = totvert; dlnew->parts = tot; dlnew->index = MEM_mallocN(tot * 3 * sizeof(int), "dlindex"); dlnew->verts = MEM_mallocN(totvert * 3 * sizeof(float), "dlverts"); /* vert data */ f1 = dlnew->verts; totvert = 0; for (sf_vert = sf_ctx.fillvertbase.first; sf_vert; sf_vert = sf_vert->next) { copy_v3_v3(f1, sf_vert->co); f1 += 3; /* index number */ sf_vert->tmp.i = totvert; totvert++; } /* index data */ index = dlnew->index; for (sf_tri = sf_ctx.fillfacebase.first; sf_tri; sf_tri = sf_tri->next) { index[0] = sf_tri->v1->tmp.i; index[1] = sf_tri->v2->tmp.i; index[2] = sf_tri->v3->tmp.i; if (flipnormal) SWAP(int, index[0], index[2]); index += 3; } } BLI_addhead(to, dlnew); } BLI_scanfill_end_arena(&sf_ctx, sf_arena); if (nextcol) { /* stay at current char but fill polys with next material */ colnr++; } else { /* switch to next char and start filling from first material */ charidx++; colnr = 0; } } BLI_memarena_free(sf_arena); /* do not free polys, needed for wireframe display */ }