예제 #1
0
파일: GCUtils.c 프로젝트: chansuke/ghc
StgPtr
alloc_todo_block (gen_workspace *ws, nat size)
{
    bdescr *bd/*, *hd, *tl */;

    // Grab a part block if we have one, and it has enough room
    bd = ws->part_list;
    if (bd != NULL &&
        bd->start + bd->blocks * BLOCK_SIZE_W - bd->free > (int)size)
    {
        ws->part_list = bd->link;
        ws->n_part_blocks -= bd->blocks;
    }
    else
    {
        // blocks in to-space get the BF_EVACUATED flag.

//        allocBlocks_sync(16, &hd, &tl, 
//                         ws->step->gen_no, ws->step, BF_EVACUATED);
//
//        tl->link = ws->part_list;
//        ws->part_list = hd->link;
//        ws->n_part_blocks += 15;
//
//        bd = hd;

        if (size > BLOCK_SIZE_W) {
            bd = allocGroup_sync((W_)BLOCK_ROUND_UP(size*sizeof(W_))
                                 / BLOCK_SIZE);
        } else {
            bd = allocBlock_sync();
        }
        initBdescr(bd, ws->gen, ws->gen->to);
        bd->flags = BF_EVACUATED;
        bd->u.scan = bd->free = bd->start;
    }

    bd->link = NULL;

    ws->todo_bd = bd;
    ws->todo_free = bd->free;
    ws->todo_lim  = stg_min(bd->start + bd->blocks * BLOCK_SIZE_W,
                            bd->free + stg_max(WORK_UNIT_WORDS,size));

    debugTrace(DEBUG_gc, "alloc new todo block %p for gen  %d", 
               bd->free, ws->gen->no);

    return ws->todo_free;
}
예제 #2
0
파일: CNF.c 프로젝트: goldfirere/ghc
void
compactResize (Capability *cap, StgCompactNFData *str, StgWord new_size)
{
    StgWord aligned_size;

    aligned_size = BLOCK_ROUND_UP(new_size + sizeof(StgCompactNFDataBlock));

    // Don't allow sizes larger than a megablock, because we can't use the
    // memory after the first mblock for storing objects.
    if (aligned_size >= BLOCK_SIZE * BLOCKS_PER_MBLOCK)
        aligned_size = BLOCK_SIZE * BLOCKS_PER_MBLOCK;

    str->autoBlockW = aligned_size / sizeof(StgWord);
    compactAppendBlock(cap, str, aligned_size);
}
예제 #3
0
파일: GCUtils.c 프로젝트: ggreif/ghc
StgPtr
alloc_todo_block (gen_workspace *ws, uint32_t size)
{
    bdescr *bd/*, *hd, *tl */;

    // Grab a part block if we have one, and it has enough room
    bd = ws->part_list;
    if (bd != NULL &&
        bd->start + bd->blocks * BLOCK_SIZE_W - bd->free > (int)size)
    {
        ws->part_list = bd->link;
        ws->n_part_blocks -= bd->blocks;
        ws->n_part_words -= bd->free - bd->start;
    }
    else
    {
        if (size > BLOCK_SIZE_W) {
            bd = allocGroup_sync((W_)BLOCK_ROUND_UP(size*sizeof(W_))
                                 / BLOCK_SIZE);
        } else {
            if (gct->free_blocks) {
                bd = gct->free_blocks;
                gct->free_blocks = bd->link;
            } else {
                allocBlocks_sync(16, &bd);
                gct->free_blocks = bd->link;
            }
        }
        // blocks in to-space get the BF_EVACUATED flag.
        bd->flags = BF_EVACUATED;
        bd->u.scan = bd->start;
        initBdescr(bd, ws->gen, ws->gen->to);
    }

    bd->link = NULL;

    ws->todo_bd = bd;
    ws->todo_free = bd->free;
    ws->todo_lim  = stg_min(bd->start + bd->blocks * BLOCK_SIZE_W,
                            bd->free + stg_max(WORK_UNIT_WORDS,size));
                     // See Note [big objects]

    debugTrace(DEBUG_gc, "alloc new todo block %p for gen  %d",
               bd->free, ws->gen->no);

    return ws->todo_free;
}
예제 #4
0
파일: CNF.c 프로젝트: goldfirere/ghc
StgCompactNFDataBlock *
compactAllocateBlock(Capability            *cap,
                     StgWord                size,
                     StgCompactNFDataBlock *previous)
{
    StgWord aligned_size;
    StgCompactNFDataBlock *block;
    bdescr *bd;

    aligned_size = BLOCK_ROUND_UP(size);

    // We do not link the new object into the generation ever
    // - we cannot let the GC know about this object until we're done
    // importing it and we have fixed up all info tables and stuff
    //
    // but we do update n_compact_blocks, otherwise memInventory()
    // in Sanity will think we have a memory leak, because it compares
    // the blocks he knows about with the blocks obtained by the
    // block allocator
    // (if by chance a memory leak does happen due to a bug somewhere
    // else, memInventory will also report that all compact blocks
    // associated with this compact are leaked - but they are not really,
    // we have a pointer to them and we're not losing track of it, it's
    // just we can't use the GC until we're done with the import)
    //
    // (That btw means that the high level import code must be careful
    // not to lose the pointer, so don't use the primops directly
    // unless you know what you're doing!)

    // Other trickery: we pass NULL as first, which means our blocks
    // are always in generation 0
    // This is correct because the GC has never seen the blocks so
    // it had no chance of promoting them

    block = compactAllocateBlockInternal(cap, aligned_size, NULL,
                                         previous != NULL ? ALLOCATE_IMPORT_APPEND : ALLOCATE_IMPORT_NEW);
    if (previous != NULL)
        previous->next = block;

    bd = Bdescr((P_)block);
    bd->free = (P_)((W_)bd->start + size);

    return block;
}
예제 #5
0
파일: CNF.c 프로젝트: goldfirere/ghc
StgCompactNFData *
compactNew (Capability *cap, StgWord size)
{
    StgWord aligned_size;
    StgCompactNFDataBlock *block;
    StgCompactNFData *self;
    bdescr *bd;

    aligned_size = BLOCK_ROUND_UP(size + sizeof(StgCompactNFData)
                                  + sizeof(StgCompactNFDataBlock));

    // Don't allow sizes larger than a megablock, because we can't use the
    // memory after the first mblock for storing objects.
    if (aligned_size >= BLOCK_SIZE * BLOCKS_PER_MBLOCK)
        aligned_size = BLOCK_SIZE * BLOCKS_PER_MBLOCK;

    block = compactAllocateBlockInternal(cap, aligned_size, NULL,
                                         ALLOCATE_NEW);

    self = firstBlockGetCompact(block);
    SET_HDR((StgClosure*)self, &stg_COMPACT_NFDATA_CLEAN_info, CCS_SYSTEM);
    self->autoBlockW = aligned_size / sizeof(StgWord);
    self->nursery = block;
    self->last = block;
    self->hash = NULL;

    block->owner = self;

    bd = Bdescr((P_)block);
    bd->free = (StgPtr)((W_)self + sizeof(StgCompactNFData));
    self->hp = bd->free;
    self->hpLim = bd->start + bd->blocks * BLOCK_SIZE_W;

    self->totalW = bd->blocks * BLOCK_SIZE_W;

    debugTrace(DEBUG_compact, "compactNew: size %" FMT_Word, size);

    return self;
}
예제 #6
0
파일: Arena.c 프로젝트: 23Skidoo/ghc
// Allocate some memory in an arena
void  *
arenaAlloc( Arena *arena, size_t size )
{
    void *p;
    nat size_w;
    nat req_blocks;
    bdescr *bd;

    // round up to nearest alignment chunk.
    size = ROUNDUP(size,MIN_ALIGN);

    // size of allocated block in words.
    size_w = B_TO_W(size);

    if ( arena->free + size_w < arena->lim ) {
        // enough room in the current block...
        p = arena->free;
        arena->free += size_w;
        return p;
    } else {
        // allocate a fresh block...
        req_blocks =  (W_)BLOCK_ROUND_UP(size) / BLOCK_SIZE;
        bd = allocGroup_lock(req_blocks);
        arena_blocks += req_blocks;

        bd->gen_no  = 0;
        bd->gen     = NULL;
        bd->dest_no = 0;
        bd->flags   = 0;
        bd->free    = bd->start;
        bd->link    = arena->current;
        arena->current = bd;
        arena->free = bd->free + size_w;
        arena->lim = bd->free + bd->blocks * BLOCK_SIZE_W;
        return bd->start;
    }
}
예제 #7
0
파일: Storage.c 프로젝트: LeapYear/ghc
StgPtr
allocate (Capability *cap, W_ n)
{
    bdescr *bd;
    StgPtr p;

    TICK_ALLOC_HEAP_NOCTR(WDS(n));
    CCS_ALLOC(cap->r.rCCCS,n);
    if (cap->r.rCurrentTSO != NULL) {
        // cap->r.rCurrentTSO->alloc_limit -= n*sizeof(W_)
        ASSIGN_Int64((W_*)&(cap->r.rCurrentTSO->alloc_limit),
                     (PK_Int64((W_*)&(cap->r.rCurrentTSO->alloc_limit))
                      - n*sizeof(W_)));
    }

    if (n >= LARGE_OBJECT_THRESHOLD/sizeof(W_)) {
        // The largest number of words such that
        // the computation of req_blocks will not overflow.
        W_ max_words = (HS_WORD_MAX & ~(BLOCK_SIZE-1)) / sizeof(W_);
        W_ req_blocks;

        if (n > max_words)
            req_blocks = HS_WORD_MAX; // signal overflow below
        else
            req_blocks = (W_)BLOCK_ROUND_UP(n*sizeof(W_)) / BLOCK_SIZE;

        // Attempting to allocate an object larger than maxHeapSize
        // should definitely be disallowed.  (bug #1791)
        if ((RtsFlags.GcFlags.maxHeapSize > 0 &&
             req_blocks >= RtsFlags.GcFlags.maxHeapSize) ||
            req_blocks >= HS_INT32_MAX)   // avoid overflow when
                                          // calling allocGroup() below
        {
            heapOverflow();
            // heapOverflow() doesn't exit (see #2592), but we aren't
            // in a position to do a clean shutdown here: we
            // either have to allocate the memory or exit now.
            // Allocating the memory would be bad, because the user
            // has requested that we not exceed maxHeapSize, so we
            // just exit.
            stg_exit(EXIT_HEAPOVERFLOW);
        }

        ACQUIRE_SM_LOCK
        bd = allocGroup(req_blocks);
        dbl_link_onto(bd, &g0->large_objects);
        g0->n_large_blocks += bd->blocks; // might be larger than req_blocks
        g0->n_new_large_words += n;
        RELEASE_SM_LOCK;
        initBdescr(bd, g0, g0);
        bd->flags = BF_LARGE;
        bd->free = bd->start + n;
        cap->total_allocated += n;
        return bd->start;
    }

    /* small allocation (<LARGE_OBJECT_THRESHOLD) */

    bd = cap->r.rCurrentAlloc;
    if (bd == NULL || bd->free + n > bd->start + BLOCK_SIZE_W) {
        
        if (bd) finishedNurseryBlock(cap,bd);

        // The CurrentAlloc block is full, we need to find another
        // one.  First, we try taking the next block from the
        // nursery:
        bd = cap->r.rCurrentNursery->link;
        
        if (bd == NULL) {
            // The nursery is empty: allocate a fresh block (we can't
            // fail here).
            ACQUIRE_SM_LOCK;
            bd = allocBlock();
            cap->r.rNursery->n_blocks++;
            RELEASE_SM_LOCK;
            initBdescr(bd, g0, g0);
            bd->flags = 0;
            // If we had to allocate a new block, then we'll GC
            // pretty quickly now, because MAYBE_GC() will
            // notice that CurrentNursery->link is NULL.
        } else {
            newNurseryBlock(bd);
            // we have a block in the nursery: take it and put
            // it at the *front* of the nursery list, and use it
            // to allocate() from.
            //
            // Previously the nursery looked like this:
            //
            //           CurrentNursery
            //                  /
            //                +-+    +-+
            // nursery -> ... |A| -> |B| -> ...
            //                +-+    +-+
            //
            // After doing this, it looks like this:
            //
            //                      CurrentNursery
            //                            /
            //            +-+           +-+
            // nursery -> |B| -> ... -> |A| -> ...
            //            +-+           +-+
            //             |
            //             CurrentAlloc
            //
            // The point is to get the block out of the way of the
            // advancing CurrentNursery pointer, while keeping it
            // on the nursery list so we don't lose track of it.
            cap->r.rCurrentNursery->link = bd->link;
            if (bd->link != NULL) {
                bd->link->u.back = cap->r.rCurrentNursery;
            }
        }
        dbl_link_onto(bd, &cap->r.rNursery->blocks);
        cap->r.rCurrentAlloc = bd;
        IF_DEBUG(sanity, checkNurserySanity(cap->r.rNursery));
    }
    p = bd->free;
    bd->free += n;

    IF_DEBUG(sanity, ASSERT(*((StgWord8*)p) == 0xaa));
    return p;
}
예제 #8
0
파일: CNF.c 프로젝트: goldfirere/ghc
void *
allocateForCompact (Capability *cap,
                    StgCompactNFData *str,
                    StgWord sizeW)
{
    StgPtr to;
    StgWord next_size;
    StgCompactNFDataBlock *block;
    bdescr *bd;

    ASSERT(str->nursery != NULL);
    ASSERT(str->hp > Bdescr((P_)str->nursery)->start);
    ASSERT(str->hp <= Bdescr((P_)str->nursery)->start +
           Bdescr((P_)str->nursery)->blocks * BLOCK_SIZE_W);

 retry:
    if (str->hp + sizeW < str->hpLim) {
        to = str->hp;
        str->hp += sizeW;
        return to;
    }

    bd = Bdescr((P_)str->nursery);
    bd->free = str->hp;

    // We know it doesn't fit in the nursery
    // if it is a large object, allocate a new block
    if (sizeW > LARGE_OBJECT_THRESHOLD/sizeof(W_)) {
        next_size = BLOCK_ROUND_UP(sizeW*sizeof(W_) +
                                   sizeof(StgCompactNFData));
        block = compactAppendBlock(cap, str, next_size);
        bd = Bdescr((P_)block);
        to = bd->free;
        bd->free += sizeW;
        return to;
    }

    // move the nursery past full blocks
    if (block_is_full (str->nursery)) {
        do {
            str->nursery = str->nursery->next;
        } while (str->nursery && block_is_full(str->nursery));

        if (str->nursery == NULL) {
            str->nursery = compactAppendBlock(cap, str,
                                              str->autoBlockW * sizeof(W_));
        }
        bd = Bdescr((P_)str->nursery);
        str->hp = bd->free;
        str->hpLim = bd->start + bd->blocks * BLOCK_SIZE_W;
        goto retry;
    }

    // try subsequent blocks
    for (block = str->nursery->next; block != NULL; block = block->next) {
        bd = Bdescr((P_)block);
        if (has_room_for(bd,sizeW)) {
            to = bd->free;
            bd->free += sizeW;
            return to;
        }
    }

    // If all else fails, allocate a new block of the right size.
    next_size = stg_max(str->autoBlockW * sizeof(StgWord),
                    BLOCK_ROUND_UP(sizeW * sizeof(StgWord)
                                   + sizeof(StgCompactNFDataBlock)));

    block = compactAppendBlock(cap, str, next_size);
    bd = Bdescr((P_)block);
    to = bd->free;
    bd->free += sizeW;
    return to;
}
예제 #9
0
int main(int argc, char **argv)
{
	int fd;
	int ret;
	int len, i, j, offset;
	loff_t seek;
	struct timeval tv1, tv2;
	struct erase_info_user ei;

	if (argc < 4)
	{
		fprintf(stderr, "Usage: nand_write <dev> <offset> <size>\n");
		return -1;
	}

	fd = open(argv[1], O_RDWR);
	if (fd < 0)
	{
		fprintf(stderr, "Can not open %s\n", argv[1]);
		return -1;
	}

	offset = strtoul(argv[2], NULL, 16);
	len = strtoul(argv[3], NULL, 16);

	len = BLOCK_ROUND_UP(len);
	i = 0;
	j = offset;
	while (i < len)
	{
		seek = (loff_t)j;
		ret = ioctl(fd, MEMGETBADBLOCK, &seek);
		if (ret == 1)
		{
			j += BLOCK_SIZE;
			continue;
		}

		ei.start = (unsigned int)(j);
		ei.length = BLOCK_SIZE;	
		j += BLOCK_SIZE;

		if (-1 == ioctl(fd, MEMERASE, &ei))
			continue;

		i += BLOCK_SIZE;
	}

	memset(buffer, 0xaa, sizeof (buffer));
	i = 0;
	j = offset;

	gettimeofday(&tv1, NULL);
	while (i < len)
	{
		seek = (loff_t)j;
		ret = ioctl(fd, MEMGETBADBLOCK, &seek);
		if (ret == 1)
		{
			j += BLOCK_SIZE;
			continue;
		}

		seek = (loff_t)j;
		lseek(fd, seek, SEEK_SET);
		ret = write(fd, buffer, BLOCK_SIZE);

		i += BLOCK_SIZE;
	}
	gettimeofday(&tv2, NULL);
	close(fd);



	i = tv2.tv_usec - tv1.tv_usec;
	if (i < 0)
	{
		j = tv2.tv_sec - tv1.tv_sec - 1;
		i = 1000000 + tv2.tv_usec - tv1.tv_usec;
	}
	else
	{
		j = tv2.tv_sec - tv1.tv_sec;
	}

	ret = len/(j*1000 + i/1000);
	ret = ret*1000;

	fprintf(stderr, "write %08x bytes, times used %d.%06d, speed %d.%dMB/s\n", len, j, i, ret/0x100000,
		  																		(ret%0x100000)*10/0x100000);

	return 0;
}
예제 #10
0
파일: Scav.c 프로젝트: bogiebro/ghc
static rtsBool
scavenge_one(StgPtr p)
{
    const StgInfoTable *info;
    rtsBool no_luck;
    rtsBool saved_eager_promotion;
    
    saved_eager_promotion = gct->eager_promotion;

    ASSERT(LOOKS_LIKE_CLOSURE_PTR(p));
    info = get_itbl((StgClosure *)p);
    
    switch (info->type) {
	
    case MVAR_CLEAN:
    case MVAR_DIRTY:
    { 
	StgMVar *mvar = ((StgMVar *)p);
	gct->eager_promotion = rtsFalse;
	evacuate((StgClosure **)&mvar->head);
	evacuate((StgClosure **)&mvar->tail);
	evacuate((StgClosure **)&mvar->value);
	gct->eager_promotion = saved_eager_promotion;

	if (gct->failed_to_evac) {
	    mvar->header.info = &stg_MVAR_DIRTY_info;
	} else {
	    mvar->header.info = &stg_MVAR_CLEAN_info;
	}
	break;
    }

    case THUNK:
    case THUNK_1_0:
    case THUNK_0_1:
    case THUNK_1_1:
    case THUNK_0_2:
    case THUNK_2_0:
    {
	StgPtr q, end;
	
	end = (StgPtr)((StgThunk *)p)->payload + info->layout.payload.ptrs;
	for (q = (StgPtr)((StgThunk *)p)->payload; q < end; q++) {
	    evacuate((StgClosure **)q);
	}
	break;
    }

    case FUN:
    case FUN_1_0:			// hardly worth specialising these guys
    case FUN_0_1:
    case FUN_1_1:
    case FUN_0_2:
    case FUN_2_0:
    case CONSTR:
    case CONSTR_1_0:
    case CONSTR_0_1:
    case CONSTR_1_1:
    case CONSTR_0_2:
    case CONSTR_2_0:
    case WEAK:
    case PRIM:
    case IND_PERM:
    {
	StgPtr q, end;
	
	end = (StgPtr)((StgClosure *)p)->payload + info->layout.payload.ptrs;
	for (q = (StgPtr)((StgClosure *)p)->payload; q < end; q++) {
	    evacuate((StgClosure **)q);
	}
	break;
    }
    
    case MUT_VAR_CLEAN:
    case MUT_VAR_DIRTY: {
	StgPtr q = p;

	gct->eager_promotion = rtsFalse;
	evacuate(&((StgMutVar *)p)->var);
	gct->eager_promotion = saved_eager_promotion;

	if (gct->failed_to_evac) {
	    ((StgClosure *)q)->header.info = &stg_MUT_VAR_DIRTY_info;
	} else {
	    ((StgClosure *)q)->header.info = &stg_MUT_VAR_CLEAN_info;
	}
	break;
    }

    case BLOCKING_QUEUE:
    {
        StgBlockingQueue *bq = (StgBlockingQueue *)p;
        
        gct->eager_promotion = rtsFalse;
        evacuate(&bq->bh);
        evacuate((StgClosure**)&bq->owner);
        evacuate((StgClosure**)&bq->queue);
        evacuate((StgClosure**)&bq->link);
        gct->eager_promotion = saved_eager_promotion;
        
        if (gct->failed_to_evac) {
            bq->header.info = &stg_BLOCKING_QUEUE_DIRTY_info;
        } else {
            bq->header.info = &stg_BLOCKING_QUEUE_CLEAN_info;
        }
        break;
    }

    case THUNK_SELECTOR:
    { 
	StgSelector *s = (StgSelector *)p;
	evacuate(&s->selectee);
	break;
    }
    
    case AP_STACK:
    {
	StgAP_STACK *ap = (StgAP_STACK *)p;

	evacuate(&ap->fun);
	scavenge_stack((StgPtr)ap->payload, (StgPtr)ap->payload + ap->size);
	p = (StgPtr)ap->payload + ap->size;
	break;
    }

    case PAP:
	p = scavenge_PAP((StgPAP *)p);
	break;

    case AP:
	p = scavenge_AP((StgAP *)p);
	break;

    case ARR_WORDS:
	// nothing to follow 
	break;

    case MUT_ARR_PTRS_CLEAN:
    case MUT_ARR_PTRS_DIRTY:
    {
	// We don't eagerly promote objects pointed to by a mutable
	// array, but if we find the array only points to objects in
	// the same or an older generation, we mark it "clean" and
	// avoid traversing it during minor GCs.
	gct->eager_promotion = rtsFalse;

        scavenge_mut_arr_ptrs((StgMutArrPtrs *)p);

	if (gct->failed_to_evac) {
	    ((StgClosure *)p)->header.info = &stg_MUT_ARR_PTRS_DIRTY_info;
	} else {
	    ((StgClosure *)p)->header.info = &stg_MUT_ARR_PTRS_CLEAN_info;
	}

	gct->eager_promotion = saved_eager_promotion;
	gct->failed_to_evac = rtsTrue;
	break;
    }

    case MUT_ARR_PTRS_FROZEN:
    case MUT_ARR_PTRS_FROZEN0:
    {
	// follow everything 
        scavenge_mut_arr_ptrs((StgMutArrPtrs *)p);
        
	// If we're going to put this object on the mutable list, then
	// set its info ptr to MUT_ARR_PTRS_FROZEN0 to indicate that.
	if (gct->failed_to_evac) {
	    ((StgClosure *)p)->header.info = &stg_MUT_ARR_PTRS_FROZEN0_info;
	} else {
	    ((StgClosure *)p)->header.info = &stg_MUT_ARR_PTRS_FROZEN_info;
	}
	break;
    }

    case TSO:
    {
	scavengeTSO((StgTSO*)p);
	break;
    }
  
    case STACK:
    {
        StgStack *stack = (StgStack*)p;

        gct->eager_promotion = rtsFalse;

        scavenge_stack(stack->sp, stack->stack + stack->stack_size);
        stack->dirty = gct->failed_to_evac;

        gct->eager_promotion = saved_eager_promotion;
        break;
    }

    case MUT_PRIM:
    {
	StgPtr end;
        
	gct->eager_promotion = rtsFalse;
        
	end = (P_)((StgClosure *)p)->payload + info->layout.payload.ptrs;
	for (p = (P_)((StgClosure *)p)->payload; p < end; p++) {
	    evacuate((StgClosure **)p);
	}

	gct->eager_promotion = saved_eager_promotion;
	gct->failed_to_evac = rtsTrue; // mutable
	break;

    }

    case TREC_CHUNK:
      {
	StgWord i;
	StgTRecChunk *tc = ((StgTRecChunk *) p);
	TRecEntry *e = &(tc -> entries[0]);
	gct->eager_promotion = rtsFalse;
	evacuate((StgClosure **)&tc->prev_chunk);
	for (i = 0; i < tc -> next_entry_idx; i ++, e++ ) {
	  evacuate((StgClosure **)&e->tvar);
	  evacuate((StgClosure **)&e->expected_value);
	  evacuate((StgClosure **)&e->new_value);
	}
	gct->eager_promotion = saved_eager_promotion;
	gct->failed_to_evac = rtsTrue; // mutable
	break;
      }

    case IND:
        // IND can happen, for example, when the interpreter allocates
        // a gigantic AP closure (more than one block), which ends up
        // on the large-object list and then gets updated.  See #3424.
    case BLACKHOLE:
    case IND_STATIC:
	evacuate(&((StgInd *)p)->indirectee);

#if 0 && defined(DEBUG)
      if (RtsFlags.DebugFlags.gc) 
      /* Debugging code to print out the size of the thing we just
       * promoted 
       */
      { 
	StgPtr start = gen->scan;
	bdescr *start_bd = gen->scan_bd;
	nat size = 0;
	scavenge(&gen);
	if (start_bd != gen->scan_bd) {
	  size += (P_)BLOCK_ROUND_UP(start) - start;
	  start_bd = start_bd->link;
	  while (start_bd != gen->scan_bd) {
	    size += BLOCK_SIZE_W;
	    start_bd = start_bd->link;
	  }
	  size += gen->scan -
	    (P_)BLOCK_ROUND_DOWN(gen->scan);
	} else {
	  size = gen->scan - start;
	}
	debugBelch("evac IND_OLDGEN: %ld bytes", size * sizeof(W_));
      }
#endif
      break;

    default:
	barf("scavenge_one: strange object %d", (int)(info->type));
    }    

    no_luck = gct->failed_to_evac;
    gct->failed_to_evac = rtsFalse;
    return (no_luck);
}